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Frequent spring flooding in Southern Quebec’s Nicolet River watershed has a history of causing severe damage,
which is likely to worsen as climate change progresses. Employing the ArcSWAT model, an attempt was made to
assess the potential impacts of climate change on the Nicolet River watershed’s seasonal and annual streamflow,
particularly that portion affected by snowmelt. Calibrated and validated against observed streamflow data for
the periods of 1986-1990 and 1991-2000, respectively, the model reliably predicted daily streamflow (e.g.,
percent bias within + 15%, Nash-Sutcliffe model efficiency > 0.50, and the ratio of root mean square error to
the standard deviation <0.70). In an effort to investigate the impacts of climate change on streamflow, future
climate datasets were generated for 2053-2067 by implementing the eleven sets of existing Regional Climate
Model (RCM) simulations produced for the North American Regional Climate Change Assessment Program
(NARCCAP) in the ArcSWAT model. The ArcSWAT model’s hydrological responses were closely tied to changes
of climate variables: a strong correlation existed between simulated runoff and precipitation, and between
temperature and predicted evapotranspiration, snowfall, and winter snowmelt. Projected future climate data
showed increases in both average temperature (+2.5 °C) and precipitation (+21%). Significant greater total
precipitation was forecasted for the winter season, while total snowfall was projected to decrease by 6%.
However, the snowmelt showed an increasing trend for the late winter and earlier spring period. Streamflow was
expected to increase annually and in most seasons except spring. Annual peak flows volumes would increase by
13% in the future and the occurrence of peak flows would shift to the winter (vs. the spring), indicating a greater
risk of winter flooding in the future. The individual impact of temperature and precipitation on peak flows
showed that increases in peak flows were mainly tied to increased precipitation, while the shift in their timing
was mostly tied to warming temperatures.

1. Introduction

thereby streamflow, while changes in temperature will most likely in-
fluence the timing of snowmelt (Barnett et al., 2005). According to the

It is widely acknowledged that the earth is warming due to in- Emergency Preparedness Canada (EPC) electronic disaster database,

creasing greenhouse gas emissions generated by anthropogenic activ-
ities (Lopez-Ballesteros et al., 2020). Over the period of 1901-2012, the
mean global temperature has risen by 0.89 °C (IPCC, 2013), and the
warming is expected to continue (Zhang et al., 2019). In a recent
governmental report released by Environment and Climate Change
Canada, the mean annual temperature in Canada is expected to increase
by 2.0-6.0 °C by 2100 (ECCC, 2019). With warmer temperatures, and
the atmosphere’s resulting greater capacity to hold water vapor, pre-
cipitation regimes will be altered (Rouhani and Leconte, 2018), and,
accordingly the watersheds’ hydrologic cycle. For snowmelt-dominated
regions, changes in precipitation will affect snow accumulation and
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over 65% of the nation’s flood disasters were attributed to snowmelt
runoff, storm water, and storm rainfall runoff (Brooks et al., 2001). In
the mountainous areas of the western United States, over 70% of runoff
have been attributed to snowmelt (Li et al., 2017). Under a changing
climate, higher latitude areas are more likely to experience increasingly
extreme spring floods (Rouhani and Leconte, 2018). An analysis of
Canadian hydrologic trends over the last 30 years has shown an in-
crease in winter streamflow, a decrease in summer streamflow, along
with earlier peak flows (Whitfield and Cannon, 2000; Zhang et al.,
2000; St. Jacques and Sauchyn, 2009). A global analysis of climate
change impacts on river flow regimes in a number of countries,
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including Canada, predicted a significant increase in the magnitude of
peak flows, but with their occurrence shifted at least one month earlier
(Arnell and Gosling, 2013).

In Quebec, high flow events and spring floods are primarily the
result of snowmelt, which accounts for up to 40% of annual streamflow
(Coulibaly et al., 2000; Ferguson, 1999). Between 1900 and 1997, ap-
proximately 14% of the national flood disasters occurred in Quebec.
The highly populated areas of southern Quebec have experienced a
number of major flood events in the last few decades, and the recent
one in 2017 has flooded thousands of houses and caused great damage
to the riverside communities (Rouhani and Leconte, 2018). Under
changing climate conditions, the occurrence of extreme spring floods in
Quebec is predicted to increase, largely as the result of an earlier
snowmelt (Beauchamp et al., 2015; Rouhani and Leconte, 2018). It is
therefore essential to assess the potential impact of climate change on
streamflow characteristics, especially peak flows, and thereby better
monitor floods and offer watershed management adaptations to miti-
gate these disasters.

Hydrological models with snowmelt modules have been recently
applied to simulate streamflow in snowmelt-dominated areas (Ficklin
and Barnhart, 2014; Lachance-Cloutier et al., 2017; Tang et al., 2019).
Accurate modeling and simulation of streamflow under snowmelt
conditions typical of snow-dominated regionss are critical to capture
watershed’s physical and hydrological characteristics, and can provide
guidance for local flood forecasting and control. In addition, the cali-
brated and validated models provide an option to forecast the long-term
shifts in streamflow under various climate conditions. The ArcSWAT
model is a semi-distributed hydrological model at a watershed-scale
with different modules targeting various user demands (Arnold et al.,
1998). Laying a solid foundation for further model application, the
model provides accurate predictions of snowmelt-influenced stream-
flow at both daily and monthly time steps worldwide including West
Seti River Basin (Bhatta et al., 2020), Himalayan River Basin (Bhatta
et al., 2019), Heihe River Basin (Wu et al., 2015), Taleghan mountai-
nous watershed (Noor et al., 2014), Outardes basin (Troin and Caya,
2014), Blue River watershed (Lemonds and McCray, 2007), Garonne
watershed (Grusson et al., 2015), and Ontonagon River basin (Wu and
Johnston, 2007).

