Direction régionale Bas-Saint-Laurent/Gaspésie/lles-de-la-Madeleine Service de l'aménagement et de l'exploitation de la faune

PROJET DE MISE EN VALEUR DU SAUMON ATLANTIQUE RIVIERE PORT-DANIEL BILAN DES TRAVAUX DE 1988

par Michel Legault et Jean-Guy Paquet

Ministère du Loisir, de la Chasse et de la Pêche Gaspé, août 1992

ZAC de la Gaspésie

Référence à citer

LEGAULT, M. et PAQUET, J.G. 1992. Projet de mise en valeur du Saumon atlantique, rivière Port-Daniel, Bilan des travaux de 1988. Ministère du Loisir, de la Chasse et de la Pêche, Direction régionale du Bas-Saint-Laurent/Gaspésie/Iles-de-la-Madeleine, Service de l'aménagement et de l'exploitation de la faune, Gaspé. 102 p.

TABLE DES MATTERES

	Page
TABLE DES MATIERES	iii
LISTE DES TABLEAUX	iv
LISTE DES FIGURES	vi
LISTE DES ANNEXES	vii
1. INTRODUCTION	1
2. INVENTAIRE DE L'HABITAT	4
3. ÉVALUATION DES POPULATIONS DE SAUMONS JUVÉNILES	10
4. LES REPRODUCTEURS	19
4.1 Origine	19
4.2 Description biologique	21
4.3 Marquage et vaccination	21
4.4 Transport	23
4.5 Déversement	23
4.6 Barrière d'arrêt	23
5. INVENTAIRE DES REPRODUCTEURS	24
6. COMPORTEMENT ET DÉPLACEMENTS DES REPRODUCTEURS	26
7. REPRODUCTION	30
REMERCIEMENTS	32
LISTE DES RÉFÉRENCES	33
ANNEXES	35

LISTE DES TABLEAUX

			Page
Tableau	1.	Scénario du programme quinquennal de mise en va- leur de la rivière Port-Daniel basé sur un dépôt annuel de 250 adultes provenant d'aquaculture	3.
Tableau	2.	Superficie (m²) et pourcentage (%) des catégories d'habitats de la rivière Port-Daniel et de ses principaux tributaires	7
Tableau		Superficie (m²) et pourcentage (%) des faciès d'écou- lement de la rivière Port-Daniel et de ses prin- cipaux tributaires	8
Tableau	4.	Superficie (m²) et pourcentage (%) des catégories d'habitats des secteurs aval et amont fréquentés par le saumon de la rivière Port-Daniel et ses principaux tributaires, à l'exception de l'estuaire	9
Tableau	5.	Caractéristiques des stations d'échantillonnage des saumons juvéniles, rivière Port-Daniel, 1988	12
Tableau	6.	Description statistique de la longueur et de la masse des saumons juvéniles prélevés dans le réseau hydrographique de la rivière Port-Daniel, 1988	13
Tableau	7.	Nombre de saumons juvéniles capturés en station fermée lors du premier effort de pêche à l'élec- tricité et estimation de leur nombre par la mé- thode Zippin, rivière Port-Daniel, 1988	16
Tableau	8.	Densité relative des populations de saumons juvé- niles par 100 m² (stations ouvertes), rivière Port-Daniel, 1988	17
Tableau	9.	Estimation des populations de saumons juvéniles par 100 m², rivière Port-Daniel, 1988	18.
Tableau	10.	Origine et nombre de juvéniles utilisés pour produire les 250 Saumons atlantique déversés dans la rivière Port-Daniel en 1988	20
Tableau	11.	Descriptions biologiques des reproducteurs déversés dans la rivière Port-Daniel et des femelles conservées par Baie-des-Chaleurs Aquaculture inc. en 1988	22

Tableau 12.	Inventaire des reproducteurs effectué sur la	
	rivière Port-Daniel en 1988 compilé par périodes,	
	secteurs et origines des saumons	25

LISTE DES FIGURES

		Page
Figure 1.	Localisation de la rivière Port-Daniel, Québec	2
Figure 2.	Localisation des obstacles et délimitation de l'habitat potentiellement accessible pour le Saumon atlantique, rivière Port-Daniel, 1988	5
Figure 3.	Localisation des stations d'échantillonnage des saumons juvéniles, rivière Port-Daniel, 1988	11
Figure 4.	Histogramme de la fréquence des longueurs maximales des saumons juvéniles capturés lors des inventaires, rivière Port-Daniel, 1988	14

LISTE DES ANNEXES

			Page
Annexe	1.	Longueur maximale des tacons capturés lors de l'inventaire des saumons juvéniles, rivière rivière Port-Daniel, 1988	. 36
Annexe	2.	Mesures morphométriques et lecture d'âge des tacons échantillonnés, rivière Port-Daniel, 1988	40
Annexe	3.	Nombre de saumons juvéniles capturés par effort de pêche pour chaque classe d'âge en 1988	46
Annexe	4.	Estimation des populations de saumons juvéniles selon la méthode de Zippin (1958)	49
Annexe	5.	Caractéristiques des reproducteurs déversés dans la rivière Port-Daniel en 1988	74
Annexe	6.	Caractérisation des divers stades de maturation sexuelle selon la méthode de Kesteven (1960)	88
Annexe	7.	Données biologiques prélevées sur des femelles matures conservées par Baie-des-Chaleurs Aquaculture inc. en 1988	91
Annexe	8.	Inventaire des reproducteurs effectué le 7 octobre 1988	94
Annexe	9.	Inventaire des reproducteurs effectué le 18 octobre 1988	97
Annexe	10.	Inventaire des reproducteurs effectué le 10 novembre 1988	100

1. INTRODUCTION

Nous présentons dans les chapitres suivants, l'ensemble des activités qui se sont déroulées en 1988, pour la continuité du projet de mise en valeur du Saumon atlantique de la rivière Port-Daniel (figure 1).

Pour la deuxième année consécutive, un projet de déversement de saumons adultes dans la rivière Port-Daniel à des fins de reproduction a pu voir le jour, grâce à une collaboration étroite entre la Direction régionale du ministère du Loisir, de la Chasse et de la Pêche (MLCP) et la compagnie Baie-des-Chaleurs Aquaculture inc.

En effet, ce producteur aquicole en est à rembourser le prêt de saumonneaux accordé pour initier sa première production de saumons, destinés à des fins alimentaires. Les raisons qui ont poussé le MLCP à collaborer à ce projet sont de deux ordres; production de saumonneaux pour fins d'aquaculture et vérification de la faisabilité d'établir une population de Saumon atlantique à partir d'adultes provenant de l'élevage. Pour de plus ample information sur l'historique et les modalités du projet voir Legault (1989).

Essentiellement, le projet prévoit le déversement automnal de 250 saumons adultes par année, jusqu'à l'automne 1992. Le tableau 1 présente le scénario du programme de mise en valeur, et quantifie les retours d'adultes que ces déversements devraient entraîner.

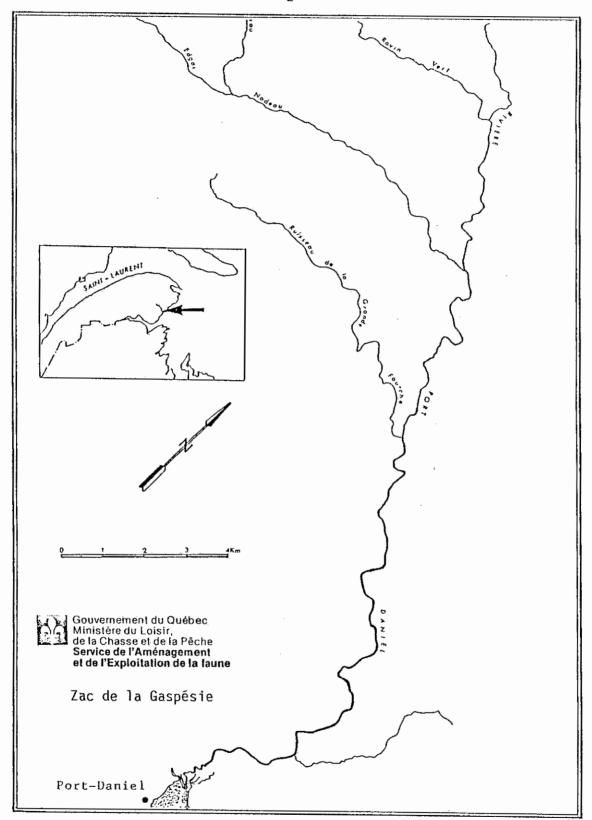


Figure 1. Localisation de la rivière Port-Daniel, Québec.

Tableau 1. Scénario du programme quinquennal de mise en valeur de la rivière Port-Daniel basé sur un dépôt annuel de 250 adultes provenant d'aquaculture.

1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
245	Т0+	T1+	Т2+	. S 3+	1AM	.2AM	3AM		AM: T:	année en tacon	mer
	250	T0+	T1+	T2+	S3+	1 AM	2AM	3AM	S:	saumonea	.u
		250	T0+	T1+	T2+	\$3+	1AM	2AM	3AM	·	
			250	T0+	T1+	T2+	\$3+	1 AM	2AM	3AM	
				250	TO+	T1+	T2+	S3+	1 AM	2AM	ЗАМ
					250	T0+	T1+	T2+	\$3+	1AM	2AM
Déverseme	nt										
245	250	250	250	250	250	0	0	0	0	0	0
0	0	0	0	0	276	224	462	463	463	463 (1) 180 (1)
245	250	250	250	250	526	224	462	463	463	463	180

Nombre de reproducteurs désirés: 250 - 300

Taux de production par adulte: 1:1,85 (rivière St-Jean)

 ω

Moyenne 1982-86: 25 reproducteurs

Répartition de retour: 61% après 1 an en mer 37% après 2 ans en mer 2% après 3 ans en mer

(1) Début de la deuxième génération

2. INVENTAIRE DE L'HABITAT

La description des composantes physiques de l'habitat du Saumon atlantique est un prérequis essentiel à tout projet de restauration. Celleci nous permet de connaître l'habitat potentiellement disponible au saumon, sa production potentielle de saumonneaux, le nombre de reproducteurs requis afin d'obtenir une production optimale et des estimations beaucoup plus fiables des populations de saumons juvéniles par un échantillonnage stratifié.

Les seules données disponibles jusqu'en 1987 sur la distribution du saumon dans le réseau hydrographique de la rivière Port-Daniel étaient colligées dans le répertoire des rivières à saumon (Pomerleau <u>et al</u>, 1979). Ces données portaient seulement sur le secteur aval de la rivière, le secteur amont étant très difficile d'accès par voie terrestre.

En 1987 nous avons effectué un inventaire terrestre et héliporté, cet inventaire nous a permis de localiser les fosses et les principaux obstacles sur la presque totalité du réseau hydrographique de la rivière Port-Daniel et de délimiter l'habitat potentiellement accessible pour le saumon (figure 2).

En 1988, l'inventaire de l'habitat potentiellement accessible au saumon a été complété en effectuant une description détaillée des segments homogènes de la rivière selon le faciès d'écoulement et le substrat tel que décrit par Boudreault (1984) et Côté et al. (1987).

L'inventaire a été effectué du 2 au 4 août en parcourant le tronçon principal ainsi que ses principaux tributaires à l'exception du ruisseau Ravin Vert.

Puisque cet inventaire fera l'objet d'un rapport distinct, nous nous contenterons de présenter un résumé des données recueillies concernant les aires d'élevage du saumon juvénile.

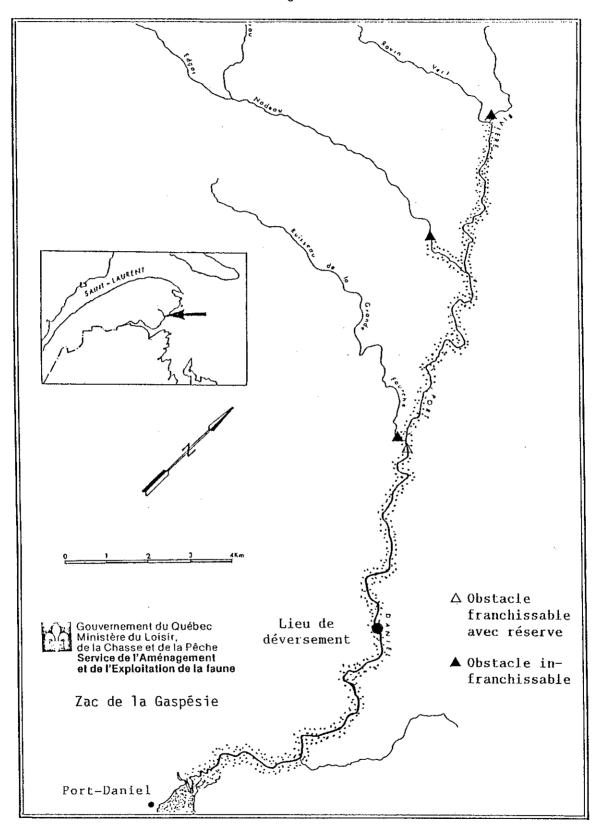


Figure 2. Localisation des obstacles et délimitation de l'habitat potentiellement accessible pour le Saumon atlantique, rivière Port-Daniel, 1988.

Les aires d'élevage déterminent en grande partie le potentiel salmonicole d'une rivière. La valeur et la quantité des ces aires d'élevage
ont été évaluées en établissant une cotation de la qualité des faciès
d'écoulement et des classes granulométriques des segments homogènes de
la rivière. En couplant ces deux cotes, on en arrive à un indice de sa
qualité qui se répartit en trois catégories, soit I (très bon habitat)
II (bon habitat) et III (habitat médiocre) (Côté et al, 1987).

La superficie et le pourcentage des catégories d'habitat de la rivière Port-Daniel, pour les secteurs potentiellement accessibles au saumon est présentée au tableau 2. Le cours d'eau principal représente 93,7% de la superficie d'élevage inventoriée disponible pour le saumon juvénile. Au total 313 950 m² ont été inventoriés dont 67,3% ont été évalués d'excellente qualité, 8,8% de bonne qualité et 23,9% de qualité médiocre.

Généralement, ces catégories d'habitats sont représentées par des rapides (catégorie I), des seuils (catégorie II), des bassins et des chenals (catégorie III). Les seuils représentent 75,5% de la superficie inventoriée tandis que les rapides comptent pour 6,8% (tableau 3).

