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Rare earth elements (REE), classified as critical minerals which are crucial for clean energy technologies, face
soaring demand. While economic deposits are found in limited geologic environments including carbonatites and
ion-adsorption clays, unconventional, secondary sources such as those from sedimentary basins could hold po-
tential to meet this increased demand. Coal and its associated combustion by-products, phosphorites, oil sands
tailings, and formation waters have all garnered interest for REE recovery, yet they remain significantly
underexplored. Accordingly, new tools for data analysis and optimization such as machine learning can assist in
mineral prospectivity, with these tools being subject to rapid proliferation in the Earth sciences.

This work leverages compositional data analysis principles and machine learning to probe geochemical re-
lationships and predict REE abundances in sedimentary lithologies using unsupervised (correlation, principal
component, and cluster analysis) and supervised (regression, support vector machine, random forest, and
boosting) machine learning models. These three unsupervised models display similar results, with REE typically
being associated with incompatible elements (e.g., Th, Nb, and Hf). Gradient boosting, Adaboost, and Random
Forest had the highest performance for predicting REE concentrations, with Th and P commonly being the most
important predictor variables. Identifying geochemical indicators of REE enrichment that may be used to assist in
discovering potentially exploitable REE resources based on existing data, as well as increasing the understanding
of metal behaviour in sedimentary systems, is a step forward in understanding novel secondary and uncon-
ventional REE sources. Although REE concentrations from these sources are generally lower than primary ore
deposits, the amount of available feedstock, potentially simpler, cheaper, and less environmentally taxing
extraction processes, and the added benefit of remediating waste streams and contributing to the circular
economy make these sources alluring.

1. Introduction

(MLAs) as they are typically comprised of a large number of samples
with many variables (Lindsay et al., 2021). Machine learning is a branch

The transition to a low carbon economy will require a substantial
increase in metal production (Lee et al., 2020), which, in turn, will result
in mineral exploration expanding to deeper, more geologically complex,
and previously unexplored settings. This will necessitate the need for
new methods for analyzing and optimizing the use of data throughout
the exploration process, such as the deployment of machine learning-
based approaches (Caté et al., 2017). To this end, machine learning is
being increasingly utilized in the Earth sciences due to improvements in
computational resources, an ever-increasing amount of data, and the
availability of publicly accessible geochemical and remote sensing
datasets (e.g., Engle and Brunner, 2019; Karpatne et al., 2019). These
datasets are amenable to analysis by machine learning algorithms
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of artificial intelligence (AI) used to identify patterns within data and
make predictions based on those patterns and includes both unsuper-
vised and supervised methods (Caté et al., 2017). Commonly used MLAs
consist of both supervised and unsupervised models which can be used
to decipher complex relationships among variables (e.g., elements) and
to complement a hypothesis-driven approach (Zhu et al., 2023). Such
MLAs have been used to predict mineralization and elemental concen-
trations (Caté et al., 2017; Schnitzler et al., 2019; Grunsky and de Car-
itat, 2020), classify samples (Engle and Brunner, 2019; Gregory et al.,
2019), and identify patterns and reduce dimensionality (Hu et al., 2022;
Lindsay et al., 2021).

Rare earth elements (REE) are often classed as critical metals (e.g.
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European Commission, 2020; Natural Resources Canada, 2022; US
Geological Survey, 2022) and are essential for the transition to a low
carbon economy, as they are integral in clean energy technologies.
Therefore, it has been estimated that demand will double in the next ten
years requiring a significant increase in global production: up to the
equivalent of one Mount Weld or Mountain Pass deposit per year
(Goode, 2023). While REE are not necessarily rare with respect to crustal
abundances, economic concentrations are confined to few geologic en-
vironments (Linnen et al., 2014). The majority of REE production comes
from carbonatite and ion adsorption clay deposits; however, these are
scarce and until recently have not been the subject of significant
exploration (Balaram, 2019). However, issues surrounding the devel-
opment of major REE mining operations include long lead times and a
variety of environmental concerns (Yin et al., 2021). Considering the
above-mentioned variables and a desire to secure a reliable domestic
REE supply chain, in part related to geopolitical concerns, there has been
increasing interest toward extracting REE from unconventional, sec-
ondary sources (Dushyantha et al., 2020).

Sedimentary environments host several potential REE sources,
including coal and coal waste (Creason et al., 2023), phosphorites
(Emsbo et al., 2015), oil sands tailings (Roth et al., 2017), deep-sea muds
(Kato et al., 2011), and geothermal and formation waters (Quillinan
et al., 2018; Miranda et al., 2022). While these sources have not been
thoroughly investigated for their REE potential, a significant volume of
data has been produced through industrial activity, including fossil fuel
exploration, making this data well suited to analysis by machine
learning. Additionally, previous data analysis has indicated that REE,
together with major and trace elements, may be important indicators for
mineral exploration (Vural, 2020). For instance, Montross et al. (2022)
developed a method for collecting and analyzing data, primarily from
drill core, to predict REE concentrations in sedimentary strata with a
focus on coal bearing intervals.

Inspired by the increasing demand for REE and proliferation of MLAs
in Earth science, this study applies compositional data analysis and
machine learning to investigate geochemical relationships and develop a
model to predict REE abundances in sedimentary lithologies. Data for
this study was acquired from open-source repositories including the
Sedimentary Paleoenvironments Project (SGP) (Farrell et al., 2021), the
Alberta Geological Survey, and the Saskatchewan Geological Survey.
Compositional data analysis coupled with unsupervised MLAs including
correlation analysis, principal component analysis (PCA), and cluster
analysis were performed to determine the relationships between vari-
ables (i.e., elements), while supervised machine learning models were
implemented to predict REE concentrations. While spatial data can also
be important, this work only considered geochemical relationships and
is meant to provide a starting point for assessing potential targets for the
extraction of REE from unconventional sedimentary environments, as it
can be used to gain a high-level understanding and predict whether a
specific setting could contain economic REE abundances. While market
conditions play a significant role in determining what would be
considered an economic resource, understanding these sources and
having the ability to predict enrichments is crucial for guiding future
exploration and can be implemented using data that is readily available.
Finally, findings gleaned here can also be applied to investigations
focusing on sedimentary environments to better understand their
geological history, making these tools valuable from both an economic
and Earth systems perspective.

2. Theoretical background and methods
2.1. Data acquisition

Geochemical data for this study was compiled from the Saskatch-
ewan Geological Survey (Jensen et al., 2020), the Alberta Geological

Survey (Lopez et al., 2020; Rokosh et al., 2016), and the SGP database
(Farrell et al., 2021). From these datasets, samples that contained
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lithology, geologic formation, and geologic period information as well as
compositional data including major oxides, trace metals, and REE were
selected. Where lithology information was not given but formation name
exists, lithology was assigned based on the dominant lithology reported
in the literature.