Given its high accuracy and applicability towards long-term pre-
diction of winter hydrological events in snow-dominated regions, sev-
eral previous studies undertaken in southern Quebec have employed
SWAT to investigate the hydrological response to climate change. These
studies have suggested significant greater annual runoff, along with
earlier snowmelt and discharge peaks (Gombault et al., 2015; Minville
et al., 2008; Shrestha et al., 2012). Gombault et al. (2015) found that
under future scenarios (2041-2070), spring floods would begin earlier,
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annual streamflow would increase by 9-19% and winter flow would
increase by 2- to 3- fold as compared to the baseline period
(1971-2000). While these studies were only concerned with the com-
bined effects of temperature and precipitation on the peak flow of
watersheds, the individual effects of temperature and precipitation
changes on snowfall and snowmelt were not well addressed, an im-
portant omission since snowmelt is the major contributor to peak flows
for the snow-dominated watersheds.

Located in the St Lawrence lowlands, the Nicolet River watershed
has faced a growing risk of spring flooding in the recent years. In early
April 2014, the watershed was added to a spring flood warning register,
due to higher than normal water levels from spring thaw along and
warming temperatures (CBC News, 2014). Road accesses to towns in
this region were cut off because of high water levels in the spring of
2017. While no study of future streamflow in this watershed has been
conducted, it is necessary to assess the impact of future climate change
on the Nicolet River watershed hydrology, especially with respect to
spring streamflow and snowmelt. Although Gombault et al. (2015) as-
sessed the impact of climate change on the hydrology of the nearby Pike
River watershed using a calibrated SWATqc model, they only applied
four projected future climate datasets and there was a large variation
among the four climate models in terms of spatial and seasonal changes.
It is therefore necessary to apply multiple climate change models for the
assessment of climate change impacts in this region.

The objectives of this study were to evaluate the ArcSWAT model’s
capacity to accurately simulate streamflow in a snow-dominated wa-
tershed, and subsequently, employing eleven projected climate sce-
narios, to quantify the potential impact of climate change on the Nicolet
River watershed’s hydrology as affected by snowmelt. This research
focused on the hydrologic changes induced by climate change between
the baseline period (1983-2000) and projected future climates
(2050-2067), especially in the winter and spring seasons. Furthermore,
both the combined and individual effects of temperature and pre-
cipitation change on future annual and seasonal streamflow as well as
peak flow, as affected by snowmelt were assessed.

2. Materials and methods
2.1. Site description

The Nicolet River, as a southern tributary of the Saint Lawrence
River, drains a watershed approximately 3380 km? into Lake Saint-
Pierre. The research area intersected the downtown portions of the
towns of Victoriaville and Warwick (Fig. 1). The stream flow data from
hydrological station 020D003 was downloaded from the Environment
Canada’s HYDAT database. Weather data, including precipitation and

A ¥Qlevec City
P
Trois:Rivieres

Saint-Jérome &
‘Montreal
e

fGranby ot
Saint-Jéan-sur-Richelieu’™ Sherbrooke:

Google Earth

Fig. 1. Map of Nicolet watershed in southern Quebec, Canada.
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Fig. 2. Historical precipitation and temperature from 1981 to 2010 for the weather stations in the study area.

air temperature, were retrieved from four meteorological stations
(Station ID: 701HE63; 7027783; 7022160; 7027248) within the wa-
tershed. The 30-year (1981-2010) Canadian Climate Normal Statistics
for the four weather stations, were selected to provide the weather
inputs (Fig. 2). Based on the weather station at St Ferdinand (Climate
ID: 7027248), the average daily temperature of the study area was
4.4 °C and the mean annual precipitation of the study area was
1227.7 mm which consisted of 76.5% rainfall and 23.5% snowfall.

2.2. The overview of SWAT model

ArcSWAT, an ArcGIS extension and graphical user input interface
for the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011),
was employed to simulate streamflow in this study due to its compre-
hensive capacity for hydrologic simulation. The SWAT is a semi-dis-
tributed hydrological model that simulates the hydrological processes
in the watersheds, which was developed by the United States Depart-
ment of Agriculture (USDA). Spatially-distributed data on topography,
soils, land use, and meteorology were required for the model to simu-
late hydrological processes. The modeled watershed was divided into
multiple sub-basins based on digital elevation data, then was further
subdivided into hydrologic response units (HRUs) depending on soils,
land use and slope features. The water balance in each HRU is subse-
quently computed to simulate the hydrologic processes (e.g., pre-
cipitation, surface and subsurface flow, evapotranspiration, infiltration,
groundwater, snow accumulation and snowmelt).

The snowmelt module in ArcSWAT utilizes the temperature index
method to simulate the snowmelt processes. It assumes a linear re-
lationship of the snowmelt and the difference between average max-
imum temperature and a threshold temperature. The snow accumula-
tion is represented by the change of water content in snowpack.
ArcSWAT classifies the precipitation as rainfall or snow based on mean
daily air temperature, after which the liquid water equivalent of the
snow precipitation is added to the snowpack if the air temperature is
below the user-defined snowfall temperature. The timing and amount
of snowmelt are determined by the combination of snowpack tem-
perature, the melting rate and the areal coverage of snow. The snow-
melt is included in the rainfall for calculating the runoff and infiltration
(Neitsch et al., 2011).

2.3. Model setup

Datasets required by ArcSWAT model as input include a digital
elevation model (DEM), soil type, land use, daily maximum and
minimum air temperature, and precipitation.

