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Cluster analysis can be used to organize samples and generate ideas regarding the multivariate geochemistry of
given dataset. Traditional clustering techniques have the drawbacks of high computational complexity and poor
adaptability to big data. Hence, there has recently been much focus on creating better clustering algorithms.
Although many clustering algorithms have been applied, and some produce notable clustering results, the per-
formance efficiency of algorithms is often highly dependent on the values the user chooses for the parameters.
Currently, density-based spatial clustering of applications with noise clustering (DBSCAN) is widely utilized in
image processing, bioinformatics, and social network analysis owing to its ability to detect clusters of various
shapes. Even though partitional clustering techniques may be effective when the number of clusters K is known
in advance, they cannot implement non-convex clustering and rapidly return to a local optimum. This study
proposes the concept of DBSCAN clustering for stream sediment geochemical data. In this respect, the
geochemical data collected from Varcheh district, SW Iran, were processed using the clr transformation before
applying DBSCAN. Then, PCA was used to minimize the dimension of variables and specify the mineralization-
related elements. In the following, one of the PCs connected with mineralization (PC2) was chosen for further
analysis. DBSCAB, Mean-shift and Fuzzy K-means algorithms were used to monitor the multi-element
geochemical anomalies linked to MVT Pb—Zn deposits in the study area. According to Davies-Bouldin and
Silhouette as two validation metrics, it can be deduced that the three SCB models are advantageous, however, the
model generated by DBSCAN is preferable to the model generated by Mean-shift and Fuzzy K-means.

1. Introduction

these algorithms might be classed. The first group is derived from the
statistical analysis of geochemical data using a frequency distribution

In this study, chemical surveys of active stream sediments were used
as an exploratory technique (Li et al., 2022; Zhou and Yang, 2023). Since
stream sediments result from erosion (Chen et al., 2023) and weathering
processes (Jia and Zhou, 2023), they represent the drainage system’s
original catchment area (Cheng, 2007; Yilmaz et al., 2020; Qiu et al.,
2023). In contrast to interpolated maps, catchment-based stream sedi-
ment geochemical maps depict anomalies with higher positive spatial
connections to known mineral resources in the study region (Carranza,
2010; Nezhad et al., 2017; Ghezelbash et al., 2019a). Classifying
geochemical samples that show the influence of various geochemical
processes and environments (Li et al., 2023) is beneficial in exploratory
geochemistry (Tian et al., 2020). Multiple techniques have been devel-
oped to detect and monitor geochemical anomalies (Liu et al., 2018;
Ghezelbash et al., 2019a). There are two primary groups into which
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with mean plus two standard deviations (Kiirzl, 1988), frequency-based
analysis (Ghezelbash et al., 2019¢; Thiombane et al., 2019), and fractal-
multifractal models (Zuo and Wang, 2016; Ghezelbash and Maghsoudi,
2018; Daviran et al., 2020; Akbari et al., 2023) are several instances.
Due to the multi-stage nature of ore-forming mechanisms (Xu et al.,
2022) and the inherent complexity of geological structures (Yu et al.,
2021; Ren et al., 2022), the statistical distribution of geochemical data is
highly sophisticated (He et al., 2021). Therefore, most conventional
techniques have drawbacks in analyzing multivariate geochemical data
with a complicated distribution (Luo et al., 2022). The second group
comprises machine learning algorithms (MLAs) that significantly impact
geosciences owing to their impressive pattern recognition and insight
discovery capabilities within massive volumes of earth system data
(Zhou et al., 2022; Khorshidi et al., 2023; Yin et al., 2023a, 2023b,
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2023c; Dong et al., 2023b). Algorithms based on machine learning have
been applied to map mineral prospectivity (Ghezelbash et al., 2019b;
Yao and Jiangnan, 2021; Daviran et al., 2022) and pinpoint geochemical
anomalies (Xiong and Zuo, 2016; Zuo and Xiong, 2018; Ghezelbash
et al., 2019b; Wang et al., 2020). Supervised and unsupervised machine
learning methods have been successfully developed to highlight intrinsic
geochemical patterns. Supervised learning algorithms, such as support
vector machines (Ghezelbash et al., 2023a, 2023b), random forest
(Baudron et al., 2013; Wang et al., 2019; Daviran et al., 2021), artificial
neural networks (Ghezelbash et al., 2020a, 2020b; Guérillot and
Bruyelle, 2020), and LightGBM (Hajihosseinlou et al., 2023) provide
computers with the ability to categorize objects, problems, or situations
based on human-labeled data (Xie et al., 2021; Yin et al., 2023a, 2023b,
2023c; Dong et al., 2023a). Conversely, unsupervised machine learning
algorithms such as K-means (Chen et al., 2017), restricted boltzmann
machines (Aryafar and Moeini, 2017), isolation forest (Zhang et al.,
2022), and one-class SVM (Xiong and Zuo, 2020) have been applied to
isolate geochemical communities and group data into similar groups.
Separating geochemical anomaly populations from background often
requires using clustering techniques, which are unsupervised ap-
proaches (Grunsky, 2010; Ghezelbash et al., 2023b). However, the
structure of the data, the type of analysis to perform, and the size of the
dataset are all crucial in selecting clustering algorithms (Prades, 2018;
Yin et al., 2023a, 2023b, 2023c). Various clustering techniques are
available, including Partitioning Clustering (Barioni et al., 2014),
Density-Based Clustering (Kriegel et al., 2011), Distribution Model-
Based Clustering (Kriegel et al., 2005), Hierarchical Clustering (Niel-
sen, 2016), and Fuzzy Clustering (Yang, 1993).