Geochemical data is commonly reported as a combination of oxide
weight percent (wt%; for major elements) and parts per million (ppm;
for trace elements). Since many multivariate techniques are based on
distance coefficients, the variable with the greatest magnitude will have
the greatest impact on the outcome, and therefore the units for each
variable must be consistent (Templ et al., 2008). As such, all elemental
concentrations are presented in ppm, which required converting oxide
abundances in wt% to equivalent ppm values. Although strategies for
treating missing data exist, imputation approaches can be complicated
and time-consuming, while replacement or interpolation methods can
introduce additional uncertainty by affecting covariance and correlation
between variables (Hastie et al., 2009; Zhu et al., 2023). Therefore, the
goal of data cleaning was to build a complete dataset where each sample
contained major compositional elements (Al, Ca, Fe, K, Mg, Na, P, Si,
and Ti) and REE as well as select trace elements with no missing values.
For samples which were below the detection limit, their concentration
was set as half the detection limit. No a priori QA/QC procedure was
performed on the data to remove outliers and analytical errors; this
ensures the datasets are as realistic as possible and do not represent an
idealized starting point. Dataset 1 which included REE and sample
context information (i.e. formation, locality, and lithology) contained
4364 observations (Table SI1), while the Dataset 2 used in the machine
learning contained 3527 samples with 36 elements (Al, Ba, Ca, Co, Cs,
Fe, Ga, Hf, K, Mg, Na, Nb, Ni, P, Rb, Si, Sr, Th, Ti, U, V, Zr, and REE)
(Table SI2). Phosphorites were excluded from Dataset 2 and multivar-
iate analyses due to several variables being absent. In this work, Y is
considered a REE and included in the analysis. Although Sc is sometimes
included as a REE, it exhibits different geochemical behaviour and is
typically not found in deposits that host REE (Jowitt, 2022), and
therefore was not included here. For the machine learning, the REE were
summed and presented as a single variable. Data cleaning and analysis
was performed using the R programming language (R Core Team, 2020).

2.2. Compositional data

Since geochemical data captures the relative proportions of elements
within a sample (e.g., rock, mineral, water), it is considered composi-
tional in nature: multivariate data where components represent part of a
whole that sums to a constant (i.e., 1 or 100%) (Aitchison, 1986). While
variables that comprise most data types are free to vary from -co to +oo,
compositional data occupies a restricted space, referred to as the sim-
plex, where variables can only vary between 0 and 100% (Egozcue et al.,
2003). Since the data has a constant sum, it is considered to be con-
strained as the variables cannot vary independently, forcing at least one
covariance in the data to be negative generating a bias toward negative
correlation (Pawlowsky-Glahn and Egozcue, 2006). As a result, standard
statistical techniques that are commonly used for unconstrained random
variables, such as PCA, cannot be used to analyse compositional data in
its raw form since it can lead to multiple issues, including results that
have little geological significance (Pawlowsky-Glahn and Egozcue,
2006). Aitchison (1986) recognized that it was the relative magnitude
and variation of components, as opposed to their absolute values, which
are important for analyzing compositional data. Subsequently, ap-
proaches based on log-ratio transformations, including the additive-log-
ratio (ALR), centred-log-ratio (CLR) (Aitchison, 1986), and more
recently, isometric-log-ratio (ILR) (Egozcue et al., 2003) trans-
formations have been developed. Although the ILR transformation is the
most mathematically robust of these transformations, the dimension-
ality of the dataset is reduced by one and the variables are therefore no
longer directly interpretable (Templ et al., 2008; Xie et al., 2018; Bern
et al., 2021), accordingly, the CLR transformation was employed here.
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Although implementing log-ratio transformations when analyzing
compositional data may seem complicated and unnecessarily complex,
past work has demonstrated that improper treatment of environmental
and geochemical data can generate misleading or spurious results (Engle
and Rowan, 2014). Here, CLR transformations were performed using the
compositions package V2.0-2 in R (Van Den Boogaart and Tolosana-
Delgado, 2008).

2.3. Unsupervised machine learning

Correlation analysis, PCA, and cluster analysis were used to identify
relationships between variables in the data and, since they each use
different mathematical methods, similarities and differences between
each algorithm were assessed. Correlation analysis is an important
exploratory data analysis tool as it provides a quantitative method for
determining whether variables are related (Filzmoser and Hron, 2009).
Here, correlation matrices with Pearson's correlation coefficients were
created using the “corrplot” package (Wei and Simko, 2021) on both the
untransformed and CLR transformed geochemical data.

Both PCA and cluster analysis are unsupervised machine learning
techniques used in exploratory data analysis to reveal structure within a
dataset. PCA is a multivariate data analysis procedure used to reduce the
dimensionality of a dataset that consists of several interrelated variables
(Jolliffe, 2002). It transforms the dataset into a new set of Principal
Components (PCs), in which the initial components assume most of the
variation from the original variables and the first PC captures the
maximum variance (Jolliffe, 2002). By discarding the latter PCs with
lesser variance, the method is commonly used for dimensionality
reduction. PCA is typically shown using biplots, where the axes are the
principal components selected for visualization. In a biplot of CLR-
transformed data, the correlation coefficient of two variables is
approximated by the cosine of the angle between two rays; accordingly,
if two rays are near each other the corresponding variables may be
highly correlated (Otero et al., 2005). PCA has been previously applied
to geochemical data, for example, Lindsay et al. (2021) performed a PCA
on elemental data from basaltic lava flows to determine how elemental
concentrations were related and which elements were controlled by
similar factors. Similarly, Bhuiyan et al. (2019) used PCA to establish
geometallurgical relationships for a Brazilian gold mine. Other examples
of PCA used in geochemical studies include Bishop et al. (2023) who
used this approach to probe elemental associations in coal combustion
by-products, and Mand et al. (2021) who employed it to identify metal
associations and sources in Paleoproterozoic chemical sediments. Since
PCA is not designed for compositional data, applying the method
directly to geochemical data can yield misleading results (Filzmoser
et al., 2009), therefore the data was CLR transformed prior to PCA and
visualized using the factoextra R package (Kassambara and Mundt,
2020).