2.3.1. Geographical data

A 90 m resolution DEM was acquired from the CGIAR Consortium
for Spatial Information (CGIAR-CSI) originally provided by the NASA
Shuttle Radar Topographic Mission (SRTM). DEM raster files were
merged and projected to UTM Zone 19 N with datum WGS 1983. The
watershed boundary and stream network were generated by the
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Fig. 3. Maps of delineated (a) watershed, (b) landuse, (c) soil type and (d) slope, Note: AGRR: Agriculture Land-Generic; HAY: Hay; FRST: Forest-Mixed; WETN:

Wetland-Non-Forested; WPAS: winter tall fescue pasture; RNGE: Range-Grasees.

automatic watershed delineation tool in SWAT based on the DEM. Land
use data was accessed from the WaterBase database, and a resampled
version with a resolution of 800 m was applied in the study area.
Detailed topical water maps for the watershed are shown in Fig. 3. Hay
(HAY), Forest-Mixed (FRST), and Wetland-Non-Forested (WETN) were
identified as the dominant land uses (Fig. 3b). The soil information was
drawn from the FAO-UNESCO soil map shown in the Supplemental
Material. In the current study area, two types of soil (Po13-2a-4964;
P010-2b-3458) were represented as the primary soil types (Fig. 3c),
both of which were loams and belonged to class C (see Supplemental
Material Table S1), indicating slow infiltration rates, low rates of water
transmission and high runoff potential.

2.3.2. Meteorological and hydrological data

The historical meteorological data from 1983 to 2000 was obtained
from four weather stations in the catchment (ID: 701HE63; 7027783;
7022160; 7027248) from the website of Environment Canada. The data
include daily maximum and minimum temperature, as well as pre-
cipitation. The coordinates of each weather station are shown in
Table 1.

Drawing on Environment Canada’s HYDAT database, historical
stream flow data was obtained from a hydrologic station (ID: 020D003,
46°03’23” N, 72°18’23” W) situated 5.8 km from the mouth of the
Bulstrode River, a northern branch of Nicolet River. The seasonal

Table 1

The geographical information of weather stations.
Station Name Station ID Longtitude Latitude
TROIS RIVIERES AQUEDUC 701HE63 72°62' W 46°38' N
ST WENCESLAS 7,027,783 72°33 W 46°17' N
DRUMMONDVILLE 7,022,160 72°48 W 45°88" N
ST FERDINAND 7,027,248 71°58’ W 46°10' N

streamflow followed a pattern where spring flow, affected by snowmelt,
contributed most of the runoff volume. The discharge declined gradu-
ally from late autumn to winter, and then reached to minimum value in
early spring of the next year.

2.4. Model calibration and validation

The whole period of 1983-2000 was divided into three sub-periods,
which were used for model initialization and warm up (1983-1985),
model calibration (1986-1990) and model validation (1991-2000). The
simulated daily and monthly streamflow were compared with observed
values for the evaluation of model performance based on statistical
analysis. To understand the hydrologic components of a watershed, it is
necessary to analyze the water yield, which is defined as the aggregate
sum of water leaving the HRU and entering the principle channel
(Arnold et al., 2012a,b). SWAT Check was executed for default output
after each run to examine the availability of water in each hydrological
component, including the amount of precipitation, evapotranspiration,
groundwater, surface runoff, soil water content and water yield. Water
balance equations were employed to assess the rationality of model
output and provide a guide for calibrating the model. The total water
yield and water balance error are calculated as:

WYLD = Qsmf + Quur + ng — Tioss — POND (@D)

Water balance error = P — (WYLD + ET + AS + DS) 2

where WYLD is the total water yield (mm), Qs is the surface runoff
contribution to streamflow (mm), Qs the lateral flow contribution to
streamflow (mm), Qg,is groundwater contribution to streamflow (mm),
POND is the pond abstractions (mm), Ty, is the transmission loss from
tributary channels (mm), P is the total precipitation (mm), ET is the
evapotranspiration (mm), AS is the change in soil water storage (mm),
and DS is the deep seepage (mm).
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Table 2

Results of sensitivity analysis for water yield (WY), surface flow (SF) and subsurface flow (SSF).
Parameter Sensitivity Rank Range WY (mm) SF (mm) SSF (mm)

WYy SF SSF Min Max Min Max Min Max Min Max

CN2 - 1 4 74 86 499.76 500.81 154.12 284.09 204.85 326.72
GW_REVAP 3 - 3 0.02 0.2 377.02 499.76 212.07 212.07 149.48 272.22
ESCO 1 3 5 0.01 1 391.43 561.89 197.62 213.49 183.07 287.15
SLSOIL 4 2 1 0 150 371.55 425.45 167.87 212.32 0 272.22
SOL_AWC 2 - 2 0 1 354.39 489.79 208.46 214.49 213.29 337.71

Note: CN2 is initial SCS runoff curve number for moisture condition I, GW_REVAP is groundwater “revap” coefficient, ESCO is soil evaporation compensation factor,
SLSOILL is lope length for lateral subsurface flow, SOL_AWC is available soil water content, Min is minimal, and Max is maximal.