This is crucial during exploratory and assessment data analysis when
researchers seek to uncover hidden characteristics without prior
knowledge (Daviran et al., 2024; Hajihosseinlou et al., 2024). Many
scholars have used the concepts of internal homogeneity and external
separation to characterize a cluster (Hancer and Karaboga, 2017). This
means that patterns within the same cluster should exhibit resemblance
to one another, whereas patterns in distinct clusters should differ from
each other. (Michaud, 1997; Wu et al., 2022). Although many different
approaches have been suggested to clustering, most current algorithms
require at least some prior knowledge of the data to be grouped.
Therefore, their effectiveness is often highly dependent on user-specified
input. Common methods, such as K-means, require a specified number of
clusters as input (Kodinariya and Makwana, 2013), which is sometimes
difficult to estimate. This study used the DBSCAN clustering technique to
find a solution to this challenge. Some significant benefits over existing
clustering techniques are demonstrated by density-based spatial clus-
tering of applications with noise (DBSCAN) (Kriegel et al., 2011).
Initially, it requires no predetermined number of clusters, and it rec-
ognizes outliers as noise, unlike other algorithms that bundle them
together regardless of their dissimilarity. In contrast to DBSCAN, K-
means (a popular clustering method) typically only uses clusters with a
spherical form. Moreover, Mean-shift is another example of a density-
based technique.

This case study uses the Varcheh region of western Iran to showcase
the application of DBSCAN and Mean-shift to identify Pb, Zn and Ba
geochemical anomalies of stream sediment samples connected to sample
catchment basins (SCBs) of Pb, Zn and Ba in the Varcheh area in western
Iran. This study aimed to describe and compare the application of the
DBSCAN and Mean-shift algorithm and their effectiveness in detecting
geochemical anomalies. Also, Fuzzy k-means, a commonly used variant
of the k-means algorithm, was applied to validate the performance of
both Mean-shift and DBSCAN methods.

Furthermore, this paper envisages how the proposed methods could
be included in an exploration information system to facilitate the
interpretation of geochemical data and to generate the ensuing evidence
layers for mineral exploration targeting. While we achieved favorable
results in applying DBSCAN, it is imperative to note that this approach
also has specific limitations. The effectiveness of DBSCAN is impacted by
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the selection of parameters, specifically the epsilon (¢) and minimum
points (MinPts). Determining the most appropriate values for these
factors relies on the specific attributes of the data, and an incorrect se-
lection might impact the clustering outcomes. Moreover, as the dimen-
sion of the data increases, DBSCAN’s efficacy generally diminishes.
High-dimensional spaces frequently encounter the curse of dimension-
ality (Braune et al., 2015), which restricts the algorithm’s potential to
establish significant clusters. Also, DBSCAN can classify outliers as noise
or create small groups around them, particularly in datasets with
different density levels. The susceptibility to noise may impact the
overall clustering quality. Therefore, when using DBSCAN, it is crucial to
understand certain constraints and factors that need careful
consideration.

2. Methodology

Clustering is often defined as discovering patterns in datasets by
grouping related items, and the generated groups are known as clusters
(Tian et al., 2019). In order to be regarded as an effective technique, a
clustering method must meet the criteria listed below: (a) parameters
may be adjusted with limited domain expertise (Zheng et al., 2023),
which is extremely helpful in dealing with big datasets (Luo et al., 2022),
(b) identifying clusters with arbitrary shapes, and (c) optimal perfor-
mance with big datasets (Ghezelbash et al., 2023a). The clustering
procedure is shown in Fig. 1.

2.1. Density-based clustering

Clustering based on density (Campello et al., 2020) has been exten-
sively studied. The basic concept behind density-based clustering is to
build a structure for a given collection of data points that precisely
represents the underlying density.