Cluster analysis is a mathematical distance-based algorithm used to
partition multivariate observations into several homogeneous groups
where the observations are mapped into centroids (Templ et al., 2008).
This partitions the dataset based on similarities between variables and
summarises the data allowing for a better overview of its structure
(Templ et al., 2008). The ideal outcome results in clusters where the
samples within a cluster are as similar as possible, while the distances
between clusters are as large as possible (Reimann et al., 2008). For
geochemical data, cluster analysis can be utilized to detect relationships
between variables (R-mode) or assign samples to specified classes or
subsets for further analysis (Q-mode) (Templ et al., 2008). Cluster
analysis was used by Ahmed et al. (2020) on LA-ICP-MS data to identify
epidote samples with similar chemistries within and between samples,
while Zhou et al. (2018) utilized cluster analysis to explore for potential
Au mineralization within a deposit. Several clustering algorithms have
been developed including hierarchical, partitioning, model-based, and
fuzzy methods (Reimann et al., 2008). Hierarchical clustering is an
agglomerative method which combines observations into clusters with
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pairs of clusters being merged as the hierarchy increases; while parti-
tioning methods, including k-means, classify observations into groups
and require the number of clusters to be pre-determined (Reimann et al.,
2008). Here, hierarchical Q-mode cluster analysis was performed using
the robCompositions R package (Templ et al., 2011) on the CLR trans-
formed data.

2.4. Development and overview of the supervised machine learning
models used in this study

A multitude of supervised MLAs have been implemented to tackle
both regression and classification problems within the realm of
geochemistry (Rodriguez-Galiano et al., 2015; Xie et al., 2018). In this
study, Linear Regression (LR), Ridge Regression (RR), K-Nearest
Neighbours (KNN), Support Vector Machine (SVM), Random Forest
(RF), AdaBoost (Adaptive Boosting; AB), and Gradient Boosting (GB)
were implemented to predict REE concentrations and to identify the
models which have the highest performance.

The LR model is the simplest MLA which estimates the probability for
a given feature and label directly from the training data (Ogen et al.,
2022), where the objective is to find the plane that minimizes the sum-
of-squared error (SSE) between the observed and predicted responses
(Kuhn and Johnson, 2013). RR is a shrinkage model that adds a penalty
on the sum of the squared regression parameters, developed by Hoerl
and Kennard (1970). The penalty is added to the sum of the square
regression parameters, where the parameter estimates are only allowed
to become large if there is a proportional reduction in SSE which shrinks
the estimates toward zero as the penalty increases (Kuhn and Johnson,
2013). Although adding the penalty increases the bias, it simultaneously
reduces the variance enough to make the error smaller than unbiased
models (Kuhn and Johnson, 2013). To predict mineralization in the
Bathurst Mining Camp, New Brunswick, RR, in addition to Least Abso-
lute Shrinkage and Selection Operator (LASSO) and Elastic Net Regu-
larized regression, were employed to overcome the challenges of weak
geochemical and geophysical signals, over-fitting, and uncertainty of
previous predictive models, with RR performing the best (Parsa et al.,
2022).

KNN is a nonparametric method and among the simplest MLAs, first
developed by Fix and Hodges (1951) and expanded on by Cover and
Hart (1967). This method predicts a new sample using the K-closest
samples from the training set by identifying that sample's nearest
neighbours in the predictor space where the predicted response is the
mean of the K neighbours' responses (Kuhn and Johnson, 2013). While
this MLA performs well without needing adjustments, population size
can significantly slow execution speed (Song et al., 2017). Kaplan and
Topal (2020) found KNN in conjunction with Artificial Neural Networks
(ANN) were suitable to perform gold grade estimations utilizing
geochemical, alteration, and spatial data.

The SVM algorithm was proposed by Boser et al. (1992) and is based
on maximizing the margin between training patterns and the decision
boundary. It creates a set of hyperplanes to distinguish between in-
stances of different classes and seeks to find the optimal hyperplane that
maximizes the margin between the different classes (Xie et al., 2018;
Bern et al., 2021; Chen et al., 2023). It has been applied to map pro-
spectivity for gold deposits in Nova Scotia, Canada (Zuo and Carranza,
2011), classify mudstone lithofacies in the complex depositional envi-
ronments of the Bakken and Marcellus shales of North America (Bhat-
tacharya et al, 2016), and detect gold mineralization-related
geochemical anomalies in Hebei Province, China (Chen et al., 2023).

The RF, AB, and GB algorithms are ensemble methods used to
improve the predictive accuracy of decision trees. RF was developed by
Breiman (2001) and utilizes a combination of bagging and the Classifi-
cation and Regression Trees (CART)-split criterion (Breiman, 2001; Biau
and Scornet, 2016;). Bagging (bootstrap-aggregating) is a general ag-
gregation scheme where the original dataset is resampled randomly
without replacement and is among the most effective prediction
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techniques for large, high-dimension datasets (Rodriguez-Galiano et al.,
2015; Biau and Scornet, 2016). This allows the user to build optimal
decision trees by combining multiple iterative trees built from randomly
selected samples (Schnitzler et al., 2019). AB and GB both use boosting,
a process used to improve the performance of an MLA that combines the
outputs of many “weak” classifiers to produce a powerful “committee”
(Hastie et al., 2009). AB was developed by Freund and Schapire (1996)
and is a model that iteratively trains a series of weak classifiers on
different weighted subsets of the data and assigns higher weights to
misclassified instances to create a stronger model by combining their
predictions. Similarly, GB consecutively fits new models based on the
weak learners to improve the accuracy of the response variable, where
new base learners are constructed to be maximally correlated with the
negative gradient of the loss function (Natekin and Knoll, 2013). In
recent years, MLAs based on boosting and decision trees have been
among the most popular MLAs in mineral prospectivity. This approach
has been used to predict Na concentrations based on data from Quebec,
Canada that included density, magnetic susceptibility, geochemical el-
ements, average visible light reflectance, and infrared spectrometry,
since Na is typically missing or difficult to measure by handheld X-ray
fluorescence (Schnitzler et al., 2019). However, it is a crucial element for
characterizing hydrothermal alteration in volcanogenic massive sul-
phide (VMS) deposits and is therefore useful in mining exploration
(Schnitzler et al., 2019). Similarly, Gregory et al. (2019) used RF to
classify the composition of pyrites by deposit type, which allows for the
early implementation of predictive ore deposit models when prospecting
in greenfield terrains. Lawley et al. (2022) used numerous MLAs
including GB, RF, and Extreme Gradient Boosting (XGBoost) on geo-
science datasets from Australia, Canada, and the USA to train pro-
spectivity models for Mississippi Valley Type (MVT) and Clastic
Dominated (CD) deposits at the continental scale.