Nous pouvons constater que l'habitat de la rivière Port-Daniel est d'excellente qualité pour l'élevage du saumon juvénile.

Tel que mentionné dans Legault (1989) et vérifié par les inventaires de reproducteurs de 1988, seuls les saumons indigènes semblent avoir la capacité de franchir des chutes situées à 13,4 km de l'embouchure, restreignant les saumons d'élevage, à la section de rivière située en aval de cet obstacle.

Le tableau 4 permet de constater que la section de rivière en amont des chutes représente 39% de la superficie totale fréquentée par le saumon, et est composé à 76% d'habitats I et II qui sont de bonne qualité pour les saumons juvéniles.

Tableau 2. Superficie (m²) et pourcentage (%) des catégories d'habitats de la rivière Port-Daniel et de ses principaux tributaires.

		Tribut	aires	
Catégorie d'habitats	Cours principal	Grande Fourche	Nadeau	Total
I	202 182 (67,6)	3 724 (91,7)	5 479 (49,9)	211 385 (67,3)
II	25 432 (8,5)	0 (0,0)	2 111 (19,2)	27 543 (8,8)
III	71 294 (23,9)	338 (8,3)	3 390 (30,9)	75 022 (23,9)
TOTAL	298 908 (93,7)	4 062 (1,3)	10 980 (3,4)	313 950 (100,0)

Tableau 3. Superficie (m²) et pourcentage (%) des faciès d'écoulement de la rivière Port-Daniel et de ses principaux tributaires.

		Tribut	aires	
aciès d'écoulement	Cours principal	Grande Fourche	Nadeau	Total
Seuil	230 651 (77,2)	3 724 (91,7)	2 530 (19,3)	236 905 (75,5)
Rapide	15 857 (5,3)		5 450 (41,6)	21 307 (6,8)
Cascade	9 428 (3,2)		2 822 (21,5)	12 250 (3,9)
Chute	326 (0,1)	162 (4,0)	57 (0,4)	545 (0,2)
Bassin	18 586 (6,2)	176 (4,3)	121 (0,9)	18 883 (5,9)
Méandre	2 121 (0,7)		2 121 (16,2)	2 121 (0,7)
Estuaire	21 939 (7,3)			21 939 (7,0)

Tableau 4. Superficie (m²) et pourcentage (%) des catégories d'habitats des secteurs aval et amont fréquentés par le saumon de la rivière Port-Daniel et ses principaux tributaires, à l'exception de l'estuaire.

	Catégo				
Secteur	I	II	111	Total	
Aval	137 999	11 334	23 331	172 664	
	(79,9)	(6,6)	(13,5)	(61,2)	
Amont	67 953	15 629	26 056	109 638	
	(61,9)	(14,3)	(23,8)	(38,8)	
TOTAL	205 952	26 963	49 387	282 302	
	(72,9)	(9,6)	(17,5)	(100,0)	

3. ÉVALUATION DES POPULATIONS DE SAUMONS JUVÉNILES

Un inventaire des saumons juvéniles a été effectué dans le tronçon principal de la rivière du 16 au 25 août. Il consistait à un échantillonnage de 16 stations de 100 m², dont six fermées. Les stations étaient localisées dans les habitats de catégorie I et choisies en fonction de leur accessibilité. La figure 3 illustre la localisation des stations et une description sommaire est donnée au tableau 5.

Pour les six stations fermées (1, 2, 3, 5, 9 et 10), nous avons bloqué la migration des poissons à l'aide d'une seine. Chaque station était balayée de quatre à cinq fois à l'aide d'un appareil de pêche à l'électricité de marque Marine Electric, modèle Safari 300. A la fin de chaque effort de pêche d'une durée de 15 minutes, on vérifiait les parois intérieures de la seine située en aval de la station pour la présence de poissons narcosés non capturés. Une pause d'au moins 20 minutes était effectuée entre chaque effort de pêche.

Les dix autres stations ouvertes (4, 6, 7, 8, 11, 12,13, 14, 15, 16) ont été échantillonnées sans bloquer la migration des poissons. Un seul effort de pêche d'une durée de 15 minutes était effectué.

Les spécimens capturés étaient anesthésiés avec du MS-222 (tricaine méthane sulfonate), mesurés (longueur maximale) puis relâchés à l'extérieur de la station (annexe 1). Quelques individus ont été congelés pour en déterminer l'âge, le sexe, la longueur à la fourche et maximale, la masse, le coefficient de condition et le stade de maturité (tableau 6, annexe 2). La proportion de chaque groupe d'âge pour l'ensemble des saumons juvéniles capturés a été déterminée en se servant de l'histogramme de la fréquence des longueurs (figure 4) et de la détermination de l'âge par les écailles des poissons conservés (annexe 2).

L'estimation du nombre de saumons juvéniles par classe d'âge dans les

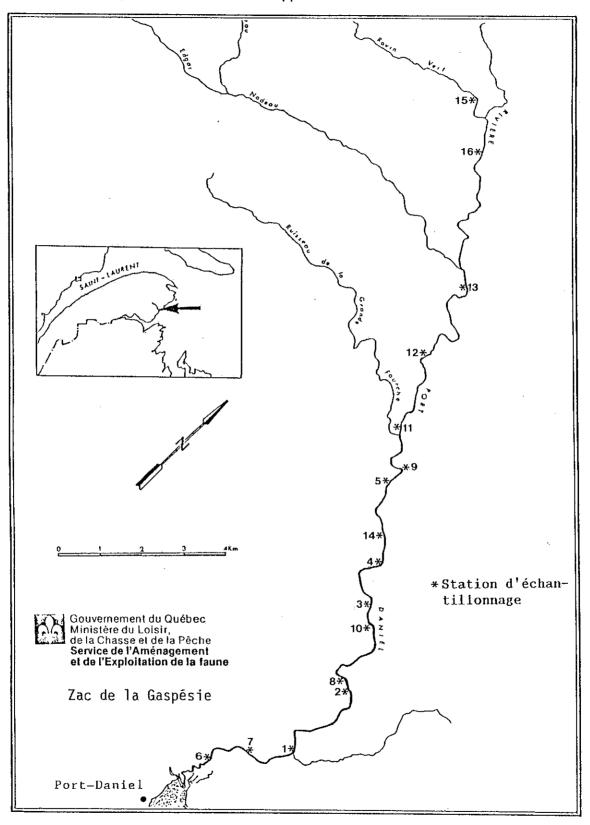


Figure 3. Localisation des stations d'échantillonnage des saumons juvéniles, rivière Port-Daniel, 1988.

Tabléau 5. Caractéristiques des stations d'échantillonnage des saumons juvéniles, rivière Port-Daniel, 1988.

Station	Mercator	Superficie (m²)	Profondeur (cm)	Vitesse (m/s)	Granulo- métrie
1f	LJ 546 424	100	21	0,75	2-5-3
2 f	LJ 546 444	100	26	0,55	3-5-1
3f	LJ 537 459	100	15	0,75	5-2-3
4	LĴ 529 470	100	22	0,75	5-2-3
5£	LJ 518 485	100	20	0,40	5-3-2
6	LJ 533 408	100	18	0,50	5-2-3
7	LJ 540 416	100	20	1,0	3-5-1
8	LJ 542 444	100	25	0,50	3-5-1
9£	LJ 515 490	100	25	0,50	3-5-2
10f	ĹJ 541 457	100	25	0,60	3-2
11	LJ 509 499	100	22	0,50	3-5-2
12	LJ 502 513	100	15	0,65	5-3-2
13	LJ 498 533	100	15	0,80	3-1-5
14	LJ 527 475	100	25	0,50	3÷1-5
15	LJ 467 567	100	15	0,50	5-3-1
16	LJ 476 559	100	15	0,50	3-5-1

Granulométrie: bloc (1), gravier (2), galet (3), sable (4), cailloux (5), silt (6), roche-mère (7).

f: Stations fermées

Tableau 6. Description statistique de la longueur et de la masse des saumons juvéniles prélevés dans le réseau hydrographique de la rivière Port-Daniel, 1988.

		Longue	eur maxima	ale (mm)		Masse (g)					
Age	n	х	min	max	Õn	n	х	min	max	Õn	
0+	73	41,7	32	54	4,97	73	0,9	1,1	1,7	0,3	
1+	67	81,3	63	97	7,00	67	5,3	2,1	8,3	1,37	
2+	32	111,5	98	132	10,3	32	13,6	8	23,4	4,0	
TOTAL	172	70,1	32	132	-	172	2,5	1,1	23,4	-	

n: Nombre de spécimens

On: Écart-type

ū

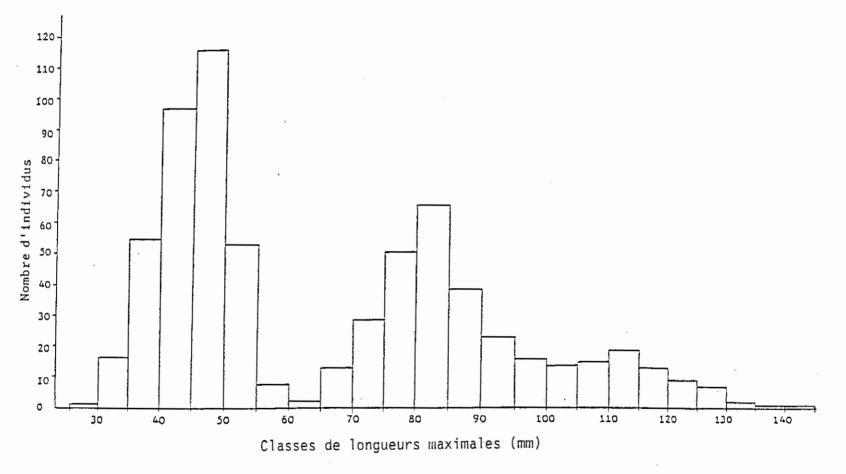


Figure 4. Histogramme de la fréquence des longueurs maximales des saumons juvéniles capturés lors des inventaires, rivière Port-Daniel, 1988.

stations fermées (tableau 7) a été effectuée à l'aide de la méthode de Zippin (1958) (annexes 3 et 4).

Le taux de capture des saumons juvéniles estime lors du premier effort de pêche effectué dans les stations fermées fut 26,2% pour les tacons 0+, de 48,3% et 48,5% pour les tacons 1+ et 2+.

Dans le cas des stations ouvertes, l'estimation des populations de juvéniles a été faite en utilisant le taux de capture des tacons estimé après le premier effort de pêche des stations fermées (tableau 7).

Les densités relatives des populations de saumons juvéniles par station sont présentées au tableau 8. L'estimation des populations de saumons juvéniles effectuée dans les stations fermées et ouvertes est donnée au tableau 9.

-

Tableau 7. Nombre de saumons juvéniles capturés en station fermée lors du premier effort de pêche à l'électricité et estimation de leur nombre par la méthode Zippin, rivière Port-Daniel, 1988.

Station		0÷			Classes d'âge 1+			2+		
	C1	No	%	C1	No	%	C1	No	2	
1	22	45,9	47,9	11	15,1	72,8	5	8,1	61,7	
2	7	23,5	29,8	21	54,1	38,8	4	7,1	56,3	
3	7.	*	*	1.5	26,7	55,2	4	6,3	63,5	
5	42	211,9	19,8	5	12,0	41,7	1	2,1	47,6	
9	12	48,9	24,5	15	29,6	50,7	7	19,7	35,5	
10	7	13,3	53,6	10	21,9	45,6	1	*	×	
	90	343,5	26,2	77	159,4	48,3	21	43,3	48,	

C1: Nombre de saumons juvéniles capturés durant le premier effort de pêche.

No: Estimation de la population selon la méthode Zippin.

^{*:} Données éliminées, intervalle de confiance à 95% trop élevée.

^{%:} Taux de capture des juvéniles lors du premier effort de pêche.

Tableau 8. Densité relative des populations de saumons juvéniles par $100~\text{m}^2$, rivière Port-Daniel, 1988.

Stations fermées

Classes d'âge							
0+	1+	2+	Total				
43	15	2	60				
19	48	7	74				
17	25.	6	48				
138	10	2	150				
35	27	16	78				
12	20	3	35				
44,0	24,2	6	74,2				
	0+ 43 19 17 138 35 12	0+ 1+ 43 15 19 48 17 25 138 10 35 27 12 20	0+ 1+ 2+ 43 15 2 19 48 7 17 25 6 138 10 2 35 27 16 12 20 3				

Stations ouvertes

	Class	ge		
Station	0+	1+	2+	Total
4	13	24	4	41
6	11	4	1	16
7	0	12	0	12
8	6	11	0	17
11	27	8	7	42
12.	0	11	7	18
13	0	0	8	8
14	26	25	8	59
15	0	0	0	0
16	0	0	0	0
Moyenne	8,3	9,5	3,5	21,3

Tableau 9. Estimation des populations de saumons juvéniles par $100~\text{m}^2$, rivière Port-Daniel, 1988.

Station		Classes d'âge 0+ 1+ 2+					
Station	· · · · · · · · · · · · · · · · · · ·] T	<u> </u>	Total			
1f	45,9	15,1	8,1	69,1			
2f	23,5	54,1	7,1	84,7			
3f	*	26,7	6,3	N.D.			
4	49,6	49,7	8,2	107,5			
5£	211,9	12,0	2,1	226,0			
6	42,0	8,3	2,1	52,4			
7	0	24,8	0	24,8			
8	22,9	22,8	0	45,7			
9£	48,9	29,6	19,7	98,2			
10f	13,3	21,9	*	N.D.			
11(1)	103,0	16,6	14,4	134			
12(1)	0	22,8	14,4	37,2			
13(1)	0	0	16,5	16,0			
14	99,2	52,0	16,5	167,7			
15 (1)	0	0	0	0			
16 (1)	0	0	0	0			
Moyenne	44,0	22,3	7,7	74,0			

f: Station fermée

^{*:} Données éliminées, intervalle de confiance à 95%, trop élevé.

N.D.: Non déterminé.

^{(1):} Station en amont des chutes.

4. LES REPRODUCTEURS

4.1 Origine

Les saumons adultes déversés dans la rivière Port-Daniel en 1988, proviennent de 41 reproducteurs indigènes capturés en 1983 dans la rivière Dartmouth, 26 dans la rivière Saint-Jean, 13 dans la rivière York et d'un croisement entre un nombre indéterminé de mâles de la rivière Dartmouth et de femelles reconditionnées de la rivière Bonaventure.