Density-based clustering differs from parametric cluster analysis
methods such as Gaussian mixture models (GMMs) (e.g., McLachlan and
Basford, 1988) in that the latter assume that the observed data are
constructed by a combination of parametric distributions (generally
considered to be Gaussian). Parametric methods are beneficial in several
cases, but they make the unwarranted assumption that clusters have a
convex (hyper-spherical or hyper-elliptical) form. K-means clustering
(where k is the user-specified cluster number) is another algorithm that
follows this pattern to produce convex cluster shapes. This method as-
sumes that excellent clusters can be discovered by decreasing intra-
cluster variance (also called cluster cohesion) and enhancing inter-
cluster variance (Fahim et al., 2008). On the contrary hand, density-
based clustering techniques do not rely on variance or parametric dis-
tributions. Therefore, they can identify clusters of any form, are robust
against different types of noise and do not need expert knowledge to
identify the ideal quantity of clusters (Nagpal and Mann, 2011; Bhuyan
and Borah, 2013).

2.1.1. The theory behind the DBSCAN approach

Density-based spatial clustering of applications with noise (DBSCAN)
is a commonly used clustering method based on the density concept
introduced by Ester et al. (1996), which was developed to cluster multi-
dimensional datasets, including both spatial and non-spatial data into
clusters of any form when such datasets are exposed to noise. DBSCAN's
primary goal is to cluster data points if their neighborhood of a defined
radius (Eps) includes at least a minimum number of other data points
(MinPts). In other words, the neighborhood’s cardinality must be higher
than the threshold. A random data point ‘A’ has an Eps-neighborhood,
calculated as:

Npys = {A € D/distance(A,B) < Eps } (@D)]

Here, D represents a dataset of objects. If A‘s -neighborhoods include
at least MinPtsnumber of points, Athen is considered a core point.
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Fig. 1. The procedure for conducting cluster analysis.

Niys(A) > MinPts @)

Here, the parameters Epsand MinPtsdenote the radius of the neigh-
borhood and minimal number of points in the Eps-neighborhood of a
core point, respectively. Unless this requirement is met, the given point
is non-core point.

2.1.2. Mathematical foundation of Mean-shift method

Mean-shift is a non-parametric clustering algorithm based on the
concepts provided by Fukunaga and Hostetler (1975). It comprises
mainly the three phases listed below. The first task is to randomly select
a point p;, i € {1,2,...,n} from the unlabeled data item P = {p;,p>, ...
,Pn} to serve as the center point y;. The second is to locate all the data
points inside the circle specified by y; and £ as the radius. It can be stated
as:

€ .
5.() = {plly-pli <5}i=1 @)

Determine the vector from the center point y;to every item p;in the
set 5, assuming these points correspond to the cluster C;; then sum these
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vectors to get the mean shift vector MS (yJ) defined as:

m 2
ZP:‘G( >
_ =l

MS(y) == —F——~"—
i=1

Di €6 (}g) and the Gaussian kernel function G() are created to apply

Yi=pi
&

4

various weights to each data point. ‘MS (yj> ‘ shifts the center point in
the direction of the Mean-shift vector MS (}g) .Then, continue the pre-
ceding steps by y;.; = MS (yj) +y;(j=1,2,...) until the iterative cycle

2
Yit1 — yjH < &, where ¢ is a user-defined

{)g} meets the condition ‘
jz1

threshold value. Finally, repeat the previous two procedures until all
points have been categorized. Fig. 2 depicts Mean-shift flowchart.

2.2. The mathematical basis of the Fuzzy k-means

One type of unsupervised machine learning is fuzzy clustering
analysis, which uses the fuzzy theory to determine the level of uncer-
tainty associated with each sample category (Tokushige et al., 2007).
Fuzzy K-means is a modified version of the conventional K-means
clustering technique that incorporates a degree of fuzziness or softness
in assigning data points to clusters. The clustering algorithm calculates
the degree of membership of each sample point to all cluster centers
through boosting the objective function and identifying the optimal
cluster center via various iterations. This process determines the cate-
gory of the sample points and achieves the goal of classifying the sample
data. The following is the usual expression of the objective function,
which is minimized during the optimization phase of Fuzzy K-means:

k n
Obj = 2; Zz,;;”xi s 5)
= =

Converged?

Fig. 2. Flowchart of Mean-shift framework.
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ugrepresents the degree of membership of data point iin cluster j.The
weighting exponent wis often set to 2 for Fuzzy k-Means. Lastly, z; refers
to the centroid of cluster j.