Here, machine learning was implemented using the open-source data
mining program Orange (Demsar et al., 2013). Parameters for each
model are presented in Appendix 1. Ten-fold cross validation was used
to evaluate the performance of the supervised machine learning models.
This technique reduces overfitting and involves splitting the data into 10
equally sized k folds, where k-1 folds are used to build the model and the
remaining fold is used for validation (Hastie et al., 2009). The folds were
randomly assigned from the dataset, and the training and testing was
repeated ten times, once for each fold with the average accuracy of the
ten being taken as the model predictive accuracy. Model accuracy was
assessed using the root mean square error (RMSE) as:

Z;l:l(yi — 5)\')2

n

RMSE =

where y; and y; are the predicted and true values of the i-th samples,
respectively, and n is the number of samples. The models with the
highest accuracy have the lowest RMSE values.

3. Results
3.1. Exploratory data analysis and unsupervised machine learning

A histogram of total REE concentrations is presented in Fig. 1,
showing the data was strongly right skewed and hence does not follow a
normal distribution. Of the 4364 data points in Dataset 1, only 69 points
were above 500 ppm and 15 points were above 1000 ppm. The median
and mean REE concentrations were 136.6 ppm and 157.4 ppm,
respectively, which was slightly lower than 168.4 ppm for the Upper
Continental Crust (UCC; Taylor and McLennan, 1985) and 173 ppm for
the North American Shale Composite (Gromet et al., 1984).

Summary statistics for REE from Dataset 1 are outlined in Table 1.
Clastic lithologies dominated the dataset at ~86% of all samples, car-
bonate lithologies encompassed 11%, and chemical and phosphorites
comprised the remainder. Phosphorites were classified separately due to
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Fig. 1. Histogram displaying the distribution of total REE concentrations for
samples used in this study with median, mean, and first and third quartiles
indicated. Since only 15 points are above 1000 ppm, the x-axis was trimmed to
better illustrate the distribution of REE concentrations below 1000 ppm.

their anomalously high REE abundances and because they were from a
single formation, the Phosphoria Formation in the western United
States. Based on the information available from the compiled datasets,
samples were further subdivided into individual lithologies, with shales
making up the majority of clastics, followed by mudstones, siltstones,
and sandstones. Limestone was the dominant carbonate lithology. There
were a high number of undifferentiated carbonates in the dataset; as
such, carbonates were not further subdivided for analysis.

The concentrations of REE by lithology are displayed in Fig. 2A.
Kruskal-Wallis statistical testing indicated these differences are statis-
tically significant (p-value <0.05). Fig. 2B highlights the variation in
REE abundances through time in this dataset and Kruskal-Wallis testing
also indicated statistically significant differences between geologic
periods.

3.1.1. Correlation analysis

The correlograms for both the untransformed and CLR transformed
data (Fig. 3A and B) indicate that REE were most strongly correlated
with Th, while they were weakly correlated (>2050%) with Al, Cs, Fe,
Ga, Hf, K, Na, Nb, P, Rb, Ti, and Zr in the untransformed data and Hf, Nb,
P, and Zr in the CLR transformed data. Conversely, REE were most
strongly anti-correlated with Ca and Mg, common constituents of car-
bonate rocks, which is consistent with Fig. 2 that shows carbonates
typically contain significantly lower REE abundances. Additionally,
positive correlations were found among lithophile elements (e.g., Al, Cs,
Ga, Hf, K, Na, Nb, REE, Th, Ti, and Zr), elements mobilized by oxidative
or sulfide weathering that subsequently accumulate in fine-grained
organic-rich sediments (e.g. Ni, U, and V), and elements commonly
associated with carbonate rocks (Ca, Mg, and Sr). Although the relative
magnitude of the correlations differs between the untransformed and
transformed data, both showed similar relationships between variables.

3.1.2. Principal component analysis

Principal component analysis performed on the CLR-transformed
data revealed that 12 principal components (PCs) accounted for >95%
of the variance in the data, while 76% of the variance was explained by
the first four PCs (Fig. 4A).
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Table 1
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Summary statistics for total REE concentration data (ppm) by lithology for Dataset 1. 61 samples did not include lithological information. SD = standard deviation.

MAD = mean absolute deviation.

Lithology n Min Q1 Median Mean Q3 Max SD MAD
All data 4364 1.4 94.5 138.6 157.4 183.8 8170 225.7 66.0
Carbonate 490 1.5 22.4 56.1 75.6 103.4 1913.0 113.3 55.3
Chemical 19 2.1 2.7 28.0 43.7 67.4 175.9 52.3 38.0
Clastic 3760 1.4 109.9 144.7 168.0 189.3 8170.0 2329 58.4
Phosphorite 34 13.9 227.5 375.9 474.9 725.1 1443.2 320.3 289.0
Unclassified 61 - - - - - - - -
Carbonate (undifferentiated) 118 5.9 355 65.8 66.8 88.4 298.6 42.9 40.1
Chert 7 28.0 345 64.6 69.5 74.3 175.9 51.0 43.5
Conglomerate 12 12.9 23.2 41.8 75.4 94.5 254.6 77.9 31.5
Dolomite 45 1.7 5.7 22.3 46.3 60.1 341.2 66.1 27.1
Evaporite 12 2.1 2.4 3.2 28.7 24.3 138.1 48.8 1.3
Limestone 327 1.5 21.0 57.0 82.8 118.7 1913.0 133.5 64.0
Mudstone 945 1.4 116.6 162.3 184.5 216.8 2143.9 141.4 74.1
Sandstone 209 18.7 50.6 101.5 115.7 140.5 1566.1 130.4 66.7
Shale 2308 2.7 110.5 142.1 165.6 181.0 8170.0 277.3 51.6
Siltstone 286 9.1 130.6 155.6 175.4 203.8 1169.3 105.5 48.6

A

B

1000 =13 1000 = %> 1000 n=7>1000 | n=1g1000| n=3> 1000 | o o _n= 151000
n=1>1000 n=1>1000 fo n=3>1000 n=4>1000 n=41000
Lithology
© Carbonate
Chemical o
750 o Clastic
o Phosphorite

REEconcentration (ppm)

Lithology

Period

Fig. 2. A - Boxplot of total REE concentration by lithology for data used in this study. B — Boxplot of total REE concentration through time for data used in this study.
The box represents the first and third quartiles, while the centre line represents the median. The whiskers extend to 1.5 times the interquartile range, with points
beyond the whiskers being considered outliers. The number of observations >1000 ppm is indicated above each box.