Le nombre de saumoneaux 2+ de chacun de ces lots utilisés pour produire les adultes déversés sont indiqués au tableau 10. Au printemps 1986 ces 40 000 saumoneaux 2+ ont été transférés dans des cages en mer et opérées à Carleton par la compagnie Baie-des-Chaleurs Aquaculture inc., la salinité était d'environ 25%.

A l'automne 1986, les poissons ont été transportés dans des bassins d'élevage sur terre pour la période hivernale et ont été retournés dans des cages en mer le printemps suivant.

A l'automne 1987, les saumons ont été de nouveau transférés dans des bassins d'élevage sur terre et ils y sont demeurés jusqu'à l'automne 1988, la salinité variait de 17%, à 18%.

A cette période, la compagnie Baie-des-Chaleurs Aquaculture inc. possédait 593 saumons adultes dont 188 (122 femelles et 66 mâles) poissons étaient du même lot que ceux déversés dans la rivière Port-Daniel en 1987 (G-Saint-Jean-83) et 405 poissons originant des différents lots mentionnés précédemment.

Malheureusement, aucune différenciation des deux groupes de poissons n'a été faite rendant impossible la sélection des reproducteurs désirés. Afin de palier en partie à cette situation, la sélection des 250

Tableau 10. Origine et nombre de juvéniles utilisés pour produire les 250 Saumons atlantique déversés dans la rivière Port-Daniel en 1988.

Lot	Ligne	Nbr de uti	Stade	
G-Dartmouth-84	F1	26	910	S2+
G-Saint-Jean-84	F1	10	563	\$2+
G-York-84	F1	, 1	489	S2+
G-Dartmouth X Bonaventure-84	Fi	1	038	\$2+
TOTAL		40	000	

individus destinés à être déversée dans la rivière Port-Daniel fut faite en fonction de la longueur à la fourche qui ne devait pas dépasser 87 cm. Il fut déterminé lors d'un pré-échantillonnage qu'il existait deux cohortes au niveau de l'ensemble des individus et que ceux recherchés possédaient une longueur inférieure à 87 cm.

4.2 <u>Description biologique</u>

Il s'est avéré à nouveau très difficile de déterminer en 1988 le sexe et le degré de maturité des poissons selon la méthode de Kesteven (annexe 6) au moment du marquage (13-14 septembre). Nous présentons au tableau 11 et à l'annexe 7 l'ensemble des caractéristiques biologiques des individus déversés dans la rivière Port-Daniel ainsi que les données récoltées sur des femelles mâtures qui ont été utilisées pour fins de reproduction par Baie-des-Chaleurs Aquaculture inc. entre le 2 et le 9 novembre 1988.

Nous observons une différence très significative (P>0.01) de la masse et de la longueur à la fourche entre ces deux groupes de poissons. Nous pouvons expliquer cette différence par les faits suivants:

- les poissons conservés par Baie-des-Chaleurs aquaculture ont continué de recevoir une alimentation quotidienne pour plus d'un mois ce qui ne fut pas le cas de ceux déversés dans la rivière Port-Daniel;
- les saumons déversés dans la rivière Port-Daniel et ceux frayés par Baie-des-Chaleurs Aquaculture n'ont pas été capturés au hasard mais sélectionnés selon des critères bien précis. Les saumons déversés devaient mesurer moins de 87 cm de longueur à la fourche, et ceux de B.C.A. devaient être mature.

4.3 Marquage et vaccination

Le 13 et 14 septembre, un semaine avant le déversement, les

Tableau 11. Descriptions biologiques des reproducteurs déversés dans la rivière Port-Daniel et des femelles mâtures concervés par Baie-des-Chaleurs Aquaculture inc. en 1988.

	N	LF	õ	М	ő	K	ő	DO	õ	N	F	õ
Port-Daniel	250	79,5	3,1	6,2	0,6	1,24	0,12					
Baie-des-Chaleurs Aquaculture	34	84,3 (*)	4,4	7,6 (*)	1,3	1,27	0,11	5,9	0,3	32	1560	228

N : Taille de l'échantillon.

LF: Longueur moyenne à la fourche (cm).

M : Masse moyenne (kg).

K : Coefficient de condition.

F : Fertilité moyenne (nombre d'oeufs/kg).

DO: Diamètre moyen des oeufs.

Õ : Écart-type.

^{* :} Différence très significative (0,01) entre les deux moyennes.

reproducteurs sélectionnés furent anesthésiés avec du MS-222, marqués avec une étiquette de type lacet de couleur jaune.

Lors de l'opération de marquage nous avons effectué une injection d'acide oxolinique et de sérum hyperimmun. Chaque individu fut mesuré (longueur à la fourche) et pesé. Nous avons également tenté d'établir le sexe à l'aide des caractères morphométriques. Les données concernant le marquage des saumons sont présentées à l'annexe 5. Il est à noter que ces saumons avaient été traités à deux reprises avec de l'acide oxolinique dont le dernier a été donné le 3 août.

4.4 Transport

Le transport des saumons adultes a été fait avec un camion citerne de la compagnie Baie-des-Chaleurs Aquaculture inc. Deux voyages ont été effectués chacun constitué d'environ 125 saumons.

4.5. Déversement

Les reproducteurs ont été déversés près d'un pont à 8,6 km en amont de l'embouchure de la rivière Port-Daniel les 21 et 24 septembre (figure 2).

4.6 Barrière d'arrêt

Contrairement à 1987, aucune barrière d'arrêt n'a été installée en aval du lieu de déversement.

5. INVENTAIRES DES REPRODUCTEURS

Deux inventaires complets et un partiel des reproducteurs ont permis de compter le nombre de saumons présents en rivière à différentes périodes et de détecter le déplacement des saumons d'aquaculture (tableau 12).

L'inventaire effectué le 7 octobre de l'embouchure du ruisseau Ravin vert à l'estuaire (annexe 8), révèle que quatre saumons marqués ont été aperçus à environ 2,4, 2,8 et 4,0 km en amont du lieu de déversement. De plus, on a observé 21 saumons d'élevage en aval du point de déversement. Dix-sept de ces individus se trouvaient à 0,2 km, puis un aux distances suivantes 1,6, 5,1 et 8,0 km. Des 250 saumons d'élevage déversés, 31 sont manquant lors de cet inventaire. Aucun saumon issu de l'aquaculture n'a été retrouvé en amont de la chute située près de la fosse "Petite fourche".

L'inventaire effectué de l'embouchure du ruisseau Ravin vert à l'estuaire le 18 octobre (annexe 9), signale 16 saumons en amont du point de déversement. Douze individus ont remonté le cours d'eau jusqu'aux chutes (distance de 5,6 km), les quatres autres sont répartis à 2,0 , 2,4 et 5,2 km du point de déversement. Vingt-cinq saumons d'aquaculture ont descendu le cours d'eau, de ce nombre 22 poissons marqués ont été vus à 0,2 km du lieu de déversement et les autres aux distances suivantes 0,4 , 1,6 et 5,2 km. Seulement 145 saumons marqués sur la possibilité de 250 furent aperçus lors de ce dénombrement.

Considérant que les saumons d'aquaculture n'ont pas encore été observés en amont des chutes ni lors des inventaires de 1987 et de ceux de cette année, l'inventaire du 10 novembre s'est déroulé à partir des chutes jusqu'à l'estuaire. De ce point de départ jusqu'au lieu de déversement 15 saumons d'élevage furent notés et 19 poissons marqués de cet emplacement jusqu'à l'estuaire. En tout 49 saumons d'aquaculture sur 250 furent retrouvés et comptés lors de cet inventaire.

Tableau 12. Inventaire des reproducteurs effectué sur la riviere Port-Daniel en 1988 compile par périodes, secteurs et origines des saumons.

Période d'inventaire	AVAL (Petite fourche à estuaire)					AMONT (Ravin vert aux Chutes)				TOTAL (Aval et amont)			
	BCA			SAUVAGE		BCA	5	SAUVAGE	:	BCA	SAUVAGE		
	Grand saumon	Mad.	Réd.	Total		Grand saumon	Mad.	Mad. Red. Total		Grand saumon	Mad.	Réd.	Tota
octobre	219	36	94	130		-	7	53	60	219	43	147	190
8 octobre	145	31	76	107		-	-1	38	39	145	32	114	146
10 novembre	49	20	49	69		<u></u>	_	-	-	49	20	49	69

Mad. = Madeleineau: saumon qui revient en rivière pour frayer la première fois, après avoir passé un seul hiver en mer.

Réd. = Rédibermarin: saumon qui a passé plus d'un hiver en mer. Ce terme englobe tous les grands saumons et exclut les madeleineaux.

BCA = Provenance Baie-des-Chaleurs Aquaculture.

25

6. COMPORTEMENT ET DÉPLACEMENTS DES REPRODUCTEURS

Du premier déversement (21 septembre) jusqu'au 18 novembre, divers intervenants ont observé de façon ponctuelle le comportement et les déplacements des saumons d'aquaculture.

Ces observations étaient effectuées des rives de la rivière, en canot ou en plongée subaquatique, l'apposition d'une étiquette spaghetti jaune de type lacet sur les saumons d'aquaculture permettait de différencier facilement ces derniers des saumons indigènes.

Les premières observations de déplacement vers l'amont furent notées 10 jours après le dernier déversement, soit le 04 octobre. Le sept octobre lors du premier inventaire, 21 saumons ont été observés en aval du lieu de déversement dont deux à moins de trois km de l'estuaire.

On observa le trois et le 12 octobre que certains saumons d'aquaculture étaient déjà groupés en couple mais aucune autre activité reliée à la fraye n'a été observée.

Le 18 octobre, 16 saumons ont été vus en amont du site de déversement. Parmi ces derniers, douze d'entre eux remontèrent 5,4 km de rivière jusqu'aux chutes situées en aval de l'embouchure du ruisseau Grande Fourche. Cet obstacle apparaît infranchissable pour les saumons d'aquaculture. Ceci semble être dû à ce que les saumons d'aquaculture ont un coefficient de condition plus élevé et la nageoire caudale proportionnellement plus petite que les saumons indigènes, d'où une capacité natatoire plus faible (Legault 1989).

Le premier novembre, il y avait la présence d'un saumon d'aquaculture en arrière de l'hôtel "Vive la Canadienne" à Port-Daniel. Cet individu tournait en rond ayant un comportement semblable aux saumons élevés en station piscicole.

Cette même journée, il y avait quatre à cinq saumons d'aquaculture qui furent observés en arrière de la quincaillerie Unitotal à Port-Daniel.

Au cours des trois inventaires réalisés (tableau 12), le nombre manquant de saumons d'aquaculture ne cesse d'augmenter à mesure que le temps s'écoule. En effet, deux semaines après le dernier déversement 31 saumons manquaient lors de l'inventaire complet de la rivière, puis ce nombre passe à 105 saumons 11 jours plus tard. Finalement, 201 saumons sont portés disparus six semaines après le déversement. Plusieurs raisons ou facteurs peuvent expliquer la perte d'un certain pourcentage de saumons d'aquaculture:

- la prédation;
- le braconnage;
- la perte d'étiquette permettant de les différencier sans équivoque des saumons sauvages;
- la montaison en amont des chutes avec les crues d'automne;
- la non visibilité des saumons lors des inventaires;
- la dévalaison vers la mer.

Les trois premiers facteurs bien que non mesurable produisent avec le temps une diminution dans le nombre de saumons. Cependant, compte tenu des observations notées, la dernière raison énumérée ci-haut semble être le facteur principal responsable des diminutions ininterrompues du nombre de saumons d'aquaculture.

Aucune barrière de rétention fut installée en aval du site de déversement en 1988 pour prévenir ou contrer la dévalaison des saumons d'aquaculture. Ce qui explique l'observation de plusieurs saumons d'aquaculture dans plus d'une fosse en aval du point de déversement et même de quelques individus en estuaire. A la lumière de ces détails, il est plausible de croire qu'il s'est produit une dévalaison d'une grande partie des saumons d'aquaculture ce qui expliquerait le faible nombre de saumon d'aquaculture (49/250) retrouvé sur les lieux de fraye

le 10 novembre.

Deux faits sont à considérer pour expliquer ce comportement mais il devient difficile d'en prouver entièrement une ou l'autre:

- a) le homing: les saumons déversés sont nés et ont grandi dans les infrastructures de la compagnie Baie-des-Chaleurs Aquaculture. Ils ont donc été imprégnés avec les composantes physico-chimiques des eaux alimentant les bassins situés à Saint-Omer et tenteraient peut-être d'y retourner;
- b) le manque de maturité sexuelle des saumons: il fut difficile de sexer et encore plus d'évaluer le degré de maturité sexuelle de saumons déversés. Les données biologiques prélevées sur ces saumons (annexe 5) signalent que seulement 22 femelles et 27 mâles furent classés comme matures, 12 femelles et 12 mâles furent déclarés immatures, 176 poissons demeurant ont été catégorisés comme ayant un stade de maturité sexuel indéterminé et un individu de sexe inconnu est mature.

Ainsi des 250 saumons déversés seulement 50 démontraient des signes évidents de maturité sexuel en septembre. Ce nombre (49) correspond à celui observé lors du dernier dénombrement. Cette période d'inventaire est quelque peu tardive (de 3 à 9 jours) comparée à la période de fraye observée chez Baie-des-Chaleurs Aquaculture qui utilisait des poissons du même lot. Nous pouvons donc présupposer, que certaines femelles plus hâtives déversées en nature auraient pu frayer avant le dernier inventaire et dévaler la rivière jusqu'à la mer. Baglinière et al (1990) ont étudié le comportement post-fraye, il semble qu'il se produit une migration des femelles vers l'aval après la fraye. La dévalaison est immédiate pour les madeleineaux et quelques jours pour les saumons dibermarins. Mais pour ces deux groupes la migration vers l'aval est seulement sur une distance de un à trois kilomètre, puis les femelles séjournent dans le cours

d'eau d'une façon plus ou moins stationnaire pour plus de dix jours. Ce comportement post-fraye indique donc, que les femelles ayant frayées avant le dernier inventaire séjournaient théoriquement dans le cours et n'ont pu se soustraire au dernier décompte. Cela nous emmène à croire que le nombre de saumons d'aquaculture ayant participé à la fraye doit se rapprocher du nombre inventorié le 10 novembre soit au environ de 50 poissons.