2.4.1. Sensitivity analysis

Before model calibration, a local sensitivity analysis approach al-
lowing parameters to change gradually from maximum to minimum
values one at a time while all the other parameters unchanged, as
suggested by the guidelines of Arnold et al. (2012b) and Marin et al.
(2020), was employed to determine the key parameters and their
ranges of sensitivity (Arnold et al., 2012a). Sensitivities were defined by
the percentage change in surface and subsurface runoff or water yield,
with respect to changes in the parameters. For streamflow and snow-
melt, fifteen parameters that are frequently reported as being sensitive
were selected for the sensitivity analysis. The parameters were ranked
by the level of their influence on the model output based on the sen-
sitivity test, and the five most sensitive parameters from current study
are shown in Table 2. The soil evaporation compensation factor (ESCO)
was the most sensitive parameter for water yield, which directly con-
trolled the amount of available water in soil layers for soil evaporation.
The runoff curve number (CN2) was the most sensitive parameter for
surface runoff, however, changes in CN2 did not evidently affect the
result of water yield due to its negative impact on subsurface flow and
groundwater, which made it a key parameter to partition precipitation
into infiltration and runoff. The subsurface flow was found to be no-
tably influenced by the slope length of soil (SLSOIL). The groundwater
“revap” coefficient (GW_REVAP) controlled the water movement from
the shallow aquifer to the root zone, while the available water capacity
of the soil layer (SOL_AWC) played a crucial role in determining both
subsurface flow and water yield.

2.4.2. Model calibration and validation

The calibrated values for the 15 relevant parameters are shown in
Table 3. The value of CN2 was increased by 11% in order to increase
runoff and reduce infiltration. The ESCO was adjusted from a default
value of 0.95-0.65 to allow more water extraction for evaporation from
deep soil layers, thus increasing the evapotranspiration in summer. The
groundwater “revap” coefficient (GW_REVAP) was increased from 0.02

Table 3
Calibrated parameters for the SWAT model.

to 0.05, to transfer more water from shallow aquifer to the root zone.
Although available soil water content (SOL_AWC) and slope length for
lateral subsurface flow (SLSOIL) were sensitive parameters for stream-
flow, the two values were kept at default values as changes in those two
values did not achieve a better simulation in streamflow (Table 3). In
addition to the five most sensitive parameters, several more parameters
as listed below were adjusted to optimize predicted results. Given the
soil’s slow rate of water transmission and infiltration in the study region
(Class C, Table S1), the GW_DELAY, which denotes the time that water
infiltrates through the soil layers into the shallow aquifer, was reset
from the default of 31 days to 80 days. The value of ALPHA_BF was
increased from a default value of 0.048 to 0.5 to decrease summer
baseflow. While the sensitive parameters had a primary impact on the
amount of the water available for each component, the timing of the
streamflow peaks for the tributary channels was controlled by average
slope length (SLSUBBSN), average slope steepness (SLOPE), and Man-
ning's “n” value (CH_N1). Accordingly, the SLSUBBSN was increased by
10%, while the SLOPE was decreased by 20% to shorten the time of
concentration. As suggested by Arnold et al. (2012b), for the land
covered by moderate vegetation, CH N1 was adjusted from 0.014 to
0.05.

Based on the sensitivity analysis undertaken in the current study,
four out of seven snowmelt-related parameters were among the most
sensitive parameters controlling the snowmelt process: SFTMP,
SMTMP, SMFMX and SMFMN. Defined as the snowfall temperature,
SFTMP was decreased from 1 °C to —1 °C to increase snowfall and
postpone snowmelt. Snowmelt base temperature above which snow-
pack melts, SMTMP, was increased from 0.5 °C to 3.5 °C to better si-
mulate stream flow, which, in turn, decreased the volume of peak flows
in winter, and divided a major peak into several sub-peaks. The impact
of snowpack density on snowmelt was represented by SMFMX and
SMFMN, which were both increased from their default values of 4.5 °C
to 5 °C and 5.5 °C, respectively (Lévesque et al., 2008). In addition,
SNOCOVMX and SNO50COV, suggested as top parameters affecting the

Parameters Definition Unit Default value Optimal value
CN2 Initial Soil Conservation Service (SCS) runoff curve number for moisture condition - - +11%
GW_REVAP Groundwater “revap” coefficient for water movement from shallow aquifer to root zone. - 0.02 0.05
ALPHA_BF Baseflow alpha factor days 0.048 0.5
GW_DELAY Groundwater delay time days 31 80
ESCO Soil evaporation compensation factor - 0.95 0.65
CH.N1 Manning's “n” value for the tributary channels - 0.014 0.05
SURLAG Surface runoff lag coefficient - 2 1.3
SLOPE Average slope steepness m/m - —20%
SLSUBBSN Average slope length m - 10%
SFTMP Snowfall temperature 1 -1
SMTMP Snow melt base temperature 0.5 3.5
SMFMX Melt factor for snow on June 21 4.5 5
SMFMN Melt factor for snow on December 21 4.5 5.5
SNOCOVMX Minimum snow water content that corresponds to 100% snow cover mm 1 50
SNO50COV Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover - 0.5 0.2
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unevenly distributed areal snow cover by Yang et al. (2014) , were
adjusted and shown in Table 3.