The PCA biplot of PC1 vs PC2 (Fig. 4B) indicated the variables were
essentially divided into three groups, the first of which comprised Ca,
Mg, and Sr: elements that contribute to PC1 (Fig. 4C) and are common
constituents of carbonate rocks. The second group, representative of
PC2, included Ba, Ni, U, and V (those related to oxidative weathering),
while REE and the remaining variables, including the incompatible el-
ements, plotted in the upper-right quadrant and had some contribution
to each of the PCs. The elements in each of these groups were also highly
correlated among one another in the correlation analysis, showing
agreement between both methods in identifying elemental associations.
The confidence ellipses grouped the samples based on their lithologies,
supporting the interpretation that PC1 is strongly associated with car-
bonates. However, this also indicated that the PCA is strongly influenced
by the composition of the dataset including different lithologies.
Therefore, to identify differences in principle components between the
two dominant lithologies, additional PCAs were performed on clastic
and carbonate samples separately (Fig. 5A-D).

Several similarities were noted between the PCA of the complete
dataset and the PCA of the clastic subset, namely the three groups of

variables, with an increased collinearity of P with Ca and Co with Ba in
the clastic subset. The contribution of variables to each PC were also
similar, with the exception of PC2 which had increased contributions
from Ca, Mg, and P, while PC4 had a higher contribution from P. More
considerable differences were observed in the carbonate biplot which
indicated a higher collinearity of REE with Ba, Si, and V, and lower
collinearity with commonly associated incompatible elements (e.g., Hf,
Nb, and Th). Phosphorus showed an increased collinearity with U and Ni
while Co was no longer on the same axis as Ba, Ni, U, and V. The variable
contributions to each PC were similar between the clastic and carbonate
subsets, apart from PC3, where P was the most important variable in the
carbonate subset. The similarities in the PCA for the complete dataset
compared to the clastic subset could be a result of a high proportion of
the total data being labelled as clastic. Nevertheless, the results indi-
cated differences in geochemical relationships between REE and other
trace metals in clastic and carbonate rocks.

3.1.3. Cluster analysis
Hierarchical cluster dendrograms (Fig. 6) showed similar elemental
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Fig. 3. Correlograms displaying the correlation coefficient for each element
pair. A-untransformed data. B-CLR transformed data.

associations as revealed by the PCA. For the complete dataset and clastic
subset, Ba, Ni, U, and V and Hf, P, Na, Si, and Zr had similar associations
while Ca was independent of any group. In both cases, REE were most
closely associated with Th and Nb. Nickel, P, U, and V, and Ca and Sr
were associated in both the carbonate PCA and cluster dendrogram.
However, there were some notable differences between the two algo-
rithms, as the dendrogram suggested REE-Fe and Ba—Mg associations.

3.2. Supervised machine learning

Seven machine learning algorithms were implemented to predict
REE concentrations under several scenarios and their relative accuracies
compared to each other were assessed. The algorithms, the details for
each scenario, and results are summarized in Table 2. Model parameters
are available in Table SI3. Scenario A was performed on the complete
dataset. Scenario B only considered predictions using major elements
(Al Ca, Fe, K, Mg, Na, P, Si, Ti, and Zr) to assess the accuracy of the
MLAs as some historical datasets may not include trace metal data.
Scenario C considered the top five elements which were most correlated
to REE (Ga, Nb, P, Rb, and Th) as increasing the number of predictor
variables can affect the computing power required to run the models. As
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demonstrated by the statistical analysis and unsupervised learning,
there can be significant differences in the REE concentration between
clastic and carbonate lithologies, therefore the MLAs were performed by
separating the dataset into clastic and carbonate lithologies (Scenario D
and E, respectively). Finally, only data from Alberta, Canada was
incorporated to assess whether the machine learning models are more
accurate for an individual region, a possible reflection of the importance
of local geologic history (Scenario F).

Based on the RMSE values, typically the most accurate models were
GB, AB, and RF, whereas the SVM was the least accurate model for all
scenarios. Both regression models, ridge and linear, performed well for
Scenario B. GB performed better than AB for all scenarios, which was
anticipated since it is an improved boosting model. All models had the
highest accuracy when considering only the carbonate subset (Scenario
E). The performance of five models, KNN, LR, RR, RF, and SVM were the
poorest for the Alberta dataset (Scenario F), while the boosting algo-
rithms had the lowest performance for Scenario B, which included only
major elements as predictors. With the exception of KNN and SVM, the
models were more accurate when more variables were involved (e.g.,
Scenario A vs Scenario B or C) implying there is a trade-off between
decreasing the number of variables and overall model accuracy. How-
ever, only a minor decrease in accuracy was observed between Scenario
A and Scenario C indicating that selecting only a few related variables
can decrease computational power while having a limited effect on
model performance. The most important variable for predicting REE
concentration for AB, GB, LR, RR, and three of the RF models was P,
while Th was important for the remaining three RF models as well as two
SVM and one RR model. Additionally, Ca, Fe, Hf, Nb, Rb, Si, and Zr were
also shown to be important predictors across several MLAs. The
regression models and KNN were the computationally fastest models to
run, followed by SVM, RF, and the boosting models, indicating a
compromise between computation time and model accuracy.

4. Discussion
4.1. Machine learning

4.1.1. Identifying geochemical relationships using unsupervised machine
learning

Overall, the correlation, PCA, and cluster analyses indicated similar
geochemical relationships. Elements typically associated with carbonate
rocks (i.e., Ca, Mg, and Sr) were highly correlated and showed close
relationships in the PCA and cluster analysis, as were elements that are
typically incompatible in magmatic systems. For the complete dataset
and clastic subset, REE were most closely associated with incompatible
elements, specifically Th and Nb. Conversely, REE were associated with
Al Fe, and Ti in the carbonate cluster analysis. In a study of metal dis-
tribution patterns in the Campania region of Italy, it was observed that
REE had the highest correlation with Th and were negatively correlated
with Mg (Ambrosino et al., 2022). Hence, the authors proposed that the
main source of REE was a result of the presence of Fe—Mn oxides and
hydroxides associated with clay minerals (Ambrosino et al., 2022),
which is supported by the association with Al and other lithophile ele-
ments shown in the unsupervised machine learning. In a study of soil
from Turkey, LREE and HREE were also found to be correlated with
incompatible elements, specifically Hf, Th, and Zr, while a PCA of the
data showed the first PC was composed of As, Ba, Hf, Mo, Nb, Pb, REE,
Th, and Zr indicating these elements may have a related origin or
enrichment process (Vural, 2020). Similarly, Bishop et al. (2023)
investigated metal associations in a global compilation of coal com-
bustion by-products using correlation analysis, cluster analysis, and PCA
and found that Nd, a proxy for REE, was most associated with Al, Th, Ti,
and Zr. Overall, these wide-ranging studies indicate that REE typically
have similar geochemical associations in sedimentary environments,
specifically with Th, and that enrichment of associated elements could
be indicative of elevated REE concentrations. Since REE are typically
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associated with incompatible elements in geologic environments, this
work further demonstrates the geologic relevance of the unsupervised
machine learning used to identify elemental relationships with REE.