7. REPRODUCTION

Il nous a été impossible de savoir si les saumons d'aquaculture déversés se sont reproduits à l'automne. Cependant, nous avons observé, à partir du 03 octobre, qu'un petit nombre se tenaient par couple et que quelques femelles creusaient partiellement des nids sans toutefois y déposer leurs oeufs.

La fertilité des femelles issues d'aquaculture et déversées dans le cours ne peut être déterminée en utilisant les données recueillies sur les femelles frayées par Baie-des-Chaleurs Aquaculture inc. (tableau 11 et annexe 6) même si elles semblent provenir du même lot pour les raisons énumérées au point 4.2. Sous toute réserve dans le but théorique d'avoir un ordre de grandeur du nombre d'oeufs déposés par les femelles issues d'aquaculture, pour pouvoir prédire les retours des adultes, nous utiliserons les données fournies par B.C.A.. Le nombre d'oeufs par kilogramme a été estimé à 1 560 pour un poids moyen des femelles de 6,2 kg.

Le sexe ratio des reproducteurs (femelles versus mâles) déversés en 1988 est estimé à 61:39 (annexe 5), si ces femelles donnent en moyenne 1 560 oeufs (tableau 11) et si l'on transpose ces informations avec les 49 reproducteurs présents en novembre, on estime la déposition d'oeufs à 284 357 oeufs. Par contre, si l'on utilise le nombre de femelles identifiées comme mature en septembre, nous obtenons une déposition de 251 472 oeufs. On pourrait donc affirmer qu'il y a eu entre 251 000 à 285 000 oeufs déposés par les saumons d'aquaculture.

Il fut recensé durant l'automne un maximum de 190 saumons indigènes, 43 madeleineaux et 147 adultes. Ils ont un poids moyen respectif évalué à 1,62 et à 4,48 kg et produisant 2 430 et 1 535 oeufs/kg, le tout donnant environ 615 000 oeufs déposés en rivière. Le total des oeufs déposés en 1988 par les saumons d'élevage (moyenne de 267 914) et indigène (615 000) donne environ 882 900 oeufs. Ce nombre devrait

donner à priori un retour de 618 adultes en utilisant la valeur de 0,07% du taux de survie de l'oeuf du saumon adulte.

Compte tenu de la difficulté de sexer et d'évaluer le niveau de maturité sexuelle des poissons d'aquaculture, l'utilisation d'un appareil d'écographie quelques mois avant la fraye permettrait de sélectionner les reproducteurs et maximiser la déposition d'oeufs en rivière. Scott et al (1989) ont testé les possibilités de cette méthode avec le hareng du Pacifique (Clupea harengus pallasi) puis Elazhary et Turgeon (1990) sur le Saumon atlantique (Salmo salar). Dans les deux cas, la technique d'échographie a permis de déterminer avec succès le sexe et le taux de maturité sexuelle des poissons.

REMERCIEMENTS

La réalisation des nombreuses activités dans le cadre de ce projet a été rendue possible grâce à la collaboration de plusieurs personnes.

Monsieur Anthony Assels, biologiste; mesdames Genevière Caron et Sylvie Girard et messieurs Alain Lehoux et André Dupuis, techniciens de la faune de la Zac de la Gaspésie. Monsieur Donald Ladouceur, technicien de la faune du projet de recherche de la rivière Saint-Jean. Monsieur Lawrence Metallic et madame Pamella Isaac du projet de recherche de la rivière Ristigouche. Nous les en remercions.

Nous remercions la compagnie Baie-des-Chaleurs Aquaculture inc. pour leur collaboration lors du marquage et du transport des reproducteurs.

Nous avons apprécié les commentaires judicieux de monsieur Jean-Pierre leBel lors de la rédaction du document.

La dactylographie du texte a été effectuée par mesdames Lise Blouin et Gaétanne Chouinard, nous les en remercions.

LISTE DES RÉFÉRENCES

- BAGLINIERE, J.L., G. MAISSE and A. NIHOUARN. 1990. Migratory and reproductive behaviour of female adult Atlantic salmon, <u>Salmo salar</u>., in a spawning stream. J. Fish. Biol. 36, 511-520.
- BOUDREAULT, A. 1984. Méthodologie utilisée pour la photointerprétation des rivières à saumon de la Côte-Nord. Mandat réalisé par Gilles Shooner inc. pour le ministère du Loisir, de la Chasse et de la Pêche. 26 p.
- COTÉ, Y., D. CLAVET, J.M. DUBOIS et A. BOUDREAULT. 1987. Inventaire des habitats à saumon et estimation de production par photographie aérienne. <u>In</u> M. Thibault et R. Billard, éd. Restauration des rivières à saumons. INRA. Paris. 10 p.
- ELAZHARY Y. et Y. TURGEON. 1990. Evaluation de la technique d'échographie pour déterminer la maturité sexuelle du Saumon atlantique (Salmo salar). Québec. 22 p.
- KESTEVEN, G.L. 1960. Manuel of field methods in fisheries biology. FOA Man Fish. Sci. No. 1, 152 p.
- LEGAULT, M. 1989. Projet de mise en valeur du Saumon atlantique rivière Port-Daniel, Bilan des travaux de 1987. Ministère du Loisir, de la Chasse et de la Pêche. Direction régionale du Bas-Saint-Laurent/Gaspésie/Ile de la Madeleine. Service de l'aménagement et de l'exploitation de la faune, Gaspé. 94 p.
- LEGAULT, M. et L.M. Lalancette. 1985. Temps d'ajustement de la flottabilité des Saumons atlantiques (<u>Salmo salar</u>) d'élevage et flottabilité comparée de Saumons atlantiques d'élevage et sauvages. Can. J. Fish. Aquat. Sci. 42: 619-623.
- POMERLEAU, C., Y. Côté et J.-G. Migneault. 1979. Répertoire des données relatives aux populations de Saumon atlantique des rivières du Bas St-Laurent et de la Gaspésie. Ministère du Loisir, de la Chasse et de la Pêche, Direction de la recherche faunique, Québec. 18 p.

- SCOTT, A. BONAR, G.L. THOMAS, GILBERT B. PAULEY and ROY. W. MARTIN. 1989. Use of ultrasonic images for rapid nonlethal determination of sex and maturity of pacific herring. North American Journal of fisheries Management 9: 364-3666.
- ZIPPIN, C. 1958. The removal method of population. Journ. of Wildl. Man., 22 (1): 82-90.

ANNEXES 1 A 10

ANNEXE 1

L'INVENTAIRE DES TACONS CAPTURÉS LORS DE L'INVENTAIRE DES SAUMONS JUVÉNILES, RIVIERE PORT-DANIEL, 1988

Date	Station]	Longue	ur m	axima	le (m	m)	-	
08-16	6	120, 48,	57, 45,	76, 46,	82, 50,	78, 47,	89, 46	50,	54,	54,	50,
00 16	7			•		*		0.0	0.0	00	0.4
08-16	7	84, 83,	86, 88	99,	83,	87,	98,	82,	82,	90,	81,
08-16	8	88,	79,	66,	79,	78,	76,	79,	72,	78,	68,
		45,	79,	48,	52,	51,	47,	46			
08-17	5	37,	43,		44,	48,			46,		41,
		42,	73,	79,	45,	80,		49,	43,	44,	44,
		48,	70,	40,	44,	47,		45,	34,	35,	35,
		37,	37,	43,	45,	37,	36,	36,	38,	34,	50,
		38,	43,	46,	37,	38,	35,	40,	33,	35,	34,
		34,	42,	41,	40,	42,	39,	46,	30,	46,	38,
		38,	47,	39,	41,	91,	45,	36,	47,	40,	36,
		36,	37,	41,	43,	46,	45,	107,	71,	42,	46,
		47,	35,	39,	43,	39,	49,	44,	36,	33,	47,
		37,	38,	36,	37,	37,	40,	42,	33,	37,	41,
		44,	40,	43,	44,	32,	43,	29,	34,	32,	38,
		36,	74,	68,	43,	45,	47,	36,	42,	48,	37,
		41,	33,	38,	40,	42,	40,	37,	34,	38,	32,
		35,	38,	32,	32,	46,	42,	47,	81,	35,	36,
		46,	36,	41,	41,	41,	49,	43,	33,	48,	40
08-17	9	121,	113,	106,	117,		104,	87,	97,	107,	
		112,	85,	77,	76,	83,	83,	75,	79,	82,	84,
		80,	77,	47,	40,	45,	46,	43,	48,		46,
		43,	41,	46,	42,	79,	105,		106,	112,	72,
		89,	73,	65,	50,	47,	47,	39,	45,	38.,	43,
		45,	43,	45,	42,	43,	37,	91,	110,	115,	120,
		70,	95,	108,	107,	82,	80,	43,	48,	45,	41,
		121,	84,	45,	47,	42,	46,	37,	50		
08-18	3	-	-	102,	78,	83,	112,	75,			90,
			82,		,	73,	•	83,	73,		71,
		-	44,	43,	47,	44,			98,	76,	103,
		-	76,	50,	54,	86,	79,	-	75,	46,	48,
		46,	114,	74,	78,	49,	47,	42,	52		

Date	Station				Longu	eur m	axima	le (m	m)		· · · · · · · · · · · · · · · · ·
08-18	10	102,	54,	90,	86,	80,	77,	86,	80,	88,	79,
		85,	74,	52,						-	
		75,	73,	72,		105,	123,	83,	83,	85,	86,
		54,	51,	54,	50,	75					
08-19	2	116,			129,	106,	91,	79,	96,	84,	84,
		93,		85,	,		78,		90,	78,	83,
		82,	72,		,		71,		49,	45,	44,
		43,	42,		131,	111,	93,	84,	80,	80,	80,
		78,	101,		74,	84,	86,	85,	77,	82,	69,
		48,	49,	41,	53,	42,	39,	40,	88,	82,	82,
		79,	83,	84,	83,	82,	71,	75,	50,	45,	44
		95,	84,	43,	47				•	·	ŕ
08-19	11	96,	101,	111,	91,	102,	94,	104,	39,	110,	108.
		50,	84,	48,	85,	44,		89,			
		88,				38,		46,			42,
		49,	50,			43.		49			-
		47,	41	•	•	,	,	,	,		, ,
08-22	12	111,	99.	90.	125,	89.	103.	107.	129.	114.	94.
					117,					,	, . ,
08-23	1	101,	116,	92.	119,	114,	117.	80.	83,	89,	85,
		80,	92,	77,					41,		50,
		53,	52,	46,		50,	55,	56,	49,		41,
		45,	50,	42,		48,	49,	50,	-	116,	51,
		56,	48,		117,	42,	46,	82,	42,		85,
		110,	55,	42,	95,	51,	43,	42,	45,		51,
			48,	81,	-	49,	48	.2,	,,,	30,	J 1 4
08-23	13	140,	117,	134,	117,	128,	124,	128,	128		
08-23	14	83,	80,	95,	117,	90,	110,	51.	124.	81.	113,
			113,			109,		106,			
		52,	53,	-				87,			
		78,	-	82,		50 ,			80,	-	68,
		-	45,		-	45,	-	40,		-	
			41,		-	-	-	39,	-	-	- · •
08-24	15										
08-24	16			*				 -			-

Date	Station	Longueur maximale (mm)										
08-25	4	113, 84,	112, 92,	78, 91,	49, 75,	35, 71,	99, 79,	61, 44,	74, 71,	80, 108, 69, 37,	66, 68,	

ANNEXE 2

MESURES MORPHOMÉTRIQUES ET LECTURE D'AGE
DES TACONS ÉCHANTILLONNÉS,
RIVIERE PORT-DANIEL, 1988

Date	Station	Longueur Fourche	(mm) Totale	Masse (g)	Coefficient de condition	Sexe ^l Maturité ^l	Age
08-16	6	106	117	14.2	0.89	3	2+
		44	47	0.9	0.69	ND	0+
		45	48	1.1	0.99	ND	0+
		69	75	4.0	0.95	1	1+
		45	48	1.1	0.99	ND	0+
		50	54	1.7	1.08	ND	0+
		68	74	3.9	0.96	3	1+
		79	87	5.7	0.87	1	1+
		73	79	4.8	0.97	2	1+
		42	45	1.0	1.10	ND	0+
		42	45	1.0	1.10	ND	0+
		46	49	1.2	1.02	ND	0+
		45	48	1.1	0.99	ND	0+
		48	52	1.6	1.14	ND	0+
		41	44	0.9	1.06	ND	0+
		42	44	1.0	1.17	ND	0+
		T-2	4.4	1.0	1.17	ND	ŰΨ
08-16	7	73	80	5.0	0.98	3	1+
		75	81	5.4	1.02	2	1+
		72	78	4.8	1.01	3	1+
		87	95	7.2	0.84	3	1+
		76	84	5.7	0.96	3	1+
		71	79	4.7	0.95	3	1+
		76	84	5.5	0.93	3	1+
		80	87	6.1	0.93	3	1+
		70	77	4.2	0.92	1	1+
		75	81	5.5	1.03	1	1+
		72	78	5.1	1.07	3	1+
•		86	95	8.2	0.96	3	1+
08-16	8	42	45	0.8	0.88	ND	0+
00 ,0	Ŭ	43	46	1.1	1.13	ND	0+
		44	47	1.1	1.06	ND	0+
		46	49	1.3	1.10	ND	0+
		43	47	1.0	0.96	ND ND	0+
		71	76	4.0	0.91	3	1+
		66	70 72	3.5			
		70	76	4.4	0.94	1	1+
					1.00	2	1+
		70 70	76	4.1	0.93	1	1+
			76	4.5	1.03	2	1+
		46	49 65	1.1	0.93	ND	0+
		62	65	2.1	0.76	1	1+
		59	63	2.1	0.84	1	1+
		76	84	4.8	0.81	3	1+
		67 71	73 76	3.1 4.6	0.80 1.05	3 2	1+ 1+