2.5. Assessment of model performance

According to the guidelines by Moriasi et al. (2007), the Nash-Sut-
cliffe efficiency (NSE, Nash and Sutcliffe, 1970), root mean square error
(RMSE)-observations standard deviation ratio (RSR), and percent bias
(PBIAS) were adopted in this study to evaluate the performance of
ArcSWAT in modeling the streamflow in the Nicolet River watershed.
An NSE value of 1 indicates a perfect match of model simulation and
observation, while a value less than 0 indicates that the observed mean
is a more accurate predictor than the simulated result. The model
performance is considered as “satisfactory” when NSE is greater than
0.5, “good” when 0.65 < NSE < 0.75, and “very good” when NSE > 0.75
(Moriasi et al., 2007, 2015). The RMSE-observations standard deviation
ratio (RSR) was selected as it represents both an error index and a
normalization factor applicable to various constituents. The optimal
RSR value of 0 indicates zero RMSE, and the simulation is considered
acceptable when RSR is less than 0.7 (Singh et al., 2005). PBIAS mea-
sures the difference between simulated and observed values. The op-
timal value of PBIAS is 0, while positive and negative values indicate
underestimation and overestimated of bias, respectively. The model
performance is judged as satisfactory when PBIAS is within + 15%
(Moriasi et al., 2007, 2015). These statistics are calculated as:

z:’;l (Yiobs _ Yi:im)z

NSE =1 - n obs mean \2
iy (V77 =) 3)
Ziﬂ=1 (Yiobs _ Yisim)z
RSR = \/Z” (Ypbs _ Y_mean)Z
i=1 \Li i @
n bs Si
PBIAS = 100 X w

i, Y (5)

2.6. Climate scenarios

The future climate datasets were generated by the North American
Regional Climate Change Assessment Program (NARCCAP), an inter-
national program providing high solution climate scenarios for North
America (Mearns et al., 2007, 2009). Regional climate models (RCMs)
were embedded into General Circulation Model (GCMs) to obtain re-
gional climate data at a spatial resolution of 50 km. Eleven sets of cli-
mate scenarios obtained through different RCMs-GCMs pairings served
as future meteorological data. Current climate projections (1971-1998)
and future climate projections (2038-2068) were generated for each
climate scenarios. The historical observed weather data from 1983 to
2000 from four meteorological stations (Climate ID: 701HE63;
7027783; 7022160; 7027248) were averaged and drawn upon in
baseline scenarios.

The projected future climate data were not always representative of
the current climate conditions as some unreasonable low (below 0 °C)
summer temperatures were present. Therefore, the change factor (CF)
method was employed to correct the bias between modeled and ob-
served climate data (Chen et al., 2011; Minville et al., 2008). To obtain
the differences between projected future and current climate data, we
generated historical (1983-2000) and future (2050-2067) daily
weather data for four weather stations using all eleven climate models.
Then the monthly differences between historical and future data were
calculated, and subsequently changes in temperature (°C) and pre-
cipitation (%) were added to the baseline scenario weather data, and
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finally future scenarios were generated (See equations in Supplemental
Material).

2.7. Future climate data

The mean annual temperature under baseline (1983-2000) condi-
tions was 4.2 °C, and increased by 2.5 °C in future weather projections
(2050-2067) (Table S2, in Supplemental material). All scenarios
showed increases in future annual mean temperature for the Nicolet
River watershed, ranging from 2.0 °C to 3.1 °C. The mean seasonal
temperature changes were +2.1 °C, +2.2 °C, +2.5 °C and +3.2 °C for
spring (March 21-June 20), summer (June 21-September 20), autumn
(September 21-December 20), and winter (December 21-March 20),
respectively. The projected changes in future (+67 years) air tem-
peratures in Quebec were greater than those observed changes in his-
torical data (Yagouti et al., 2008) where annual mean temperature in-
creased significantly from 0.6° to 1.8 °C over the period of 1960-2005,
with the warming trend being more pronounced in winter than
summer. Our projected future climate was comparable with that gen-
erated by DesJarlais et al. (2010), who predicted increases in future
temperature of 2.5 °C to 3.8 °C in winter and 1.9 °C to 3.0 °C in the
summer by 2050. The large increases in winter and spring temperatures
may result in a reduction of snow accumulation and an increase in
snowmelt, thus affecting streamflow.

Mean annual precipitation increased from 1230 mm under the
baseline, to 1487 + 88.5 mm (+21%) in the future averaged across all
scenarios. Seasonally, the precipitation increased by 52 mm (+20%),
59 mm (+18%), 60 mm (21%) and 84 mm (+27%) for spring,
summer, autumn, and winter, respectively. Among different scenarios,
percent change in precipitation varied from 6% to 35% for spring, 8%
to 42% for summer, 3% to 42% for autumn and 16% to 52% for winter.
This range of variation in climate change parameters could raise the
complexity of water flow dynamics, which are interactively affected by
the precipitation, temperature and snowmelt. In addition, the large
variability between different climate models may result in great var-
iance in hydrologic responses.

3. Results and discussion
3.1. Model calibration and validation

The simulated streamflow closely matched the observed streamflow
in both calibration and validation periods (Fig. 4). After model cali-
bration, the model showed satisfactory model performance for simu-
lating both the daily flow (NSE = 0.55, RSR = 0.67, and PBIAS = 9%)
and monthly streamflow (NSE = 0.75, RSR = 0.50 and PBIAS = 9%)
with an overall water balance error of 5% (Table 4). Validated over the
period of 1996-2000 on both daily and monthly time steps, the
ArcSWAT model showed adequate model performance in simulating
both monthly (NSE = 0.51, RSR = 0.69, and PBIAS = 2%) and daily
(NSE = 0.84, RSR = 0.49 and PBIAS = 2%) streamflow, including
spring streamflow predominantly attributed to snowmelt. Overall, the
model accurately simulated the timing of peak flows, although the
volume of peak flow was slightly (2%) underestimated.

Our calibration and validation accuracy results were better than
those of Gombault et al. (2015) who achieved acceptable model per-
formance of SWATQqc for predicting monthly streamflow (NSE = 0.55)
in the validation phase, but an unacceptable performance in the cali-
bration phase (NSE < 0.50) for Quebec’s Pike River watershed. The
authors attributed the poor accuracy to SWAT’s inability to effectively
capture high-intensity, short-duration rainfall events at a daily time
step. In the present case, the statistics for both calibration and valida-
tion phases demonstrated that the SWAT model was reliable in
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Fig. 4. Comparison of simulated and observed streamflow in the (a) calibration from 1986 to 1990 and (b and c) validation from 1991 to 2000.