Although these models assume the data was representative of the
total population, that was not necessarily the case here. Similarities
between the complete dataset and clastic subset, and disparities between
the complete dataset and carbonate subset, are likely a result of bias,
since ~86% of samples were labelled as clastic. Accordingly, subsequent
data analysis should be performed on samples from broadly similar
geologic environments, as was done by separating the clastic and car-
bonate lithologies. Similar findings using correlation and cluster anal-
ysis for coal geochemistry indicated that samples should originate from
the same horizon since geological factors have the potential to influence
the relationship between elements (Eskanazy et al., 2010).

4.1.2. Predicting REE abundances and comparison of supervised machine
learning models

The supervised machine learning results indicated that RF and GB
performed comparatively well and were the most accurate models based
on RSME values in five of the six scenarios considered. The relatively
higher performance of RF and boosting algorithms in geological contexts
has been previously observed. For instance, Buccione et al. (2023) used
ANN, SVM, RF, and XGBoost to predict HREE distributions in southern
Italian karst bauxite deposits based on major oxide abundances and
found that the XGBoost and RF algorithms had the highest accuracy. For
predicting lithology type based on well logs, ensemble methods
including RF and boosting had better performance than SVM, Naive
Bayes, and ANN (Xie et al., 2018). Similarly, studies using supervised
machine learning to predict land cover type and mineral prospectivity
have demonstrated that RF algorithms can be more accurate and require
less computing power than SVM and ANN algorithms and can overcome
the “black-box” limitations of ANN (Rodriguez-Galiano et al., 2015;
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Rodriguez-Galiano and Chica-Rivas, 2014). For mapping mineral pro-
spectivity at the continental scale for MVT and CD deposits, Lawley et al.
(2022) found GB to have the best performance.

Typically, the most important features used to predict REE concen-
trations were P and Th, regardless of lithology, and these were both
found to be highly associated with REE in the unsupervised machine
learning. This could reflect REE incorporation into P-bearing phases
such as calcium fluorapatite, monazite, or xenotime, or with incom-
patible and detrital mineral phases. However, there could be other ele-
ments that are important REE predictors but were not included in the
dataset considered here, such as U. Additionally, MLAs were not opti-
mized for each model which could have an impact on the overall ac-
curacy of each algorithm, but instead provide a starting point for
identifying the most suitable MLA for predicting elemental
concentrations.

All models had the best performance for the carbonate subset
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Table 2

Machine learning results for predicting REE concentrations for each of the seven
models. RMSE = root mean squared error. FI = feature importance; the top three
variables which were most important for predicting REE concentrations.

Scenario and description Model RMSE  FI FI FIL
1 2 3
A - Complete dataset Adaboost 67.7 P Th Nb
Gradient 623 P Th Nb
Boosting
Linear 687 P Th Zr
Regression
Ridge Regression 687 P Th Zr
KNN 87.0 Si Al Ca
Random Forest 65.3 Th P Sr
Support Vector 993 Th Rb Ga
Machine
B - Major elements (Al, Ca, Fe, Adaboost 82.2 P Ca Fe
K, Mg, Na, P, Si, Ti, Zr) Gradient 78.2 P Ca Fe
Boosting
Linear 76.3 P Si Ca
Regression
Random Forest 745 P Zr K

Ridge Regression 763 P Si Ca

Support Vector 100.7 P K Zr
Machine
KNN 87.1 Si Al Ca
C - Top 5 correlated elements Adaboost 694 P Th Nb
(Ga, Nb, P Rb, Th) Gradient 65.2 P Th Nb
Boosting
KNN 81.5 P Rb Nb
Linear 70.3 P Th Nb
Regression
Random Forest 66.2 P Th Nb
Ridge Regression 703 P Th Nb
Support Vector 97.6 Rb Ga Th
Machine
D - Clastic subset Adaboost 778 P Nb Th
Gradient 66.9 P Th Sr
Boosting
Linear 69.4 P Th Zr
Regression
Ridge Regression 694 P Th Zr
KNN 88.4 Si Al Ca
Random Forest 64.2 Th P Nb
Support Vector 99.1 Th Rb Nb
Machine
E - Carbonate subset KNN 63.4 Ca Si Al
Adaboost 64.9 Fe P Nb
Linear 56.6 Hf Zr Th
Regression
Gradient 489 P Fe Th
Boosting
Random Forest 503 P Th Zr
Support Vector 706 P Th Ga
Machine
Ridge Regression 56.4 Th U Fe
F - Alberta subset KNN 108.9 Ca Si Al
Linear 85.2 Hf Zr Th
Regression
Support Vector 1239 Nb Th Rb
Machine
Adaboost 82.1 P Sr Th
Gradient 77.2 P Th Sr
Boosting
Random Forest 84.1 Th P Sr

Ridge Regression 852 Zr Hf Th

(Scenario E) compared to the complete dataset (Scenario A). This is
similar to the findings of Lawley et al. (2022) where geochemical models
for Clastic Dominated (CD) and Mississippi Valley Type (MVT) deposits
trained on samples from Canada and the USA did not generalize to
Australia, which could be the result of different geologic processes that
are separated by space and time. Here, the accuracy for the Alberta
subset was generally low, which may stem from the inclusion of both
carbonate and clastic lithologies and the geologic history of the Western
Canada Sedimentary Basin, which spans from the Precambrian to the
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Present. Accordingly, having increased similarity between factors such
as lithology, locality, and geologic setting could be important for
increasing predictive model accuracy and identifying meaningful re-
lationships using unsupervised MLAs.

4.2. Rare earth element abundances and relationships in sedimentary
strata

Occurrences of REE in sedimentary systems can either be primary,
which involves concurrent or syn-depositional emplacement of REE-rich
material, or secondary, which involves post-depositional processes
(Creason et al., 2023). The data analysis indicated that phosphorites and
clastic lithologies were significantly more concentrated in REE, which
can occur through both primary and secondary processes, than car-
bonate and evaporite lithologies, which are typically enriched through
primary processes. Phosphorites have been shown to concentrate REE
during their formation, primarily as a result of diagenetic processes
where REE substitutes for Ca in francolite (Emsbo et al., 2015; McArthur
and Walsh, 1984). McArthur and Walsh (1984) postulated that the REE
are sourced from pore water through diagenetic reactions of occluded
and enclosing sediment, and the majority of REE is incorporated into the
phosphorites post-depositionally with older samples having higher REE
concentrations since they have more time to incorporate metals.
Conversely, Emsbo et al. (2015) favoured a model for REE incorporation
from seawater with secular variations in seawater chemistry through
time leading to differences in the REE content of phosphorites and no
evidence for increasing REE concentration as a function of time.