Date	Station	Longueur Fourche	(mm) Totale	Masse (g)	Coefficient de condition	Sexe ¹ Maturité ¹	Age
		71	76	3.8	0.87	2	1+
08-17	5	66	71	3.7	1.03	2	1+
		38	4.1	0.6	0.87	ND	0+
		33	35	0.4	0.93	ND	0+
		42	45	1.0	1.10	ND	0+
		39	42	0.7	0.94	ND	0+
		.33	34	0.4	1.02	ND	0+
		41	43	1.0	1.26	ND	0+
		33	36	0.5	1.07	ND	0+
		32	34	0.4	1.02	ND	0+
		31	32	0.4	1.22	ND	0+
		38	41	0.7		ND	0+
		36	38	0.5	0.91	ŇD	0+
		34	35	0.4	0.93	ND	0+
		41	43	0.8	1.00	ND	0+
		39	42	0.7	0.94	ND	0+
		33	34	0.4	1.02	ND	0+
		39	41	0.7	1.02	ND	0+
		35	38	0.5	0.91	ND	0+
		38	41	0.8	1.16	ND	0+
		42	45	1.0	1.10	NĎ	0+
		33	34	0.4	1.02	ND	0+
		37	40	0.6	0.94	ND	0+
		40	42	0.8	1.08	ND	0+
		44	46	1.0	1.03	ND ND	0+
		34	36	0.4	0.86	ND	0+
		39	42				
		38		0.8	1.08	ND	0+
		36 35	41 37	0.7	1.02	ND	0+
		40	43	0.5	0.99	ND	0+
		32	45 35	1.0	1.26	ND	0+
		36		0.5	1.17	ND	0+
		44	38 47	0.5	0.91	ND	0+
		41	44	1.0	0.96	ND ND	0+
				0.9	1.06	ND	0+
		42 34	45 26	0.8	0.88	ND ND	0+
		34 43	36 46	0.4	0.86	ND	0+
		43 37	46	1.0	1.03	ND	0+
			39	0.5	0.84	ND	0+
		31	32	0.3	0.92	ND	0+
		33	35	0.5	1.17	ND	0+
		34	36	0.5	1.07	ND	0+
		39	42	0.8	1.08	ND	0+
		34	36	0.4	0.86	ND	0+

08-17 9 70 77 4.2 0.92 3 1.4 666 72 4.0 1.07 2 1.5 90 99 9.8 1.01 2 2.5 89 97 8.3 0.91 3 1.7 74 81 4.7 0.88 2 1.7 93 102 9.3 0.88 3 2.7 11 77 4.4 0.96 3 1.1 100 109 12.5 0.97 2 2.7 105 116 13.8 0.88 3 2.7 77 85 5.7 0.93 2 1.7 39 42 0.8 1.08 ND 0.6 35 37 0.6 1.18 ND 0.6 40 42 45 1.0 1.10 ND 0.6 40 42 0.6 0.81 ND 0.7 41 43 0.8 1.01 ND 0.7 45 48 1.1 0.99 ND 0.6 45 48 1.1 0.99 ND 0.6 46 38 0.7 1.28 ND 0.7 35 37 0.6 1.18 ND 0.7 40 42 0.6 0.81 ND 0.7 41 43 0.8 1.01 ND 0.7 45 48 1.1 0.99 ND 0.6 46 3.8 0.7 1.28 ND 0.7 35 37 0.6 1.18 ND 0.7 40 42 0.8 1.08 ND 0.7 41 43 0.8 1.16 ND 0.7 45 48 1.1 0.99 ND 0.7 46 1.18 ND 0.7 47 85 1.0 1.10 ND 0.7 48 1.10 0.99 ND 0.7 49 40 42 0.8 1.08 ND 0.7 40 43 0.8 1.01 ND 0.7 40 0.95 1 1.7 75 82 5.9 1.07 2 1.7 75 82 5.9 1.07 2 1.7 75 82 5.9 1.07 2 1.7 77 75 1 1.12 3 1.7 77 75 1 1.12 3 1.7	Date	Station	Longueur Fourche	(mm) Totale	Masse (g)	Coefficient de condition	Sexe ¹ Maturité ¹	Age
08-17 9 70 77 4.2 0.92 3 14 66 72 4.0 1.07 2 11 90 99 99 8.8 1.01 2 11 89 97 8.3 0.91 3 14 74 81 4.7 0.88 2 11 93 102 9.3 0.88 3 2 11 100 109 12.5 0.97 2 22 105 116 13.8 0.88 3 2 11 100 109 12.5 0.97 2 22 105 116 13.8 0.88 3 2 11 39 42 0.8 1.08 ND 00 42 45 1.0 1.10 ND 00 42 45 1.0 1.10 ND 00 44 42 0.6 0.81 ND 00 45 48 1.1 0.99 ND 00 35 37 0.6 1.18 ND 00 35 37 0.6 1.18 ND 00 35 37 0.6 1.18 ND 00 41 43 0.8 1.01 ND 00 45 48 1.1 0.99 ND 00 46 38 0.7 1.28 ND 00 39 41 0.8 1.16 ND 00 39 42 0.8 1.08 ND 00 35 37 0.6 1.18 ND 00 36 38 0.7 1.28 ND 00 37 41 0.8 1.16 ND 00 48 43 0.8 1.01 ND 00 49 43 0.8 1.01 ND 00 40 43 0.8 1.00 ND 00 40 43 0.8 ND 00 40 43 0		· 	41	44	0.8	0.95	ND	0+
66 72 4.0 1.07 2 1.99 99 99 9.8 1.01 2 2.19 89 97 8.3 0.91 3 1.10 2 2.19 89 97 8.3 0.91 3 1.10 1 2 2.19 89 97 8.3 0.91 3 1.10 1 2 2.19 89 97 8.3 0.91 3 1.10 1 2 2.19 89 102 9.3 0.88 2 1.10 1 100 109 912.5 0.97 2 2.10 105 116 13.8 0.88 3 2.11 100 109 12.5 0.97 2 2.10 105 116 13.8 0.88 3 2.11 100 109 12.5 0.97 2 1.10 105 116 13.8 0.88 13 2.10 1 100 109 12.5 1.10 1.10 10 100 100 100 100 100 100 10			36	38	0.6			0+
90 99 9.8 1.01 2 24 89 97 8.3 0.91 3 14 74 81 4.7 0.88 2 14 93 102 9.3 0.88 3 22 71 77 74 4.4 0.96 3 14 100 109 12.5 0.97 2 2- 105 116 13.8 0.88 3 22 77 85 5.7 0.93 2 14 39 42 0.8 1.08 ND 04 355 37 0.6 1.18 ND 04 40 42 0.6 0.81 ND 04 41 43 0.8 1.01 ND 04 44 43 0.8 1.01 ND 04 45 48 1.1 0.99 ND 04 35 37 0.6 1.18 ND 04 36 38 0.7 1.28 ND 06 37 0.6 1.18 ND 06 38 0.7 1.28 ND 06 39 41 0.8 1.16 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.08 ND 06 36 38 0.7 1.28 ND 06 37 0.6 0.81 3 0.91 38 40 0.6 0.94 ND 06 08-18 3 98 108 10.2 0.81 3 22 104 116 12.0 0.77 3 24 75 82 5.9 1.07 2 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 13 08-18 10 90 98 8.8 0.93 3 22 71 77 77 4.7 1.03 2 14 75 82 5.7 1.03 1 1.10 84 87 6.2 0.94 3 1.04 77 88 88 88 0.93 3 3 24 77 77 4.7 1.03 2 14 77 89 5.3 1.04 3 11 77 77 4.7 1.03 1 11 84 87 6.2 0.94 3 14 77 77 84 5.9 1.00 3 11 86 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14	08-17	9	70	77	4.2	0.92	3.	1+
89 97 8.3 0.91 3 14 774 81 4.7 0.88 2 11 93 102 9.3 0.88 3 27 11 77 4.4 0.96 3 1100 109 12.5 0.97 2 22 1105 116 13.8 0.88 3 24 39 42 0.8 1.08 ND 04 35 37 0.6 1.18 ND 04 42 45 1.0 1.10 ND 06 44 42 0.6 0.81 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 35 37 0.6 1.18 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 35 37 0.6 1.18 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 36 38 0.7 1.28 ND 06 37 0.6 1.18 ND 06 38 0.7 1.28 ND 06 39 41 0.8 1.16 ND 06 39 41 0.8 1.16 ND 06 39 41 0.8 1.10 ND 06 40 43 0.8 1.01 ND 06 40 43 0.8 1.00 ND 06 41 10 ND 06 42 0.8 1.08 ND 06 43 45 1.0 1.10 ND 06 40 43 0.8 1.01 ND 06 41 45 48 1.0 1.10 ND 06 42 0.8 1.08 ND 06 43 45 1.0 1.10 ND 06 45 48 1.00 1.10 ND 06 46 47 0.8 1.10 ND 06 47 1.10 ND 06 48 1.08 ND 07 49 1.10 ND 06 40 43 0.8 1.01 ND 06 40 4			66	72	4.0	1.07	2	1+
89 97 8.3 0.91 3 11 74 81 4.7 0.88 2 14 93 102 9.3 0.88 3 22 71 77 4.4 0.96 3 14 100 109 12.5 0.97 2 22 105 116 13.8 0.88 3 21 39 42 0.8 1.08 ND 00 35 37 0.6 1.18 ND 00 40 42 0.6 0.81 ND 00 41 43 0.8 1.01 ND 00 45 48 1.1 0.99 ND 00 35 37 0.6 1.18 ND 00 41 43 0.8 1.01 ND 00 45 48 1.1 0.99 ND 00 36 38 0.7 1.28 ND 00 37 39 41 0.8 1.16 ND 00 38 39 41 0.8 1.16 ND 00 39 41 0.8 1.10 ND 00 43 43 45 1.0 1.10 ND 00 43 43 45 1.0 1.10 ND 00 45 48 1.00 1.10 ND 00 46 43 0.8 1.01 ND 00 47 43 45 1.0 1.10 ND 00 48 40 43 0.8 1.01 ND 00 49 40 43 0.8 1.01 ND 00 40 43 0.8 1.01 ND 00 41 0.8 1.10 ND 00 42 0.8 1.08 ND 00 43 45 1.0 1.10 ND 00 46 47 0.8 1.10 ND 00 47 1.28 ND 00 48 1.08 ND 00 49 1.08 1.09 ND 00 40 43 0.8 1.01 ND 00 40 43 0.8 1.00 ND 00 40 45 0.8 ND 00 40			90	99	9.8	1.01	2	2+
74 81 4.7 0.88 2 11 93 102 9.3 0.88 3 22 1100 109 12.5 0.97 2 24 1105 116 13.8 0.88 3 24 77 85 5.7 0.93 2 11 39 42 0.8 1.08 ND 04 42 0.6 0.81 ND 04 44 43 0.8 1.01 ND 04 45 48 1.1 0.99 ND 04 45 48 1.1 0.99 ND 04 35 37 0.6 1.18 ND 04 41 43 0.8 1.01 ND 04 45 48 1.1 0.99 ND 06 36 38 0.7 1.28 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.08 ND 06 36 38 0.7 1.28 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.00 ND 06 39 40 0.8 1.00 ND 06 40 43 0.8 1.01 ND 06 43 45 1.0 1.10 ND 06 43 45 1.0 1.10 ND 06 45 46 1.18 ND 06 36 38 0.7 1.28 ND 06 37 1.28 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.00 ND 06 40 43 0.8 1.01 ND 06 41 16 12.0 0.77 3 22 68 75 4.0 0.94 ND 06 08-18 3 98 108 10.2 0.81 3 22 68 75 4.0 0.95 1 11 77 77 5.1 1.12 3 11 08-18 10 90 98 8.8 0.93 3 22 68 75 4.0 0.95 1 11 77 77 5.1 1.12 3 11 08-18 10 90 98 8.8 0.93 3 22 68 75 4.0 0.95 1 11 77 77 4.7 1.03 2 11 77 84 5.9 1.03 3 14 77 78 4.7 1.03 3 11 88 88 49 79 3.7 0.75 3 11 88 88 79 3.7 0.75 3 11 88 88 79 3.7 0.75 3 11 88 89 43 0.84 3 1.00 3 11 89 68 79 3.7 0.75 3 11 80 77 84 5.9 1.00 3 11 77 84 5.9 1.00 3 11 77 84 5.9 1.00 3 11			89	97	8.3	0.91		1+
93 102 9.3 0.88 3 25 71 77 4.4 0.96 3 14 100 109 12.5 0.97 2 2 105 116 13.8 0.88 3 25 77 85 5.7 0.93 2 14 39 42 0.8 1.08 ND 06 35 37 0.6 1.18 ND 06 42 45 1.0 1.10 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 35 37 0.6 1.18 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 35 37 0.6 1.18 ND 06 36 38 0.7 1.28 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.08 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.08 ND 06 39 42 0.8 1.00 ND 06 40 43 0.8 1.01 ND 06 40 43 0.8 1.01 ND 06 40 43 0.8 1.01 ND 06 41 16 12.0 0.77 3 26 68 75 4.0 0.95 1 16 72 78 4.9 1.03 3 11 74 80 5.3 1.04 3 16 84 87 6.2 0.94 3 16 86 79 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 86 879 3.7 0.75 3 11 87 84 5.9 1.00 3 3 12			74	81	4.7	0.88		1+
71			93	102	9.3		3 -	2+
100 109 12.5 0.97 2 24 105 116 13.8 0.88 3 24 77 85 5.7 0.93 2 14 39 42 0.8 1.08 ND 06 35 37 0.6 1.18 ND 06 40 42 0.6 0.81 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 35 37 0.6 1.18 ND 06 41 43 0.8 1.01 ND 06 45 48 1.1 0.99 ND 06 36 38 0.7 1.28 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.08 ND 06 39 41 0.8 1.16 ND 06 39 42 0.8 1.08 ND 06 39 42 0.8 1.08 ND 06 43 43 45 1.0 1.10 ND 06 40 43 0.8 1.01 ND 06 38 40 0.6 0.94 ND 06 08-18 3 98 108 10.2 0.81 3 26 08-18 3 98 108 10.2 0.81 3 26 08-18 10 90 98 8.8 0.93 3 14			71	7 7	4.4			1+
105						•		2+
77								2+
39 42 0.8 1.08 ND 04 42 45 1.0 1.10 ND 04 40 42 0.6 0.81 ND 04 41 43 0.8 1.01 ND 04 45 48 1.1 0.99 ND 04 35 37 0.6 1.18 ND 04 45 48 1.1 0.99 ND 04 35 37 0.6 1.18 ND 04 36 38 0.7 1.28 ND 04 39 41 0.8 1.16 ND 04 39 42 0.8 1.08 ND 04 43 45 1.0 1.10 ND 04 44 43 0.8 1.01 ND 04 39 42 0.8 1.08 ND 04 43 45 1.0 1.10 ND 04 40 43 0.8 1.01 ND 04 38 40 0.6 0.94 ND 04 08-18 3 98 108 10.2 0.81 3 24 75 82 5.9 1.07 2 14 92 101 8.0 0.77 3 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 7 1.03 2 14 72 77 4.7 1.03 2 14 73 84 5.9 1.04 3 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 77 7 4.7 1.03 3 14 78 84 87 6.2 0.94 3 14 79 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14								1+
08-18 3 98 108 10.2 0.81 3 24 104 116 12.0 0.77 3 24 104 116 12.0 0.77 3 24 104 116 12.0 0.78 2 24 108 77 77 4.7 1.03 3 14 14 1.09 9 10 9 10 9 10 9 10 9 10 9 10 9 10								
08-18 3 98 108 10.2 0.81 3 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 75 82 5.7 1.03 1 14 0.8								
08-18 3 98 108 10.2 0.81 3 24 68 75 4.0 0.95 1 14 68 75 4.0 0.95 1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 0.95 1.04 3 14 68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 784 4 5.9 1.00 3 14 77 784 5.9 1.00 3 14 77 784 4 5.9 1.00 3 14 77 784 5.9 1.00 3 14 784 5.9 1.00 3 14 784 5.9 1.00 3 14 784 5.9 1.00 3 14 784 5.9 1.00 3 14 784 5.9 1.00 14 784 5.9 1.00 14 784 5.00 14 784 5.00 14 784 5.00 14 784 5.00 14 784 5.0	-							
08-18						•		
45 48 1.1 0.99 ND 0.4 35 37 0.6 1.18 ND 0.4 36 38 0.7 1.28 ND 0.4 39 41 0.8 1.16 ND 0.4 39 42 0.8 1.08 ND 0.4 43 45 1.0 1.10 ND 0.4 40 43 0.8 1.01 ND 0.4 38 40 0.6 0.94 ND 0.6 08-18 3 98 108 10.2 0.81 3 2.4 75 82 5.9 1.07 2 1.7 72 78 4.9 1.03 3 1.7 71 77 5.1 1.12 3 1.4 08-18 10 90 98 8.8 0.93 3 2.4 74 80 5.3 1.04 3 1.4 75 82 5.7 1.03 1 1.7 84 87 6.2 0.94 3 1.4 72 77 4.7 1.03 2 1.7 84 87 6.2 0.94 3 1.7 84 87 6.2 0.94 3 1.7 85 88 80 4.3 0.84 3 1.7 86 80 4.3 0.84 3 1.7 87 84 5.9 1.00 3 1.7 86 80 4.3 0.84 3 1.7 87 84 5.9 1.00 3 1.7 87 84 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 88 5.9 1.00 3 1.7 89 5.9 1.00 3 1.7 80 5.3 1.00 3 1.7 80 68 80 4.3 0.84 3 1.7 80 5.9 1.00 3 1.7 80 5.9 1.00 3 1.7 80 5.9 1.00 3 1.7 80 5.9 1.00 3 1.7								
35 37 0.6 1.18 ND 04 36 38 0.7 1.28 ND 04 39 41 0.8 1.16 ND 04 39 42 0.8 1.08 ND 04 43 45 1.0 1.10 ND 04 40 43 0.8 1.01 ND 04 38 40 0.6 0.94 ND 04 08-18 3 98 108 10.2 0.81 3 24 75 82 5.9 1.07 2 14 92 101 8.0 0.77 3 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 1 84 87 6.2 0.94 3 14 77 78 4 5.9 1.03 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14								
36						and the second s		
39 41 0.8 1.16 ND 04 39 42 0.8 1.08 ND 04 43 45 1.0 1.10 ND 04 40 43 0.8 1.01 ND 04 38 40 0.6 0.94 ND 04 08-18 3 98 108 10.2 0.81 3 24 75 82 5.9 1.07 2 14 72 78 4.0 0.95 1 14 72 78 4.9 1.03 3 14 75 82 5.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 76 87 6.2 0.94 3 14 77 77 4.7 1.03 3 1 14 78 88 87 6.2 0.94 3 14 72 77 4.7 1.03 3 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 1 14 85 87 9 3.7 0.75 3 14 86 89 4.3 0.84 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14								
39 42 0.8 1.08 ND 04 43 45 1.0 1.10 ND 04 40 43 0.8 1.01 ND 04 38 40 0.6 0.94 ND 04 08-18 3 98 108 10.2 0.81 3 24 75 82 5.9 1.07 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 72 77 4.7 1.03 2 75 82 5.7 1.03 1 75 82 5.7 1.03 3 76 72 77 4.7 1.03 3 76 87 93 77 4.7 1.03 3 76 87 93 77 4.7 1.03 3 76 87 93 77 4.7 1.03 3 76 88 79 3.7 0.75 3 76 88 80 4.3 0.84 3 77 84 5.9 1.00 3 77 84 5.9 1.00 3 77 84 5.9 1.00 3 77 84 5.9 1.00 3							·	0+
43 45 1.0 1.10 ND 04 40 43 0.8 1.01 ND 04 38 40 0.6 0.94 ND 04 08-18 3 98 108 10.2 0.81 3 24 75 82 5.9 1.07 2 14 92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 76 84 87 6.2 0.94 3 14 77 77 4.7 1.03 3 14 78 84 87 6.2 0.94 3 14 78 86 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14								0+
08-18								0+
08-18 3 98 108 10.2 0.81 3 24 104 116 12.0 0.77 3 24 75 82 5.9 1.07 2 14 92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 3 1 14 76 84 87 6.2 0.94 3 14 77 77 4.7 1.03 3 1 14 78 84 87 6.2 0.94 3 14 77 77 4.7 1.03 3 1 14 78 86 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14								0+
08-18 3 98 108 10.2 0.81 3 24 104 116 12.0 0.77 3 24 75 82 5.9 1.07 2 14 92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 76 84 87 6.2 0.94 3 14 77 77 4.7 1.03 3 14 78 84 87 6.2 0.94 3 14 79 77 78 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14								0+
104 116 12.0 0.77 3 24 75 82 5.9 1.07 2 14 92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 76 84 87 6.2 0.94 3 14 77 4.7 1.03 3 14 77 4.7 1.03 3 14 78 84 87 6.2 0.94 3 14 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14			38	40	0.6	0.94	ND	0+
75 82 5.9 1.07 2 14 92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 75 82 5.7 1.03 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14	08-18	3	98	108	10.2	0.81	3	2+
92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 14 72 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14			104	116	12.0	0.77	3	2+
92 101 8.0 0.78 2 24 68 75 4.0 0.95 1 14 72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 1 14 85 86 79 3.7 0.75 3 14 68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14			75	82	5.9	1.07	2	1+
68			92	101	8.0	0.78	2	2+
72 78 4.9 1.03 3 14 71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14			68	75	4.0	0.95		1+
71 77 5.1 1.12 3 14 08-18 10 90 98 8.8 0.93 3 24 71 77 4.7 1.03 2 14 74 80 5.3 1.04 3 14 75 82 5.7 1.03 1 14 84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 72 77 4.7 1.03 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14 77 84 5.9 1.00 3 14			72	78	4.9	1.03	3	1+
71 77 4.7 1.03 2 1+ 74 80 5.3 1.04 3 1+ 75 82 5.7 1.03 1 1+ 84 87 6.2 0.94 3 1+ 72 77 4.7 1.03 3 1+ 68 79 3.7 0.75 3 1+ 68 80 4.3 0.84 3 1+ 77 84 5.9 1.00 3 1+ 75 82 5.4 0.98 3 1+			71	77	5.1	1.12		1+
71 77 4.7 1.03 2 1+ 74 80 5.3 1.04 3 1+ 75 82 5.7 1.03 1 1+ 84 87 6.2 0.94 3 1+ 72 77 4.7 1.03 3 1+ 68 79 3.7 0.75 3 1+ 68 80 4.3 0.84 3 1+ 77 84 5.9 1.00 3 1+ 75 82 5.4 0.98 3 1+	08-18	10	90	98	8.8	0.93	3	2+
74 80 5.3 1.04 3 1.4 75 82 5.7 1.03 1 1.4 84 87 6.2 0.94 3 1.4 72 77 4.7 1.03 3 1.4 68 79 3.7 0.75 3 1.4 68 80 4.3 0.84 3 1.4 77 84 5.9 1.00 3 1.4 75 82 5.4 0.98 3 1.4								1+
75 82 5.7 1.03 1 1+ 84 87 6.2 0.94 3 1+ 72 77 4.7 1.03 3 1+ 68 79 3.7 0.75 3 1+ 68 80 4.3 0.84 3 1+ 77 84 5.9 1.00 3 1+ 75 82 5.4 0.98 3 1+								
84 87 6.2 0.94 3 14 72 77 4.7 1.03 3 14 68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 75 82 5.4 0.98 3 14								
72 77 4.7 1.03 3 1+ 68 79 3.7 0.75 3 1+ 68 80 4.3 0.84 3 1+ 77 84 5.9 1.00 3 1+ 75 82 5.4 0.98 3 1+								
68 79 3.7 0.75 3 14 68 80 4.3 0.84 3 14 77 84 5.9 1.00 3 14 75 82 5.4 0.98 3 14							ر ع	
68 80 4.3 0.84 3 1+ 77 84 5.9 1.00 3 1+ 75 82 5.4 0.98 3 1+								
77 84 5.9 1.00 3 1+ 75 82 5.4 0.98 3 1+								
75 82 5.4 0.98 3 1-								
00 71 0.00 2 18								
			Q0	/ 1	3.3	0.30	Z	1#