2.3. Davies-Bouldin index

David L. Davies and Donald W. Bouldin proposed the Davies-Bouldin
index (DBI) in 1979 to assess various clustering algorithms. The score is
computed as the ratio of distances inside clusters to the distances be-
tween clusters (Vergani and Binaghi, 2018). The score is described as the
mean similarity of each cluster, C;, and the one most similar to it, C;. The
similarity is specified for this index as a metric S; that compromises:

r;, cluster diameter, the average distance between every cluster point
and its centroid.

djrepresents the distance between cluster centers iand. j.

a straightforward solution for constructing S;; in a way that ensures it
is nonnegative and symmetric, consider:

ritr
Sy = 6
g 7 (6)
The Davies-Bouldin index is defined as follows.
1 n
n 4 it

2.4. Silhouette index (SI)

The Silhouette is applied to assess and evaluate the distance between
the generated clusters. This technique determines the proximity of each
item in one cluster to those in another (Dudek, 2019). The Silhouette
index (SI), in contrast to other performance assessment approaches, the
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evaluation of clustering results doesn’t necessitate the use of a training
set. The definition for the silhouette width S(x;)at the location A(x;) is:

B(x) —Alx)

~ max{B(x) A(x) } v

S(x;)
where X; is an object of cluster .Cp,.

A(x;) represents the average distance between the element x;and all
other items in cluster C,,,and

B(x;) = min{D,(x;) },r #m )

where D,(x;) is the average distance between point x;and all other points
in cluster C.for r #j.
According to Eq. (8), silhouette width might range between —1 and

A negative number indicates that A(x;) > B(x;), which is unfavor-
able; it implies that the degree of dissimilarity inside a given cluster is
higher than between clusters. Where A(x;) < B(x;), a positive value is
generated, and the maximum width of the Silhouette is achieved at
S(x;) =1 when A(x;) = 0. A stronger positive S(x;)value indicates that
an element is more likely to be found in the appropriate cluster. Negative
S(x;) elements more potentially be grouped in incorrect clusters (Yuan
and Yang, 2019).

3. Study area and dataset construction
3.1. Geological setting
Varcheh district is located northwest of Iran’s central province and is

considered a part of the Sanandaj-Sirjan zone (SSZ) (Fig. 3). The SSZ,
with a length of about 1500 km and a width of 150 to 250 km, was
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Fig. 3. The location of the study area and the position of the Malayer-Esfahan metallogenic belt on structural zones of Iran (Stocklin, 1968).
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formed by the convergence of the African-Arabian and Eurasian plates
(Ghasemi and Talbot, 2006; Ghalamghash et al., 2009; Ghazi and
Moazzen, 2015). The most critical metamorphic processes in the SSZ are
linked to tectonic movements that proceeded during the opening and
closing of the Neotethys ocean.

The Malayer-Esfahan metallogenic belt, in which the shallow marine
sediments of the Cretaceous sea are spread, contains many volcano-
sedimentary Pb—Zn deposits is situated within the central section of
the SSZ (Rajabi et al., 2019). It is generally acknowledged that sedi-
mentary exhalative processes or carbonate-hosted, Mississippi Valley-
type genesis are responsible for this Pb—Zn mineralization (Zar-
asvandi et al., 2014). The intrusion has reached the earth’s surface in the
form of small and scattered outcrops of Eocene among the limestone
schists belonging to the Lower Cretaceous. Differences in morphology
can be observed throughout the study area due to the presence of rocks
with a wide range of diverse sources. Regional tectonics and volcanic
activity have also significantly formed these areas (Ehya et al., 2010).
The lithological composition of the intrusion is gabbro and monzogab-
bro, along with plagioclase, clinopyroxene, and opac minerals (ilmenite
type) with ophitic and subophitic textures. Plagioclase is the most sig-
nificant and common mineral of these rocks, accounting for around 12 %
of the total mineral content. Also, the second most abundant mineral in
these rocks is clinopyroxene. Additionally, the main alterations are
sericitic, oralitization, and chloritization.

Geochemical researches reveal that Varcheh gabbro has special
petrological features of alkaline rocks. These rocks are mantle-derived
garnet peridotites developed at 100 to 105 km. Furthermore, the
investigation of magmatic features indicates the insignificant role of
crustal assimilation in extensional tectonics.

Emarat deposit, with proven reserves of 12.5 million tons and an
average grade of 5 % zinc and 2 % lead, is considered to be the largest
and most crucial zinc and lead deposit in the central portion of the
Malayer-Esfahan belt. Also, the Moochan deposit, with an initial reserve
of 300,000 tons and an average grade of 7.12 % zinc and 1.74 % lead, is
located 2 km southeast of the Emarat deposit. Sphalerite is the most
abundant sulphide mineral in both Emarat and Moochan deposits (Ehya
et al., 2010), which is observed as 0.02 to 3 mm deposited in open space
filled and veins. Based on these observations, sphalerite was formed in
two stages. First-stage sphalerites have a high concentration of iron.
Second-stage sphalerites are poor in iron. Considering the location of
Emarat and Moochan deposits in the SSZ, the formation of these deposits
can be attributed to tectonic events related to the convergence of the
Arabian and Iranian plates and the closure of the Neotethys ocean
(Ghasemi and Talbot, 2006). Since the construction of the other Pb—Zn
deposits in the SSZ and the activity of the subduction event coincided,
considering its role in the metallogenic of Pb—Zn deposits seems
essential. This event, along with the compression of various stratified
units, including Jurassic shale and sandstones, has caused the warming
and dynamism of fossil waters and the release of carbon dioxide, silica,
and metals during the diagenesis of clay minerals and pyroclastic rocks.
The investigation of the Pb isotope in the Emarat deposit is consistent
with the crustal origin of the metals (Fernandez et al., 2000; Karimpour
et al., 2017; Karimpour and Sadeghi, 2018).