Table 4
Statistics of calibrated and validated results for monthly and daily streamflow.
Period Time Step NSE RSR PBIAS
Calibration (1986-1990) Daily 0.55 0.67 9%
Monthly 0.75 0.50 9%
Validation (1991-2000) Daily 0.51 0.69 2%
Monthly 0.77 0.48 2%

representing the physical and hydrological characteristics in the study
area.

3.2. Hydrologic responses to climate change

3.2.1. The volume of annual and seasonal streamflow
Comparison of the annual and seasonal streamflow between base-
line (1983-2000) and future scenarios (2050-2067), showed that the

historical mean annual streamflow rate of 31.9 m® s~ *, was predicted to
increase by 25% to 39.3 + 4.6 m® s~ ! in the future (Table 5). All future
scenarios demonstrated increases in predicted future annual stream-
flow; however, the greatest variations in annual streamflow simulation
occurred between different projected climatic datasets, with the largest
increase in mean annual streamflow produced by ECP2_HadCM3
(47.2%) and the smallest by WRFG_CCSM (8%). Although reports have
provided conflicting results regarding global streamflow rates trends, a
consistent trend of increased observed streamflow has been found for
cold high latitude regions (Sharma and Wasko, 2019). Our prediction of
greater annual streamflow concurred with many studies undertaken in
snow-dominant regions (Shrestha et al., 2017; Zhao et al., 2019). The
changes in annual streamflow volume were mainly resulted from al-
tered precipitation rather than shifts in temperature, indicating that
precipitation depth was the dominant factor for annual streamflow
volume (Hammond et al., 2018; Tang et al., 2019).

For the seasonal discharge, simulations under all climate scenarios



Q. Jiang, et al.

Table 5
Seasonal and annual streamflow under baseline (1983-2000) and future cli-
mate scenarios (2050-2067).

Climate Scenarios Streamflow (m®s™1)

Spring Summer Autumn Winter Annual
Baseline 59.2 24.1 20.8 23.5 31.9
CRCM_CCSM 56.8 27.5 23.5 37.1 36.2
CRCM_CGCM3 61.6 27.5 23.7 42.4 38.8
ECP2_GFDL 60.6 33.6 25.4 51.8 42.9
ECP2_HadCM3 55.7 44.3 38.3 49.4 46.9
HRM3_HadCM3 56.2 28.8 30.6 42.3 39.5
MMS5I_CCSM 60.8 41.6 37.3 44.9 46.1
MMS5I_HadCM3 49.0 29.3 25.0 39.9 35.8
RCM3_CGCM3 57.7 33.3 27.8 40.1 39.7
RCM3_GFDL 61.9 28.0 23.5 35.8 37.3
WRFG_CCSM 51.2 31.1 19.7 36.9 34.7
WRFG_CGCM3 67.1 31.4 29.8 37.6 41.5
Future average 58.1 32.4 27.7 41.7 39.9
Change —2% +34% +33% +77% +25%

suggested increased amounts of total streamflow in summer, autumn
and winter. However, there was no consensus on spring stream flow
among different climate scenarios. Whereas the CRCM_CCSM,
ECP2_HadCM3, HRM3_HadCM3, MM5I_ HadCM3, RCM3_CGCM3 and
WRFG_CCSM scenarios suggested decreases, the remaining scenarios
suggested increases in spring streamflow. Although precipitation was
projected to increase by 20% (+52 mm) in future springs, averaged
across all future climate scenarios spring streamflow decreased slightly
to 1.1 m® s™! (2%), compared with the baseline period. Our predicted
change in spring streamflow was on the order of that reported by
Gombault et al. (2015), implying a slight decrease of streamflow from
January to March. The decrease in spring streamflow could be mainly
attributed to an earlier snowmelt, which was historically concentrated
in April but moved to between January and March in the future sce-
nario (Fig. 5b). Accordingly, the greatest increase of streamflow was
forecasted for the winter, with an average increase of 77% compared to
the baseline, while a more moderate increase as forecasted to occur in
the summer and fall (slightly over 30%), because increases in evapo-
transpiration partially offset the impact of increasing precipitation on
streamflow (Table 5).

3.2.2. Peak flows

The change in daily peak flow was analyzed based on the snow
pattern (Fig. 5), magnitude of peak discharge (Fig. 6), and the timing of
peak occurrences. The changes in the timing of peak flows were
quantified as the frequency of peak flow occurrences in each month
(Table 6). For the volume of peak flows, CRCM_CCSM, MM5I_HadCM3,
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Fig. 6. Annual peak discharge rates for future scenarios (2050-2067) and
baseline (1983-2000). Note of x-axis and y-axis legends: bl: baseline;
1:CRCM_CCSM; 2:CRCM_CGCM3; 3:ECP2_GFDL; 4:ECP2 HadCM3; 5:HRM3_
HadCM3; 6:MM5I_CCSM; 7:MM5I_HadCM3; 8:RCM_CGCM3; 9:RCM3_GFDL;
10:WRFG_CCSM; 11:WRFG_CGCMS3; cms: cubic meters per second.