Date	Station	Longueur Fourche	(mm) Totale	Masse (g)	Coefficient de condition	Sexe ¹ Maturité ¹	Age
08-19	2	111	123	12.6	0.68	ND	2+
08-19	11	85	93	9.9	1.23	2	2+
		90	100	9.5	0.95	2	2+
		89	98	9.5	1.01	2	2+
		95	105	11.8	1.02	2	2+
	-	91	100	10.7	1.07	2	2+
		97	108	11.4	0.90	3	2+
		97	108	10.8	0.86	3	2+
		80	89	6.8	0.96	3	1+
		83	92	6.9	0.87	3	1+
		75	82	5.7	1.03	1	1+
		77	84	6.1	1.03	3	1+
		77	84	6.9	1.16	2	1+
		79	87	7.3	1.11	2	1+
		76	83	5.8	1.01	1	. 1+
		74	81	5.4	1.02	3	1+
08-22	12	71	78	5.1	1.07	2	1+
	•	77	84	5.9	1.00	2	1+
		78	86	6.0	0.94	3	1+
		84	91	8.4	1.11	2	1+
		87	95	7.6	0.89	3	1+
		92	102	11.7	1.10	2	2+
		79	87	6.5	0.99	2	1+
		77	84	5.4	0.91	3	1+
		100	111	11.8	0.86	3	2+
		85	93	7.2	0.90	3	1+
		78	85	5.8	0.94	1	1+
	•	100	111	15.6	1.14	2	2+
		104	113	13.8	0.96	2	2+
		96	105	12.4	1.07	2	2+
		80	86	7.1	1.12	2	1+
		86	95	7.4	0.86	3	1+
		114	126	20.6	1.03	2	2+
		108	120	15.6	0.90	3	2+

Date	Station	Longueur Fourche	(mm) Totale	Masse (g)	Coefficient de condition	Sexe ¹ Maturité ¹	Age
08-23	13	115	124	21.2	1.11	2	2+
		118	129	19.4	0.90	3	2+
		113	123	17.0	0.91	3	2+
		120	132	23.4	1.02	3	2+
		103	112	13.4	0.95	3	2+
		111	121	19.3	1.09	2	2+
		105	114	18.4	1.24	2	2+
		113	124	17.5	1.21	3	2+

1) 1: Mâle immature

2: Mâle précoce 3: Femelle

ND: Non déterminé

ANNEXE 3

NOMBRE DE SAUMONS JUVÉNILES CAPTURÉS PAR EFFORT DE PECHE POUR CHAQUE CLASSE D'AGE EN 1988

STATION 1

STATION 2

Effort		Classes	$d^{ t} \widehat{a} g e$			Effort		Clas	sses	d'âge	
ELIUIC	0+	1+	2+	1+ et	2+	EITOIC	0+	1+	2+	1+ et	2+
1	22	11	5	16		1	7	21	4	25	
2	14	3	3	6		2	7.	15	3	18	
3	4	1	0	1		3	3	10	0	10	
4	3	0	0	0		4	2	2	0	2	
Total	43	15	8	23		Total	19	48	7	55	

STATION 3

STATION 5

Effort	0+	Classes 1+	d'âge 2+	1+ et 2-	Effort	0+	Clas	ses 2+	d'âge 1+ et 2·
1	7	15	4	19	1	42	5	1	6
2	3	4	1	5	2	27	1	0	1
3	3	4	0	4	3	33	1	1	2
4	4	2	1	3	4	21	2	0	2
					5	15	1	0	1
Total	17	25	6	31	Total	138	10	2	12

STATION 9

STATION 10

Effort	0+	Classes 1+	d'âge 2+	1+ et	2+	Effort	0+	Clas	ses 2+	d'âge 1+ et 2+
1	12	15	7	22		1	7	10	1	11
2	13	6	3	9		2	1	5	0	5
3	4	5	5	10		3			2	6
4	6	1	1 .	2		4	. 1	1	0	1
[otal	35	2.7	16	43		Total	12	20	3	23

ANNEXE 4

ESTIMATION DES POPULATIONS DE SAUMONS JUVENILES SELON LA MÉTHODE DE ZIPPIN (1958)

RESULTATS

1 88-08-23

ESPECE:sasa 0+

NOMBRE D'ESSAIS

22

14

4

3

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 43

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 45.86666

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 5.326448

ESTIMATION DE LA POPULATION PAR METRE CARRE= .4586666

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 5.326448E-02

RESULTATS

1 88-08-23

ESPECE:sasa 1+

NOMBRE D'ESSAIS

1 3 1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 15

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 15.08014

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- .6229879

ESTIMATION DE LA POPULATION PAR METRE CARRE= .1508014

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 6.229879E-03

RESULTATS

========

88-08-23

ESPECE:sasa 2+

NOMBRE D'ESSAIS ______

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 8

3 0 0

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 8.056986

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- .5355266

ESTIMATION DE LA POPULATION PAR METRE CARRE= 8.056986E-02

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 5.355267E-03

RESULTATS

========

1 88-08-23

ESPECE:sasa 1+ et plus

_------

NOMBRE D'ESSAIS

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 23

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 23.12289

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- .7714336

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2312289

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 7.714337E-03

R	E	S	U	L	T	A	T	S
						=		

2

88-08-19

ESPECE:sasa 0+

NOMBRE D'ESSAIS

.