3.2. Geochemical data

Stream sediment samples mainly include pyroclastic. Therefore, it is
essential to sieve the sediments and collect the components of the cor-
rect size (Li et al., 2020). After transferring these samples to the labo-
ratory, the preparation steps of the samples were carried out, including
drying, removal of organic matter, and powdering. This research applied
analytical data for ten elements (Ag, Ba, Co, Cr, Cu, Ni, Pb, Sr, V, and Zn)
obtained from 1283 stream sediment samples representing catchment
basins (Fig. 4a) that cover the total area. The samples were gathered by
the Geological Survey of Iran (GSI) in the 1: 100,000 scale Varcheh map
(Fig. 4b). Inductively coupled plasma optical emission spectrometry
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(ICP-OES) was performed to get these analytical results. According to
the Howarth and Thompson (1976), using validated duplicate samples,
the analytical precision for all elements was more than 10 %.

4. Results
4.1. Data preprocessing

Data mining and analysis need preprocessing before modeling
(Zhang et al., 2022). The data relating to the elements were subjected to
statistical analysis (Vahid et al., 2021), and various descriptive statisti-
cal measures were obtained and presented in Table 1. Generally, all
geochemical datasets are compositional and considered closed number
systems with a fixed sum per sample. Compositional data are often
relative portions of a whole (Greenacre, 2021).

Compositional variables are dependent, and no variable may fluc-
tuate independently of the others (Filzmoser et al., 2009). Also, the data
closure issue must be considered even if there is only one component
since the value of a chosen element indicates its proportions in the whole
sample (Ghezelbash et al., 2019d). Consequently, geochemical data
should be opened prior to analysis (Aitchison et al., 2005). A clr trans-
formation was used in this research. For a D-part composition x, the clr
transformation is described as:

L
X X D ’
clr(x) = logﬁlx)...lagwi)] ,G(x) = (Hx,-) 10)
G(x) is the geometric mean of the variable x. This function’s inverse
is known as the softmax function.
The ilr transformation depends on selecting a specific orthonormal
based on the hyperplane in RP produced by the clr transformation. The
equation for the ilr transformation is:

1
I
i J=1

Jog—i—
R R

ilr(x) =

1,2,...D—1 an

Since the new D - 1 variables are unrelated to the original variables,
the data produced by the ilr transformation cannot be sensibly evaluated
from an exploration viewpoint. This issue can be addressed by ortho-
normal back transforming the ilr coordinates to clr coefficients.

i\ 1o
= () |5~ —10,..,0],i=1,2,...D—1 12
e (i+1> 7 : ! a2

i elements

Wis a (D - 1) D matrix with wirepresenting row vectors in this case.
Clr and ilr are related in the following way:

clr(x) = ilr(x). W, W = (w1, wa, ..., wp_1) (13)

It is also possible to generate a robust covariance matrix for the clr
coefficients by:

S =W (KWK = (ki,k, ... ki) (14)

The Fig. 5a and b depict raw and transformed data. Based on the SCB
method, we have created geochemical maps that display the original
(Fig. 6) and clr-transformed (Fig. 7) values of three elements associated
with Pb—Zn mineralization in the Varcheh district.

4.2. DBSCAN-based intelligent geochemical modeling

In the area of exploratory geochemistry, identifying geochemical
associations is necessary for detecting geochemical patterns and map-
ping anomalies. In exploratory geochemistry, identifying geochemical
associations is necessary for detecting geochemical patterns and map-
ping anomalies. In high-dimensional data, principal component analysis
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Table 1
Description statistics of the stream sediment geochemical data.
Characteristic Pb value Zn value Ba value
Mean 58.88 124.81 310.84
Median 30 91 290
Standard deviation 119.75 103.79 134.87
Maximum 1333 906 1333
Minimum 2.75 2.75 80
Skewness 7.02 2.69 2.47
Kurtosis 61 10.37 11.96

(PCA) is a tool for retaining the data set with the most variation while
still providing dimension reduction. It reduces the number of di-
mensions and the data to be compressed by identifying general char-
acteristics in multidimensional data (Mackiewicz and Ratajczak, 1993).
This research applied PCA on log-ratio transformed data to explore
patterns in element relationships and trace material sources in Pb—Zn
deposits generated by geochemical processes.