RCM3_CGCM3 and WRFG_CCSM suggested slight decreases (median
value) in annual peak flow volume, whereas the remaining scenarios
showed increases (median value) ranging from 6% to 36%. However,
there was no significant (p > 0.05) difference in the magnitude of
peak flows between baseline and future scenarios. Burn and Elnur
(2002) suggested that the magnitude of peak flows had not significantly
changed since 1970 for more than 80% of the rivers in Canada. On
average, the volume of annual peak flow increased by 13% compared to
the baseline period (Fig. 6), whereas the total snowfall and snowmelt
were predicted to decrease by 6.5% (Fig. 5a) and 4.4% (Fig. 5b), re-
spectively. As a result, the proportion of snowmelt contributing to peak
flow was projected to decrease as well. Therefore, the increases in the
volume of peak flows in the future are more likely attributable to an
increase in rainfall.

For the timing of peak discharge, all scenarios implied earlier oc-
currences of the peaks (Table 6). During the baseline period, the ma-
jority of peak flows occurred in March (27%) and April (40%), whereas,
under future scenarios peak flows were re-distributed, with 51% in
March and 13% in April. The number of peak flows events in March
increased from 4 events under the baseline to 7.6 events in the future,
while the number of peak flows in April decreased from 6 events under
the baseline to 2 events in the future. Moreover, the number of peak
flow events in the winter (January, February and March) increased
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Fig. 5. Annual (a) accumulated snowfall and (b) snowmelt for the average of 11 future climate scenarios (2050-2067), and for baseline period 1983-2000.
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Table 6
Number of the peak flow events in each month in baseline (1983-2000) and future scenarios (2050-2067). Months with no peak flows are not shown.
Jan Feb Mar Apr May Aug Sep Nov Dec

Baseline 2 - 4 6 2 - 1 - -
CRCM_CCSM 3 - 8 3 - - 1 - -
CRCM_CGCM3 2 1 8 2 - - - - 2
ECP2_GFDL 5 1 3 4 - - - - 2
ECP2_HadCM3 2 1 5 - - 3 1 1 2
HRM3_HadCM3 2 3 7 2 - - 1 - -
MMS5I_CCSM 3 6 2 - 3 - - 1
MM5I_HadCM3 4 7 1 1 1 - -
RCM3_CGCM3 2 - 9 2 - - 1 - 1
RCM3_GFDL 2 - 10 2 - - 1 - -
WRFG_CCSM 3 1 10 1 - - - - -
WRFG_CGCM3 2 - 11 1 - - 1 - -
Future average 2.7 0.7 7.6 2.0 0.1 0.5 0.6 0.1 0.7
Change +0.7 +0.7 +3.6 —4.0 -1.9 +0.5 -0.4 +0.1 +0.7

dramatically by 83% from 6 events under the baseline to 11 events in Table 7

the future, while the occurrence in spring (April, May and June) de-
creased by 74% from 8 to 2.1. It should be noted that the possibility of
flooding was predicted to be greater in January (2.7 events) than April
(2 events). The redistribution of peak flows indicated a greater risk of
winter flooding, and the spring flood tended to occur earlier in March
instead of April as usual. The present study’s prediction of earlier peak
flow events was consistent with Cunderlik and Ouarda (2009), who
analyzed historical streamflow data from 229 stations across Canada
and suggested that significant earlier peak flows had been brought on
by the occurrence of spring snowmelt in most of the regions of Southern
Canada. Our results were also consistent with those of Aygiin et al.
(2019), who reviewed the impacts of global climate change on hy-
drology in cold regions and found a consistent trend of earlier occur-
rence of snowmelt floods and increased streamflow in winter over
previous years.

3.2.3. Individual impact of temperature and precipitation

Using the calibrated and validated ArcSWAT model, the individual
impact of changes in temperature and precipitation on peak flows was
assessed by changing each variable at a time and keeping another at the
same level as under the baseline. With the change in precipitation only,
the predicted annual volume of future peak flows increased by 7%
compared with the baseline (Fig. 7a). The future distribution of
monthly peak flows followed a similar pattern to baseline, with most
future peak flows (48%) occurring in April, compared to 40% under the
baseline (Table 7). The average snowfall was predicted to increase

(a)

600

— 500 ®
m
£ ° e ° °
=)
2 400 )
©
8
()
20
© 300
-
[=]
A
© L]
L] (] - [ )
5 200
I L]
o
L] L]
100 °
0 T T
bbb 1 2 3 4 5 6 7 8 9 10 1
Scenario

Number of peak flow events in each month for baseline (1983-2000) and future
(2050-2067) scenario with only precipitation change (Months with no peak
flows are not shown).

=
8

Climate Scenarios Jan Apr May Jun Aug Sep Dec

Baseline
CRCM_CCSM
CRCM_CGCM3
ECP2_GFDL
ECP2_ HadCM3
HRM3_HadCM3
MMS5I_CCSM
MMS5I_HadCM3
RCM3_CGCM3
RCM3_GFDL
WRFG_CCSM
WRFG_CGCM3
Future average
Change

SN

| |
|
N |
| |

A WA DBADDBDNRFOGSN
|
|
|
|

[E N |
NON®UNONONOo

o =
©
w W
©
N ®
o

0.1 0.3 0.5 0.1
+0.1 -0.5 +0.1

1§
=
-

|
o
B
+
=
&)
oo

significantly by 28% under the future scenarios, which means more
snow was accumulated in the snowpack for later melt (Fig. 8a). As a
result, the amount of snowmelt was forecasted to increase over the full
snowmelt season (Fig. 9a), though a slight decrease in snowmelt peaks
was found.