Fine-grained clastic lithologies, including mudstones and shales,
were also observed to contain elevated REE concentrations. The main
contributor of REE to marine sediments and the ocean is particulate
scavenging of adsorbed REE which may be transported nearly in bulk
from source to sediment (Condie, 1991). Weathering and erosion result
in very limited concentrations of REE in solution, as only a few percent
of REE entering the oceans are in the dissolved phase, while the bulk of
REE are transported as eroded particulate phases, likely clay minerals
(Fleet, 1984). A substantial proportion of the REE in clays are loosely
held and are available to take part in exchange reactions, and the
dominant control on the REE concentrations in seawater is adsorptive
scavenging of REE by particles (Elderfield and Greaves, 1982).
Conversely, low REE concentrations in eroded material with quartz and
other major silicates are reflected in the lower REE contents of sand-
stones relative to more clay-rich lithologies such as shales (Fleet, 1984).
Although there has been some debate surrounding the main source of
REE to the ocean: either iron-oxyhydroxide or clay minerals, recent
research has asserted that the latter is responsible for the majority of the
REE flux to the oceans (Abbott et al., 2019), which is not unexpected
given the high affinity that clay minerals have for REE adsorption
(Alshameri et al., 2019; Bradbury and Baeyens, 2005). Although sand-
stones typically have lower concentrations of REE, in some instances the
incorporation of REE-enriched minerals including zircon or monazite
could increase their overall concentration.

Carbonate lithologies were found to have, on average, the lowest
concentration of REE among those studied here. Aluminum, Ga, Hf, REE,
and Th are not incorporated into the carbonate lattice, and are therefore
an ideal proxy for terrigenous material, whereas elements such as Cr, Cu,
Mg, Mo, Na, Ni, P, Sr, V, U, and Zn can be incorporated into carbonates
and mirror the chemical composition of paleoseawater (Mirza et al.,
2021). In part, this reflects the authigenic processes through which
carbonates precipitate from seawater, either biotically or abiotically.
Given the generally low concentrations of REE in seawater, and the
strong influence of particulate scavenging, it is therefore expected that
carbonates would generally have low REE abundances relative to more
clastic or detritally influenced lithologies. However, several studies have
noted that seawater-like REE patterns may be observed in various car-
bonates, and that under the right conditions, they may be used to extract
information regarding paleomarine conditions (Nothdurft et al., 2004;
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Kamber et al., 2014; with Johannesson et al. (2006) providing an
alternative view). The general lack of terrigenous input to carbonates,
and their precipitation as authigenic sediments, could account for the
close relationship between variables in the carbonate PCA PC1 (Ca, Mg,
and Sr) and PC2 (Ni, P, U, and V), and the strong correlations between
REE with Al Ga, Hf, and Th. Overall, the relationships revealed in the
PCA indicate a strong role for clay minerals and detrital input in
sourcing REE to clastic deposits, and to a certain extent the influence
that a lack of terrigenous input has on limiting REE concentration in
authigenic carbonates.

4.3. Implications for REE prospectivity in sedimentary environments

There are several secondary sources derived from sedimentary en-
vironments that have the potential to host elevated REE abundances
which could be exploited as a potential resource, including: (i) coal and
coal combustion by-products (CCBs); (ii) phosphorites and phospho-
gypsum; (iii) deep-sea muds; (iv) oil sands tailings; and (v) geothermal
and formation waters. Due to a combination of elevated REE concen-
trations coupled with a high volume of available source materials
globally, these secondary streams may have the potential to meet cur-
rent and future global demand (Gaustad et al., 2021). Coal could be a
source of REE since the concentrations in some deposits can be equal to
or higher than those from conventional ores, especially those with a high
volcanic ash content (Seredin and Dai, 2012). However, CCBs are
emerging as a more likely source since REE can be significantly
concentrated in the ashes, there are strong incentives for reuse since
CCBs are an environment liability, they are readily available around the
world, particle sizes are small which reduces the need for crushing and
grinding, and radioactive tailings are significantly reduced (Blissett
etal., 2014; Taggart et al., 2016; Fu et al., 2022). Resource evaluation of
ash from Powder River Basin coals in the USA demonstrated that those
with a favourable geochemistry for extraction could be economically
promising and a near term economic resource (Bagdonas et al., 2022).
CCBs in numerous countries including Brazil (Lange et al., 2017), Can-
ada (Bishop et al., 2022, 2023), China (e.g., Dai et al., 2014; Wang et al.,
2019; Zhang et al., 2019; Wu et al., 2022; Hu et al., 2023), India (Modi
et al., 2021; Sandeep et al., 2023), Poland (Blissett et al., 2014; Franus
et al., 2015), South Africa (Wagner and Matiane, 2018), the United
Kingdom (Blissett et al., 2014), and the USA (e.g., Taggart et al., 2016;
Kolker et al., 2017; Huang et al., 2020; Mastalerz et al., 2022) have been
investigated for their REE recovery potential. This has spurred the
development of extraction processes, although most are still in the proof
of concept and pilot phases (Dodbiba and Fujita, 2023).

Phosphorites in the United States could also provide a significant
supply of REE, with the value of the REE sometimes outstripping the
value of the produced P (Emsbo et al., 2015). High recovery rates which
apply the same processes used to produce phosphate further increases
the suitability of phosphorites for REE recovery especially since they can
be produced as a by-product (Emsbo et al., 2015) and, importantly,
unlike carbonatite deposits, they are enriched in HREE which are less
abundant than LREE (Hein et al., 2016). Additionally, phosphogypsum,
a waste product from fertilizer production, could also be a promising
source of REE due to large volumes and the relative ease of recovery
(Canovas et al., 2019). As such, understanding enrichment processes and
predicting REE concentrations may prove useful for the development of
phosphorite or phosphogypsum-based extraction strategies.