A graph known as the scree is used to estimate the number of prin-
ciple components; it illustrates the relationship between the number of
primary components and their eigenvalues. The eigenvalues on a screen
plot are always shown in descending order, from greatest to smallest.
Scree plots often have the same general form, rising sharply on the left,
declining steeply, and then leveling out. Specifically, since the first
component usually accounts for a significant part of the variance, the
following factors explain a moderate proportion. Meanwhile, the latter
components only account for a minor portion of the total variance. The
scree plot criteria find the curve’s “elbow” and choose all components
before the line flattens. In this paper, the scree plot of eigenvalues
(Fig. 8) isolated the four components responsible for 74.56 % of the
overall variance. The first component explains the most variance,
whereas the subsequent ones explain increasingly less variance
(Table 2).

A matrix of size 1283 by 3 was created, which consisted of the clr-
transformed values of elements associated with Pb—Zn mineralization.
DBSCAN, an algorithm used for creating a geochemical anomaly map via
SCBs, was fed this matrix as input. When the DBSCAN method is first
run, it sets the cluster identification number to 0 and picks a random
starting point that has not been allocated to a cluster or deemed noise.
Then, computes the number of all the neighboring points within Eps
distance of the primary selecting point. If this number exceeds MinPts, a
cluster will construct around this point. Otherwise, this point will be
identified as an outlier. The starting point and its neighbors will form a
cluster labeled as the visited point. The DBSCAN algorithm iteratively
continues this process for all neighbors until a point has fewer neighbors
than MinPts. Therefore, this point is categorized as noise. After the
cluster forms, its identification number will increase; DBSCAN picks a
new point from the pool of unvisited data points to begin forming a new
cluster. This process will be continued until every data point is assigned
to a cluster or dismissed as noise. The basic premise of the DBSCAN
clustering method is shown in Fig. 9.

MinPts should typically be larger than or equal to the number of
dimensions in the dataset. So, MinPts = 2*dim is usually chosen, in
which dim is equal to the dimensions of the data set if the data set
contains over two dimensions (Sander et al., 1998). Once MinPts is
selected, the value of ¢ should be found. This article describes an
approach to automatically determining the best value. Each point’s
average distance to its k nearest neighbors was determined using this
method, where k was whatever value chosen for MinPts. The average k-
distances were then shown in increasing order on a graph depicting k-
distances. The location of maximal curvature provided the best estimate
for the value of e. Ultimately, optimal results for DBSCAN were obtained
by setting MinPts = 6 for the lowest number of points needed to create a
cluster and Eps = 90 (Fig. 10) for the maximum distance allowed in the
neighborhood between cluster points. Consequently, the DBSCAN-based
SCB map (Fig. 11a) displaying several geochemical categories (cluster 1:

Journal of Geochemical Exploration 258 (2024) 107393

background; cluster 2: weak anomaly; and cluster 3: strong anomaly)
was generated.

4.3. Mean-shift-based intelligent geochemical modeling

In order to find the most reliable geochemical targets relevant to
carbonate-hosted Pb—Zn deposits, the Mean-shift clustering technique
was also used on the matrix created during the previous subsection.
Mean-shift is an unsupervised clustering approach that seeks to identify
blobs within a smooth sample density. The technique finds the average
of points inside an area through updating candidates for centroids
(generally known as bandwidth). After this step, the candidates undergo
further processing to exclude near-duplicates and construct the ultimate
collection of centroids. Therefore, unlike K-means, they are not required
to manually choose the number of clusters. The Mean-shift algorithm
depends highly on the kernel bandwidth. The density gradient has the
most significant effect on the efficiency of the Mean-shift method. The
Mean-shift algorithm may provide visually pleasing clustering if the
bandwidth matrix is correctly selected to yield an acceptable kernel
density gradient estimate. The final clusters seem different depending on
the available bandwidth. In the current study, we first picked a minimal
bandwidth. As a consequence, each point developed its distinct group.
Conversely, we used a large bandwidth, producing single cluster
including all the data. A manual approach to selecting the appropriate
bandwidth for small, two-dimensional data sets could be feasible, but it
will become more challenging as the data set grows. So rather than
manually choosing the bandwidth, we used the estimate bandwidth
function, a method provided by the Python sklearn package that em-
ploys a nearest-neighbor analysis. Lastly, geochemical samples of stream
sediments associated with anomaly classes (clusters 3) were allocated to
their relevant SCBs, and a mean-shift based geochemical anomaly map
was generated (Fig. 11b).