7

3

2

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 19

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 23.44947

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 10.75131

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2344947

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- .1075131

RESULTATS

2 88-08-19

ESPECE: sasa 1+

por non. sasa 1

NOMBRE D'ESSAIS

21

15

10

2

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 48

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 54.12505

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 9.599338

ESTIMATION DE LA POPULATION PAR METRE CARRE= .5412505

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 9.599338E-02

RESULTATS

88-08-19

ESPECE: sasa 2+

NOMBRE D'ESSAIS

3 0 0

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 7

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 7.084011
ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- .6799092
ESTIMATION DE LA POPULATION PAR METRE CARRE= 7.084011E-02
ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 6.799092E-03

RESULTATS

•

.

88-08-19

ESPECE: sasa 1+ et plus

NOMBRE D'ESSAIS

25

1.8

10

2

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 55

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 60.11129

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 7.843673

ESTIMATION DE LA POPULATION PAR METRE CARRE= .6011129

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 7.843673E-02

RESULTATS

ESPECE:sasa 0+

NOMBRE D'ESSAIS

7

88-08-18

3

3

4

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 17

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 29.84898

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 41.0068

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2984898

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- .410068

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- .6799092

ESTIMATION DE LA POPULATION PAR METRE CARRE= 7.084011E-02

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 6.799092E-03

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN

RESULTATS

========

-

88-08-18

ESPECE:sasa 1+

NOMBRE D'ESSAIS

•

15 4

4

2

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 25

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 26.66667

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 4.061381

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2666667

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 4.061381E-02

R	E	S	Ű	L	Τ	A	T	S	
=	=	=	=	=	=	=	Ξ	Ξ	

88-08-18

ESPECE: sasa 2+

NOMBRE D'ESSAIS

4

0

1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 6

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 6.3078

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 1.634863

ESTIMATION DE LA POPULATION PAR METRE CARRE= .063078

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 1.634863E-02

RESULTATS

•

88-08-18

ESPECE: sasa 1+ et plus

NOMBRE D'ESSAIS

19

5

4

3

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 31

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 32.89641

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 4.235777

ESTIMATION DE LA POPULATION PAR METRE CARRE= '.3289641

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 4.235777E-02

RE	SU	LI	'A'I	`S
==	==	==	==	=

•

88-08-17

ESPECE:sasa 0+

NOMBRE D'ESSAIS

42

27

33

21

15

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 5

NOMBRE TOTAL DE POISSONS CAPTURES= 138

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 211.8766

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 73.40142

ESTIMATION DE LA POPULATION PAR METRE CARRE= 2.118766

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- .7340142

R	E	S	U	L	Т	A	T	S
_		_		_	_		_	=

88-08-17

1

ESPECE: sasa 1+

NOMBRE D'ESSAIS

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 5

NOMBRE TOTAL DE POISSONS CAPTURES= 10

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 12.02024

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 6.653032

ESTIMATION DE LA POPULATION PAR METRE CARRE= .1202024

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 6.653032E-02

R	E	S	U	Ļ	T	A	T	S
			=			=		=

5

ESPECE:sasa 2+

NOMBRE D'ESSAIS

0

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 5

NOMBRE TOTAL DE POISSONS CAPTURES= 2

88-08-17

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 2.128043
ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 1.103447
ESTIMATION DE LA POPULATION PAR METRE CARRE= 2.128043E-02
ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 1.103447E-02

RESULTATS

5 88-08-17

ESPECE:sasa 1+ et plus

NOMBRE D'ESSAIS

6

1

2

1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 5

NOMBRE TOTAL DE POISSONS CAPTURES= 12

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 14.04154

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 6.175594

ESTIMATION DE LA POPULATION PAR METRE CARRE= .1404154

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 6.175594E-02

R	E	S	U	L	Т	A	T	S
=	=					=		=

88-08-17

ESPECE:sasa 0+

NOMBRE D'ESSAIS

12

13

4

6

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 35

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 48.88144

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 25.97369

ESTIMATION DE LA POPULATION PAR METRE CARRE= .4888144

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- .2597369

 R	E	S	U	L	T	A	T	S	
-	_	_	_	_	_	_	_	_	

....

88-08-17

ESPECE: sasa 1+

NOMBRE D'ESSAIS

15

6

5

1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 27

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 28.65171

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 3.953063

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2865171

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 3.953063E-02

RESULTATS

88-08-17

ESPECE:sasa 2+

NOMBRE D'ESSAIS

7

3

5 1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 16

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 19.74692

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 9.86608

ESTIMATION DE LA POPULATION PAR METRE CARRE= .1974692

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 9.866081E-02

RESULTATS

========

88-08-17

ESPECE: sasa 1+ et plus

NOMBRE D'ESSAIS

22

9

J

10

2

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 43

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 47.33109

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 7.41437

ESTIMATION DE LA POPULATION PAR METRE CARRE= .4733109

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- .0741437

RESULTAT	S
=======	=

10 88-08-18

1 3 1

ESPECE:sasa 0+

NOMBRE D'ESSAIS

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 12

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 13.30886

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 4.189141

ESTIMATION DE LA POPULATION PAR METRE CARRE= .1330886

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 4.189141E-02

R	E	S	U	L	Т	A	T	S	
=	=	=	=	=	=	=	=	=	

10

88-08-18

ESPECE: sasa 1+

NOMBRE D'ESSAIS

10

5

4

1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 20

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 21.85865

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 4.729912

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2185865

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 4.729912E-02

RE	S	U	L	T	A	T	S
==					=		=

10

88-08-18

ESPECE:sasa 2+

NOMBRE D'ESSAIS

1 0 2

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 3

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 7.494265
ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 47.1816
ESTIMATION DE LA POPULATION PAR METRE CARRE= 7.494265E-02
ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- .471816

RI	ES	U	L	T	Α	Τ	Ś
		_	_	_	_	_	_

10 88-08-18

ESPECE: sasa 1+ et plus

NOMBRE D'ESSAIS

11

5

6

1

SUPERFICIE ECHANTILLONNEE (METRE CARRE)= 100

NOMBRE D'ESSAIS= 4

NOMBRE TOTAL DE POISSONS CAPTURES= 23

ESTIMATION DE LA POPULATION SELON LA METHODE DE ZIPPIN= 25.93492

ESTIMATION AVEC UNE INTERVALLE DE CONFIANCE DE 95%=+,- 6.64484

ESTIMATION DE LA POPULATION PAR METRE CARRE= .2593492

ESTIMATION DE LA POPULATION, INT. DE CONF. DE 95%=+,- 6.644839E-02

ANNEXE 5

CARACTÉRISTIQUES DES REPRODUCTEURS DÉVERSÉS DANS LA RIVIERE PORT-DANIEL EN 1988

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-13	Lieu:	St-Omer	
Type de marquage:	Tio on Too			
Type de marquage.	Spaghetti (lacet) jaune		•	

No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01007	79	7,0	F	М	Non injecté
01008	80	7,1	F	I	
01009	80	6,4	F	M	
01010	87	7,6	_ М	M	
01011	81	6,2	M	I	
01012	78	5,9	F	?	
01013	84	7,8	F	M	
01014	83	7,3	?	· ?	Dorsale atrophiée
01015	80	7,0	M	М	
01016	83	7,3	F	?	
01017	78	6,2	?	I	
01018	84	6,8	M	M	
01019	78	7.3	F	?	
01020	82	; 7,5	F	М	Dorsale atrophiée
01021	85	7,8	M	?	
01023	86	6,0	F	I	
01024	75	5,1	?	?	
01025	81	6,3	M	М	
01026	81	5,7	?	?	
01027	81	6,3	M	М	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date (de marquage:	88-09-13	Lieu:	St-Omer	
--------	--------------	----------	-------	---------	--

Type de marquage: Tie on Tag

	Spaghetti (lace	et) jaune			
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(]) Sexe	(2) Maturité	Remarques
01028	82	6,3	F	?	
01029	80	5,8	F	?	
01030	75	5,3	F	I	
01031	79	6,0	М	М	Pelvienne atrophiée
01032	78	6,7	F	I	
01033	77	6,7	F	?	
01034	79	6,5	F	?	
01035	77	6,5	?	?	
01036	82	6,7	M	I	
01037	82	7,7	F	?	
01038	85	7,7	M	M	
01039	78	5,6	F	I	
01040	80	6,7	F	?	
01041	82	7,0	M	I	
01042	78	6,7	F	?	
01043	7.5	5,3	F	I	
01044	84	6,4	M	М	
01045	79	6,3	?	?	
01046	79	5,6	M	М	
01047	81	7,8	F	М	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-13	Lieu: _	St-Omer_	
Type de marquage:	Tio on Too			•

	spagnetti (lac				
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01049	75	6,0	?	?	Rostre atrophié
01050	84	6,7	?	?	
01051	76	5,0	M	· I	:
01052	75	5,8	M	?	
01053	7.5	5,6	F	?	
01054	79	6,5	F	M	
01055	72	5,1	?	?	,
01056	78	6,4	?	?	
01057	82	6,0	?	?	
01058	77	6,1	F	М	
01059	. 77	6,0	F	I	
01060	77	6,5	. м	I	
01061	77	5,2	F	I	Pelvienne atrophiée
01062	77	6,7	?	М	
01063	78	6,9	F	М	
01064	80	7,1	F	?	
01065	80	6,7	?	?	Dorsale atrophiée
01066	80	6,7	?	?	
01067	80	6,7	M	M	
01068	79	5,9	F	M	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-13	Lieu: St-Omer
Type de marquage:	Tie on Tag	

Spagnetti (lacet) jaune						
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques	
01069	79	6,3	F	?		
01070	85	7,0	M	?		
01071	82	6,7	· F	M		
01072	83	7,3	?	?		
01073	80	6,8	F	?		
01075	84	7,3	?	?		
01076	84	7,4	?	?		
01074	83	6,3	М	I		
01077	84	7,4	?	?		
01078	84	7,2	?	?.		
01079	80	6,8	F	?		
01080	80	7,3	F	?		
01081	80	6,0	М	М		
01082	84	6,2	М	I		
01083	80	6,3	F	?		
01084	77	5,8	?	?		
01085	82	7,0	F	?		
01086	78	6,1	?	?		
01087	80	6,6	F	?		
01088	80	5,2	М	?		

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-13	Lieu: _	St-Omer
Type de marquage:	Tie on Tag		

	opagneett (1400				
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01089	80	7,0	M	?	
01090	80	6,1	?	?	-
01091	75	6,1	F	?	
01092	80	6,6	F	?	
01093	79	6,5	?	?	
01094	81	6,3	M	Ţ	
01095	84	6,7	M	I	
01096	83	6,6	M	I	
01097	78	5,6	M	?	
01098	77	5,9	F	?	
01099	82	6,5	М	?	- the second of
01100	80	6,3	F	?	
01101	75	5,1	F	?	
01102	76	5,9	F	?	
01103	79	6,1	?	?	- Arthur Marie Control
01104	73	4,7	F	?	
01106	82	6,1	F	?	Pelvienne atrophiée
01107	78	5,3	M	M	
01108	82	7,1	F	?	
01109	76	5,7	F	М	Pelvienne atrophiée

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-13	Lieu: <u>St-Omer</u>	
Type de marquage:	Tie on Tac		

	Spaghetti (lac	et) jauné		-	·
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01110	74	5,5	M	М	
01111	77	6,0	F	?	
01112	79	6,0	?	?	
01113	80	6,2	F	?	
01114	77	5,5	?	?	
01115	76	5,8	F	М	
01116	83	6,2	M	M	
01117	83	6,4	M	М	
01118	77	6,1	F	?	Pelvienne atrophiée
01119	80	6,9	?	?	
01120	80	5,5	M	<u>I</u>	
01121	80	6,5	М	М	
01122	78	6,3	F	?	
01123	82	6,7	M	?	
01124	80	7,0	F	?	Pelvienne atrophiée
01125	74	6,6	F	?	
01126	79	6,2	М	?	
01127	84	6,9	М	М	
01128	84	6,7	F	?	
01129	81	6,6	F	?	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date	de	marquage:	88-09-13	Lieu:	St-Omer
------	----	-----------	----------	-------	---------

Type de marquage: <u>Tie on Tag</u>

	-L-:0 (1-1-	•			
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01130	76	6,1	F	?	
01131	83	5,7	М	?	
01132	79	6,3	F	?	
01133	78	5,7	F	М	
01134	83	6,8	F	?	
01135	79	5,3	F	I	
01136	75	5,5	F.	?	
01137	82	5,8	M	?	Pelvienne atrophiée
01138	84	6,4	M	M	Anus au vif
01139	77	5,4	?	?	
01140	78	6,3	F	?	
01142	77	6,0	M	?	
01143	79	5,1	F	1	
01144	79	5,5	F	?	
01145	76	4,9	M	M	
01146	80	6,0	М	?	
01147	82	5,9	M	?	
01148	82	6,3	?	?	
01149	81	6,4	F	?	
01150	81	6,4	F	?	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date	de marqua	-09-14	 Lieu: _	St-Omer

Type de marquage: <u>Tie on Tag</u>

	Spaghetti (lace	t) jaune			
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01151	80	5,6	M	?	
01152	81	6,3	F	?	
01153	84	6,6	М	?	
01154	78	5,7	F.	?	
01155	80	6,9	F	?	
01156	. 79	6,9	?	?	
01157	82	6,9	М	?	
01158	79	6,0	F	?	
01159	77	6,1	F	М	
01161	80	6,1	М	?	Pelvienne atrophiée Dorsale atrophiée
01162	. 86	6,7	M	I	
01163	83	6,7	М	?	
01164	79	6,0	F	?	
01165	79	6,1	F	?	
01166	80	6,5	М	?	
01167	77	6,0	M	?	
01168	77	5,5	?	?	Pectorale (hémorragie)
01169	86	6,5	F	?	
01170	74	5,3	М	?	
01171	80	6,3	F	?	Pelviennes atrophíée