Deep-sea muds can contain comparable REE concentrations to ion
adsorption clay deposits of China, elevated HREE abundances, low Th
and U concentrations, and can be readily recovered through leaching
with dilute acids (Kato et al., 2011; Takaya et al., 2018). However, deep-
sea mining is anticipated to create environmental impacts through: the
removal of the resource (e.g., nodules and crusts) which can host unique
fauna, geochemical and physical changes to the seafloor, sediment
plumes, contaminant release, and increase in sound, vibration, and light
which can affect biodiversity and potentially lead to extinction of rare
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species (Levin et al., 2020). While this may not be a REE recovery
strategy developed in the near term, generating knowledge of REE dis-
tributions and the ability to predict enrichments is an important first
step in assessing future feasibility.

By-products from hydrocarbon production have been studied as a
novel REE source as they can host elevated metal concentrations. High
REE concentrations have been found in the fine tailings from oil sands
operations, with these tailings being considered an environmental lia-
bility so REE recovery could be included as part of remediation efforts
(Roth et al., 2017). Formation waters and basinal brines, co-produced
with hydrocarbons or geothermal energy have also been subject to
investigation for REE since their recovery can offset operating expenses
(Smith et al., 2017; Miranda et al., 2022). However, since these waters
are generally brines with high TDS values and low REE concentrations,
few studies have been able to accurately quantify REE in these fluids
(Kokh et al., 2021). The speciation and abundance of REE in formation
waters is strongly dependent on temperature, pH, ionic strength, and the
presence of complexing anions (Lewis et al., 1998), with pH being the
most important geochemical factor as more acidic geothermal and for-
mation fluids contain significantly higher dissolved REE concentrations
(Liu et al., 2016; Quillinan et al., 2018). However, Quillinan et al. (2018)
postulated that geologic controls and basin history may have the most
influence on REE content. Water with low REE concentrations that in-
filtrates into formations containing high abundances of REE may
equilibrate with the surrounding environment, potentially releasing
bound REE into solution through water-rock interactions (Moller et al.,
2021). Therefore, waters percolating through REE-rich sediments may
have increased REE concentrations relative to waters percolating
through REE-poor sediments. Accordingly, by analyzing available rock
chemistry data, intervals which have the potential to host brines with
the highest REE concentrations can be predicted. This has been
demonstrated for the Western Canada Sedimentary Basin, where core
samples from the Jurassic and Cretaceous periods contained the highest
REE concentrations (Fig. 7). Correspondingly, the highest REE concen-
trations measured during a brine sampling study in the Saskatchewan
portion of the basin were observed in the Upper Cretaceous Belly River
Formation and the Jurassic Shaunavon Formation, both of which have
high proportions of fine-grained sediments (Bishop et al., 2024). Since
there is significantly more REE data for rock samples than formation
waters, identifying enriched lithologies could be the first step in guiding
future sampling programs.

Elucidating the geochemical and lithological controls on REE
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abundances in sedimentary basins is important to determine geochem-
ical indicators of REE enrichment, and by extension, the mineral po-
tential. Understanding the geochemical and lithological factors that
affect REE concentrations in sedimentary successions is similarly
important for furthering our understanding of behaviour of REE in
sedimentary environments and the implications for variations over
geological timescales. The data analysis presented here further confirms
that phosphorites contain the highest REE concentration relative to
other lithologies. Similarly, elemental relationships observed between
unsupervised machine learning here and that from CCBs in Bishop et al.
(2023) indicate that this work, which investigates REE from a broad
range of sedimentary environments, can be applied to a narrower range
of applications such as coal and CCB studies.

Identifying REE enriched lithologies can assist in finding intervals
which may host sediments or fluids with elevated concentrations. These
elemental relationships could be important for assessing a given envi-
ronment for REE enrichment, and supervised machine learning could be
utilized to estimate the concentration based on more readily available
major and trace element data. This could be crucial for use with his-
torical datasets that may not include REE and could reduce costs asso-
ciated with performing preliminary geochemical analyses. The
methodologies detailed here could be used to target stratigraphic in-
tervals based on historical datasets, limiting the need for broad, untar-
geted sampling. Although REE concentrations are typically much lower
than what is found in ore deposits, the volumes of available feedstock, in
addition to potentially less expensive and environmentally damaging
processes, could make secondary REE sources attractive for meeting
future demand of these critical metals. Such an approach to REE
extraction could play a significant role toward the establishment of a
circular economy, and these proposed secondary sources are more
globally distributed than traditional REE deposits which could prove to
be important domestic sources. However, the potential for each of these
to become a resource will depend on the development of an effective
extraction technology, and ultimately economic conditions including
demand and commodity price.

5. Conclusions

Increasing the supply of critical metals necessary in clean energy
technology, including REE, is imperative as society strives to decar-
bonize the economy. As demand increases and major metal deposits
become depleted, new tools, such as machine learning, and supplies,
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such as those from secondary sources, could play important roles in
meeting this need. This work explored secondary sources of REE from
sedimentary environments by applying compositional data analysis
principles in tandem with unsupervised MLAs to discern geochemical
indicators of REE enrichments. It was found that REE were most
enriched in phosphorites and fine-grained clastic lithologies, while the
three unsupervised models showed agreement between each other,
demonstrating that REE were most associated with incompatible ele-
ments (i.e. Nb, Th, and Zr) and P. Additionally, supervised MLAs were
utilized to predict REE concentrations under several scenarios, with AB,
GB, and RF models having the highest performance. The most important
features for predicting REE concentrations were Th and P. The associ-
ations between REE and Th and P found in both types of MLAs are
geologically relevant since REE have been found to be associated with
Th in fine-grained lithologies and they are commonly incorporated into
phosphate minerals (monazite and xenotime). However, geologic con-
trols can influence these MLAs and therefore, datasets should include
samples from similar geologic environments to provide the most
geologically relevant results and highest model performance.

This work additionally contributes to the understanding of the con-
trols and distribution on REE in sedimentary strata. Findings from this
work can be incorporated into broader frameworks that may include
additional geochemical, spatial, historical, drill core, or other data as
part of an exploration strategy into secondary environments to identify
targets with the highest REE potential, whether it be CCBs sourced from
an enriched coal horizon, clay-rich tailings, or formation or geothermal
waters percolating through rocks known to be high in REE. Extracting
REE from secondary sources of sedimentary origin can be advantageous
since there can be significant volumes of existing data, hence reducing
exploration costs, and it can be part of a remediation strategy if the
feedstock is a waste product — thereby contributing to the circular
economy. While these sources can be promising, significant character-
ization is still required, and importantly, cost-effective extraction tech-
nologies must be developed in order to make these secondary sources
economically viable. Meeting the metal needs of the energy transition is
crucial for limiting the effects of climate change, with secondary sources
playing a potentially critical role.
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