4.4. Fuzzy K-means-based intelligent geochemical modeling

The matrix 1283 by 3, containing clr-transformed values of elements
related to Pb—Zn mineralization generated in previous sections, served
as the input for Fuzzy K-means to identify the most dependable
geochemical targets associated with carbonate-hosted Pb—Zn deposits.
Tuning the parameters of Fuzzy K-means involves a thoughtful approach
to achieve optimal clustering results. The primary parameters to adjust
are the number of clusters (K) and the fuzziness parameter (m). We
expressly set the number of clusters to 3. We considered an equal
number of clusters for Fuzzy K-means in alignment with the cluster
counts specified for DBSCAN and Mean-shift, specifically three clusters
each. This approach facilitates a straightforward comparison of the
outcomes generated by all three models.

Additionally, fine-tuning the fuzziness parameter (m) to balance the
degree of fuzziness in the memberships is essential. The number
commonly used for the fuzziness parameter (m) in Fuzzy K-Means
typically falls within the range of 1.5 to 2. We experimented with
different values of m during parameter tuning to find the most suitable
setting for a given dataset and clustering objective. Finally, we deter-
mined a fuzziness level of 2 for the memberships.

In this way, the model was constructed, and samples were labeled. In
conclusion, stream sediment geochemical samples were linked to their
corresponding SCBs, creating a geochemical anomaly map using the
Fuzzy K-means method. Fig. 11c depicts the clustering result derived by
Fuzzy K-means.

4.5. Evaluation

Cluster analysis depends on assessing clustering outcomes to deter-
mine the partition most accurately which represents the underlying data
(Cheng et al., 2023). In the current study, the effectiveness of clustering
performed for extracting geochemical anomaly classes has been
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Fig. 5. The sample dataset (a) before clr transformation and (b) after clr transformation.
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Fig. 6. SCB-based geochemical maps original values of three mineralization-related elements.
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Fig. 7. SCB-based geochemical maps of clr-transformed values of three mineralization-related elements.
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Table 2
Rotated componenet matrix of PCA.
Elements PC1 PC2 PC3 PC4
Ag 0.012 —0.016 0.32 0.984
Ba 0.6 0.51 0.164 0.067
Co 0.821 0.024 0.366 0.01
Cr 0.791 0.250 —0.034 0.059
Cu 0.662 0.117 —0.084 0.192
Ni 0.754 0.42 —0.184 —0.18
Pb 0.47 0.936 —0.064 0.017
Sr —0.007 0.044 0.944 —-0.141
A% 0.827 0.109 0.284 0.036
Zn 0.449 0.606 0.393 —0.056
Var. (%) 41.227 12.214 11.1 —0.043
Cum.Var. (%) 41.227 53.441 65.541 74.556

measured using the Davies-Boulding index (Wang et al., 2022).

Considering that a lower index can achieve a better clustering
outcome and zero is the lowest score, the result demonstrates that the
DBSCAN algorithm has a low value of DB score compared to the Mean-
shift and Fuzzy k-means (Table 3). That means since the index has been
minimized in DBSCAN, the most distinct geochemical anomaly clusters
and the optimal partition have been portrayed by DBSCAN.

Similarly, the Silhouette is applied to assess and evaluate the dis-
tance between the generated clusters. This technique determines the
proximity of each item in one cluster to those in another (Dudek, 2019).

The index has been employed on DBSCAN, Mean-shift, and Fuzzy K-
means algorithms. For all models, the index value was positive and
acceptable. A higher DBSCAN Silhouette score has implied (Table 3) that
the geochemical samples were more appropriately clustered compared
to those clustered using Mean-shift.

5. Discussion

Several variables influence the regional distribution of geochemical
elements. Therefore, conducting an analysis and identification of
prominent geochemical indicators that correspond to the desired deposit
type within a specific research region is crucial to facilitate further
exploration efforts. In this context, the paper has used multi-element
connections of Pb-Zn-Ba as indicators for the identification and explo-
ration of MVT Pb—Zn anomalies. Because they are essential geochem-
ical traces for mineralization and have a promising spatial connection
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with the deposit type sought, it should be noted that since geochemical
datasets often consist of several components and the closure effect is an
intrinsic property of geochemical data, it is essential to highlight that we
employed clr transformation to open the data before performing any
analysis. Fig. 5 clearly illustrates how closed data were opened. Besides,
we demonstrated the successful implementation of density-based clus-
tering approaches for precisely defining the geochemical anomalies
associated with Pb—Zn mineralization systems. The DBSCAN model was
used in our study to identify multivariate geochemical anomaly patterns
associated with SCBs in the Varcheh District, situated in the Malayer-
Esfahan metallogenic belt, that has significant importance in the
exploration of MVT deposits inside Iran. This article shows that SCB-
based models are more efficient for mapping geochemical anomalies.
Additionally, we proposed the Mean-shift clustering model as an alter-
native approach. DBSCAN was sensitive to the choice of parameters,
notably the radius (epsilon) and the minimum number of points neces-
sary to create a cluster (minPts). However, the Mean Shift was less
susceptible to parameter adjustment since it automatically changes the
bandwidth throughout the clustering process. They constructed fairly
accurate anomaly detector models, suggesting that they may assist in
identifying the subtle patterns that lie within geochemical information.
In addition, DBSCAN efficiently deals with outliers, or data points that
do not fit into any cluster (noise points), as part of its clustering pro-
cedure. As a result, DBSCAN gives clear cluster labels, such as a label for
noise points, facilitating the interpretation of outliers. Mean-shift,
however, detects cluster centers without explicitly labeling data points
as outliers. Consequently, the interpretation of outliers may necessitate
additional analysis.