With the change in temperature only, the volume of peak flows was
predicted to decrease by 5% compared with the baseline (Fig. 7b), and
the timing of future peak flows’ occurrence was evidently advanced
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Fig. 7. Individual impact of changing (a) precipitation and (b) temperature on annual peak discharge rates in future climate scenarios (2050-2067) and baseline
(1983-2000), Note of x-axis legends: bl: baseline; 1:CRCM_CCSM; 2:CRCM_CGCM3; 3:ECP2 GFDL; 4:ECP2 HadCM3; 5:HRM3_HadCM3; 6:MM5I_CCSM;
7:MM5I_HadCM3; 8:RCM_CGCM3; 9:RCM3_GFDL; 10:WRFG_CCSM; 11:WRFG_CGCM3.
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Fig. 8. Individual impact of changing (a) precipitation and (b) temperature on average daily snowfall in the average of 11 future climate scenarios (2050-2067) and

baseline (1983-2000).
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Fig. 9. Individual impact of changing (a) precipitation and (b) temperature on average daily snowmelt in the average of 11 future climate scenarios (2050-2067) and

baseline (1983-2000).

Table 8

Number of peak flow events in each month for baseline (1983-2000) and future
(2050-2067) scenario with only temperature change (Months with no peak
flows are not shown).

Climate Scenarios Jan Feb Mar  Apr May Aug  Sep Dec
Baseline 2 - 4 6 2 - 1 -
CRCM_CCSM 4 - 8 2 - - 1 -
CRCM_CGCM3 3 - 9 2 - - - 1
ECP2_GFDL 4 1 7 2 - - 1 -
ECP2_HadCM3 5 1 6 2 - - 1
HRM3_HadCM3 3 3 6 - 1 1 1
MMS5I_CCSM 3 - 9 2 - - - 1
MMS5I_HadCM3 6 3 6 - - - -
RCM3_CGCM3 2 - 9 2 - - 1 1
RCM3_GFDL 2 - 10 2 - - 1 -
WRFG_CCSM 4 1 8 2 - - - -
WRFG_CGCM3 2 - 10 1 - - 1 1
Future average 3.5 0.8 8.0 1.5 0.1 0.1 0.5 0.5
Change +15 +08 +40 -45 -19 +01 -05 +05

compared with the baseline (Table 8). On average, the predicted
snowfall decreased dramatically by 24% due a larger proportion of
rainfall under warmer temperatures (Fig. 8b). Consequently, the total
amount of snowmelt decreased significantly because of lesser snow
accumulation. However, the spatial distribution of snowmelt showed
that the frequency of snowmelt increased in late winter and earlier
spring, though the peak of snowmelt decreased by more than 50%. The

10

pattern of snowmelt suggested that instead of some major peaks of
snowmelt in the baseline period, there would be more small peaks of
snowmelt in the future (Fig. 9b).

The simulation results from future scenarios with only single factor
changed showed that increased precipitation contributed to a greater
amount of peak flows, increased snowfall and slightly decreased
snowmelt. In contrast, increased temperature resulted in decreased
amount of peak flows, decreased snowfall and a significant rise in
snowmelt. The redistribution of peak flow events showed a rise in
March and a decline in April. These were mainly the result of warming
temperatures, because, in Quebec, the spring flow was dominated by
snowmelt, while the summer and fall flows were attributed to the
rainfall-runoff response (Troin and Caya, 2014).

When taking the factors of both precipitation and temperature into
consideration, snowfall and snowmelt were projected to decrease by
6.5% and 4.4%, respectively. The increase in future temperature was
the dominant factor affecting the total snowfall, which could offset the
increased snowfall caused by increased precipitation. The pattern of
snowmelt in the future was basically consistent with the snowmelt with
only temperature changed. The increased volume of peak flow in the
future was attributed to an increase in precipitation, while the advance
of peak flow occurrence was a result of an increase in air temperature.

4. Conclusions

In this study, the ArcSWAT model was successfully parameterized
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for the Nicolet River watershed. The model was calibrated using mea-
sured streamflow data from 1986 to 1990 and validated against similar
data from 1991 to 2000. Statistical analysis suggested a satisfactory
performance of the ArcSWAT model in simulating daily and monthly
streamflow in both calibration and validation phases (NSE > 0.5,
RSR < 0.7 and IPBIAS| < 15%). Subsequently, eleven sets of projected
future climate data were drawn upon by the calibrated and validated
model, allowing future hydrologic responses to climate change in this
study area to be simulated. Although annual precipitation was pro-
jected to increase in the future, the annual snowfall and the snowmelt
would decrease by 6.5% and 4.4%, respectively due to warming tem-
peratures. The snowmelt was projected to increase in late winter and
early spring, though the snowmelt peaks would decrease by approxi-
mately 50%. An analysis of the individual impacts of temperature or
precipitation implied that changes in the snowmelt pattern were at-
tributed to the changing temperature. The reduction of snowfall de-
creased the snow stored in the snowpack, thus reducing the volume of
snowmelt. The increased temperature induced more episodic snowmelt
events and resulted in earlier snowmelt, such that the distribution of
snowmelt events was altered.

The volume of annual peak flows was predicted to increase by 13%
in the study region under climate change, suggesting a greater risk of
future winter flooding events, with 11 peak flow events in the future on
average compared with only 6 events in the baseline. Higher air tem-
peratures in winter and spring would lead to earlier snowmelt, which
consequently resulted in more frequent future peak flow events in the
winter months, especially in March but less so in April, than under the
baseline. Therefore, spring streamflow as well as associated peak flow
events would decrease in the future, with the major peak flows in spring
being more likely to be replaced by small peaks in the Nicolet River
watershed. The current study provided an ArcSWAT modeling approach
to estimate the future streamflow, timing and frequency of the peak
flows as affected by snowmelt in Nicolet River watershed under climate
change, which served a guideline for future water resource manage-
ment and flood forecasting in the study region.
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