Compared to the geological map shown in Fig. 4b, the anomalous
groups (Fig. 11a, b, ¢) demonstrate a positive spatial association. This
correlation is seen mainly in lower Cretaceous strata, recognized as
significant geological variables contributing to the creation of MVT
Pb—Zn deposits. Furthermore, the DBSACAN, Mean-shift and Fuzzy K-
means algorithms have identified multivariate geochemical anomalies,
particularly those belonging to strong anomaly classes, which tend to
cluster in close proximity to the recognized MVT Pb—Zn deposits.

In this research, despite the favorable outcomes yielded by these two
methods in detecting geochemical anomalies, it was imperative to
employ an additional straightforward and widely used approach that
has previously demonstrated acceptable results in geochemical clus-
tering. The K-means method is frequently utilized by researchers,
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Fig. 9. Flowchart of DBSCAN clustering algorithm.
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Fig. 10. K-nearest neighbor distance plot.

delivering satisfactory results in anomaly separation from the back- study. Essentially, this method was employed to validate the outcomes
ground (Ghezelbash et al., 2020a). In addition to K-means, derivatives of of the Mean-shift and DBSCAN, as the promising performance of the K-
this method are also efficient. Hence, we used the Fuzzy K-means means method and its derivatives has been previously proven.

method to corroborate the results of the above two methods in this The primary unsupervised methods utilized in prior studies are
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Fig. 11. SCB-based geochemical anomaly map derived by (a) DBSCAN, (b) Mean-shift, and (c) Fuzzy K-means algorithm.
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Table 3
DBI and SI values of the single models.

Model Davies-Bouldin index (DBI) Silhouette index
(sD
DBSCAN 0.16 0.88
Mean-shift 0.24 0.69
Fuzzy K-means 0.36 0.55

distance-based, such as K-means or its optimized variants. In this paper,
we demonstrated the effectiveness of density-based techniques in map-
ping geochemical anomalies. In exploratory sampling, more geochem-
ical samples are collected from geologically complex locations featuring
mineralization, alteration, etc. This results in a higher sampling density
around mineral occurrences likely belonging to a specific class. Density-
based methods similarly classify and group closely located samples.
Consequently, this approach emerges as a practical tool for accentuating
geochemical anomalies. Following this, a comparative analysis of the
methods was conducted, and metrics evaluation (Table 3), coupled with
the resultant map, affirmed the superiority of the DBSCAN method over
the Mean-shift and Fuzzy K-means method.

6. Conclusion

Anomaly identification is vital when the abnormal behavior of a geo-
dataset set gives essential information about the mineralization system.
In this study, we employed the DBSCAN algorithm to recognize anom-
alies of stream sediment samples in the Varcheh area. In the experi-
mental assessment, we compared the outcomes of the DBSCAN
algorithm to those of the Mean-shift method. DBSCAN, as a density-
based clustering algorithm, has proved helpful in identifying clusters
in massive datasets of varying form and size. However, DBSCAN is a
density-based clustering technique that shares certain features with
Mean-shift, offering significant improvements. Compared to alternative
clustering techniques, DBSCAN has several benefits. Unlike Mean-shift,
which places outliers in a cluster regardless of their dissimilarity, this
method recognized outliers as noise.

Furthermore, it detects arbitrarily sized and shaped clusters suc-
cessfully. Therefore, the DBSCAN findings surpassed the Mean-shift re-
sults. This study shows that the DBSCAN algorithm can find anomalies
since the investigation of the DBSCAN model and lithological factors
affecting the occurrence of Pb—Zn mineralization in the surveyed region
showed a significant correlation between the strong and weak anomaly
categories and the Cretaceous formations. These formations were found
to be the primary hosts of Pb—Zn deposits in the Varcheh district.

Moreover, comparing the outcomes of Fuzzy K-means, known for its
consistent performance in geochemical clustering, indicated that these
two density-based models predicted the highest Pb—Zn deposits within
the smallest anticipated area compared to Fuzzy K-means in such a way
that 81 % and 76 % of the Pb—Zn deposits, in 11 % and 15 % of the study
district, respectively, are predicted by the strong anomaly classes of the
SCBs derived through DBSACN and Mean-shift models.
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