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date	de marquage:	88-09-14	Lieu:	St-Omer

Type de marquage: <u>Tie on Tag</u>

No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01172	82	5,5	М	.?	Pelvienne atrophiée
01173	78	5,5	M	?	
01174	76	5 , 5	М	?	Pelvienne atrophiée
01175	77	5,0	F	I	
01176	76	6,6	?	?	
01177	74	5,6	F	?	
01178	81	6,1	M	?	Pelvienne atrophiée
01179	79	5,9	F	?	
01180	77	5,8	М	?	Dorsale atrophiée
01181	86	7,2	M	M	
01182	74	6,2	F	?	
01183	74	6,4	?	. ?	
01184	81	6,6	?	?	
01185	80	5,7	М	M	
01186	85	6,2	М	М	Dorsale atrophiée
01187	79	5,4	?	?	
01188	81	6,3	F	?	
01189	80	6,0	?	?	Pelvienne atrophiée
01190	75	6,4	F	?	Pelvienne atrophiée
01191	78	6,4	F	M	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage: 88-09	-14 Lieu:	St-Omer
-------------------------	-----------	---------

Type de marquage: __Tie on Tag

	Spagnetti (lacet	.) jaune			
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01192	76	5,7	F	?	
01193	86	7,2	M	?	
01194	84	6,9	F	?	
01195	81	6,0	F	7	Pelvienne atrophiée
01196	84	7,6	M	?	Opercules déchirés
01197	77	5,8	F	?	Pelvienne atrophiée
01198	81	6,6	F	?	
01199	81	6,5	M	?	Pelvienne atrophiée Dorsale atrophiée
01200	80	4,9	?	??	Pelvienne atrophiée
01201	77	5,4	F	?	Saignement à la pel- vienne & à l'anale
01202	80	6,0	?	?	
01203	76	6,1	F	??	
01204	82	7,0	F	??	Pelvienne atrophiée
01205	75	5,5	F	?	Pelviennes atrophiée
01206	78	6,0	F	?	
01207	84	6,5	F	?	Pelvienne atrophiée
01208	79	5,8	F	?	
01209	70	4,4	M	?	Echappé sur le sol
01210	81	5,9	M	?	
01211	82	6,6	M	?	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-14	Lieu:	St-Omer	
Type de marquage:	Tie on Tag			

	bhagnetti (lace				
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01212	73	4,6	F	?	Dorsale atrophiée
01213	82	5,6	М	?	Pelviennes atrophiée Dorsale atrophiée
01214	81	6,1	М	?	
01215	85	6,7	M	?	
01216	83	6 , 5	М	М	
01217	85	6,4	F	?	Saignement de pelviennes
01218	80	6,8	F	?	Dorsale coupée
01219	79	6,5	F	М	
01220	81	6,5	M	?	
01221	73	5,5	F	I	
01222	82	6,3	F	M	
01223	79	6,3	F	?	
01224	72	5,3	F	?	
01225	73	5,8	F	?	
01226	73	5,1	F	?	
01227	79	6,3	F	?	Pelvienne atrophiée
01228	75	5,9	F	М	
01229	80	6,0	M	M	
01230	78	5,3	<u>M</u>	?	
01231	76	4,9	F	?	

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de n	marquage: _	88-09-14	Lieu:	St-Omer
Type de n	narquage: _	Tie on Tag		•

	Spagnetti (lace	t) jaune			4
No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01232	82	5,5	М	M	
01233	78	5 , 9	F	?	Pelvienne atrophiée
01234	82	6,5	?	?	
01235	78	5,9	F	М	
01237	77	6,4	?	?	Pelvienne atrophiée
01238	77	6,0	М	?	Pelvienne atrophiée
01239	78	6,1	F	?	
01241	80	6,8	F	М .	
01243	77	4,8	F	?	
01244	82	6,4	?	?	
01245	75	5,9	F	?	
01246	79	6,0	F	?	
01247	77	6,0	F	?	
01248	81	5,5	F	?	Pelvienne atrophiée
01249	79	6,1	F	?	Pelvienne atrophiée
01250	79 [°]	5,6	M	?	102710440
01251	78	6,1	M	M	
01252	83	7,1	?	?	
	80			?	Pelvienne atrophiée_
01253		5,9	M		
01254	79	5,9	F	?	Pelvienne atrophiée

MARQUAGE DE SAUMON

RIVIERE PORT-DANIEL

Date de marquage:	88-09-14	Lieu:	St-Omer_
Type de marquage:	Tie on Tag		
	Spaghetti (lacet) jaune		

No d'étiquette	Longueur à la fourche (cm)	Poids (kg)	(1) Sexe	(2) Maturité	Remarques
01255	83	7,1	F	?	
01256	79	6,4	F	M	
01257	78	6,2	?	?	
01258	80	6,5	F	?	
01259	78	6,0	F	?	Dorsale atrophiée
01260	81	5,9	М	M	Pelvienne atrophiée
01261	83	6,9	M	?	Dorsale atrophiée
01262	78	6,3	?	?	Pelvienne atrophiée
01263	77	6,9	F	M	
01264	82	6,6	F	?	

(1) Sexe

F : femelle

M : mâle ? : inconnu

(2) Maturité M : mature

I : immature

? : indéterminée

ANNEXE 6

CARACTÉRISATION DES DIVERS STADES DE MATURATION SEXUELLE SELON LA MÉTHODE DE KESTEVEN (1960)

CARACTÉRISATION DES DIVERS STADES DE MATURATION SEXUELLE, SELON LA MÉTHODE DE KESTEVEN (1960)

Stade I: Poissons pubères

- Glandes génitales peu développées le long de la colonne vertébrale.
- Testicules et ovaires transparents incolores ou grisâtres.
- Oeufs invisibles à l'oeil nu.

Stade II: Début ou reprise de l'évolution sexuelle

- Testicules et ovaires translucides, gris rougeâtre.
- La longueur des glandes génitales atteint ou dépasse légèrement la longueur de la cavité viscérale.

Stade III: Développement en cours (maturation)

- Testicules et ovaires opaques, rougeâtres et vascularisés.
- Glandes génitales occupent 1/2 de la cavité viscérale.
- Oeufs visibles à l'oeil nu.

Stade IV: Développement achevé

- Testicules blanc rougeâtre. La laitance ne s'écoule pas sous pression.
- Ovaires jaune rougeâtre. Oeufs opaques et nettement visibles.
- Organes génitaux occupent 2/3 de la cavité viscérale.

Stade V: Préponte (maturité)

- Glandes génitales remplissent la totalité de la cavité viscérale.
- Des gouttes de laitance s'écoulent sous pression.
- Oeufs arrondis et commençant à devenir translucides et mûrs.

Stade VI: Ponte

- Oeufs et sperme s'écoulent sous une simple pression.
- La plupart des oeufs sont translucides.

Stade VII: Postponte

- Les glandes génitales ne sont pas complètement vides, mais l'ovaire renferme quelques oeufs.

Stade VIII: Récupération

- Glandes vides et rougeâtres.
- Quelques oeufs résiduels en voie de résorption.

ANNEXE 7

DONNÉES BIOLOGIQUES PRÉLEVÉES SUR DES FEMELLES
MATURES CONSERVÉES PAR BAIE-DES-CHALEURS
AQUACULTURE INC. EN 1988

			*				
Date	No	Longueur fourche	Masse	К	Nombre	ĐO	Nombre d'oeuf
		(cm)	(kg)		d'oeufs	(mm)	par kg
11-02	1	83	8.0	1.40	15 212	5.6	1 901
	2	91	9.4	1.25	11 949	6.1	1 271
	3	82	6.7	1.22	11 309	5.6	1 688
	4	87	8.4	1.28	16 806	5.6	2 001
	5	87	8.2	1.25	12 709	58	1 550
	6	77	6.6	1.45	9 853	6.0	1 493
	7	_	_	-	11 392	5.8	
	8	80	6.7	1.31	11 847	5.7	1 768
	9	86	7.8	1.23	10 469	5.8	1 342
11-03	10	86	6.7	1.05	13 813	5.8	2 062
-	11	85	6.9	1.12	12 468	5.7	1 807
	12	80	6.0	1.17	8 559	5.9	1 426
	13	87	7.7	1.17	11 414	6.2	1 482
	14	91	10.0	1.33	12 519	6.1	1 252
	15	78	6.1	1.29	9 407	5.6	1 542
	16	93	9.0	1.12	12 135	6.2	1 348
	17	. 78	5.6	1.18	7 472	5.6	1 334
11-04	18	85	7.8	1.27	12 221	6.0	1 566
	19	92	8.5	1.09	13 890	6.0	1 634
	20	83	6.8	1.19	10 023	5.9	1 474
	21	81	7.3	1.37	9 906	6.0	1 357
	22	78	6.0	1.26	10 008	5.6	1 668
	23	91	12.0	1.59	14 840	6.4	1 237
	24	91	10.3	1.37	14 374	6.3	1 395
11-07	25	82	7.1	1.29	9 672	6.1	1 362
	26	80	6.8	1.33	13 056	5.4	1 920
	27	86	8.4	1.32	14 816	5.8	1 764
	28	82	7.1	1.29	8 738	6.0	1 230
	29	85	7.8	1.27	12 376	6.3	1 587
	30	82	6.4	1.16	11 207	5.5	1 751
	31	84	7.2	1.21	11 107	6.0	1 543
	32	85	7.8	1.27	11 442	5.7	1 467

		Longueur	Masse		Nombre		Nombre d'oeuf
Date	No	fourche (cm)	(kg)	K	d'oeufs	DO (mm)	par kg
11-09	33	79	7.2	1.46	FP	5.9	_
11 05	34	85	8.1	1.32	13 788	5.4	1 702
	35	83	7.2	1.26	FP	5.6	-
Moyenne	2	84,3	7,6	1,27	11 842	5,8	1 560
Ecart-	type	4,3	1,32	0,11	2 088	0,26	224,81
Taille l'échai		on 34	34	34	33	35	32

No: Numéro de la femelle

K: Coefficient de condition

DO: Diamètre de l'oeuf FP: Fraie partielle

ANNEXE 8

INVENTAIRE DES REPRODUCTEURS EFFECTUÉ
LE 07 OCTOBRE 1988

OPÉRATION RÉGIONALE 01

RIVIERE PORT-DANIEL

PROGRAMME D'OBSERVATION DE SAUMONS

Alain Lehoux et Austin Clark

AUTOMNE 1988

DATE	NOM DE LA FOSSE	NOMBR SAUMONS	E DE OBSERVÉS	NIVEAU D'EAU		'EAU	REMARQUES	LES
		GRILSE	ADULTE	BAS	MOYEN	HAUT		MITIALES
7 octobre 1988	# 115		1	Х			Début: 7h30 Départ: Ravin vert à	
	# 113]	5				traverse	
	# 104	1	21					
*** ****	# 100	· 1	13					<u></u>
	# 85	2	4	<u> </u>				
	# 83	2	8					
-	# 71	<i>:</i>	1					
N 1000	Petite fourche # 67	4	39		-		l étiquette jaune Fin: 16h00	
	SOUS-TOTAL	11	92	=	103			

OPÉRATION RÉGIONALE 01

RIVIERE PORT-DANIEL (suite)

PROGRAMME D'OBSERVATION DE SAUMONS

Melville Mullin et Geneviève Caron NOMBRE DE NIVEAU D'EAU NOM DE LA SAUMONS OBSERVÉS DATE REMARQUES FOSSE GRILSE ADULTE BAS MOYEN HAUT Traverse à estuaire 7 Début: 8h30 octobre # 61 1 étiquette jaune 1988 # 54 6 l étiquette jaune # 52 15 38 2 étiquettes # 44 2 198 191 étiquettes 8 23 # 43 17 étiquettes # 42 ŀ 3 l étiquette l étiquette # 36 2. 2 2 saumons étiquettés morts un peu en amont 01168 # 21 01114 2 1 # 16 1 étiquette # 7 2 1 étiquette Fin: 15h30 219 saumons étiquettés sur SOUS-TOTAL 32 + 274 306 250 introduits Conditions d'observation TOTAL 43 + 366 409 excellentes

ANNEXE 9

INVENTAIRE DES REPRODUCTEURS EFFECTUÉ LE 18 OCTOBRE 1988

OPÉRATION RÉGIONALE 01

RIVIERE PORT-DANIEL

PROGRAMME D'OBSERVATION DE SAUMONS

Alain I	ehoux et Austi	n Clark	AUT	OMNE	1988			
DATE	NOMBRE DE NOM DE LA SAUMONS OBSERVÉS FOSSE		NIV	ÆAU D	'EAU	REMARQUES		
		GRILSE	ADULTE	BAS	MOYEN	HAUT		MITIALES
18 octobre 1988	# 122		2 .		Х		Début 07h00 Portes de l'enfer à traverse (#65)	
	# 120		1					
	# 113		2				Section	
,	Fosse bleue # 106	<u> </u>	3				faite	
	# 105	1	8				à pied	
	# 104		5					
	# 102		2					
	# 98		2					
	# 84		13					-
	Petite fourch # 67	2	31				6 saumons étiquettés	-
							Fin: 16h30	_
	SOUS-TOTAL	3 +	69 =		72			
	NOTE: Pas co	npté Petit	e fourche	dans	le to	tal.		

OPÉRATION RÉGIONALE 01

RIVIERE PORT-DANIEL (suite)

PROGRAMME D'OBSERVATION DE SAUMONS

Geneviève Caron et Melville Mullin NOMBRE DE NIVEAU D'EAU NOM DE LA SAUMONS OBSERVÉS DATE REMARQUES FOSSE GRILSE ADULTE BAS MOYEN HAUT Petite fourche à estuaire 18 Petite fourche Début: 08h00 (apnée) octobre # 67 7 38 Χ 1988 11 saumons étiquettés + 1 étiquette verte spagetti 2 étiquettes # 66 2 # 60 1 # 56 2 1 Plaisance # 52 2 1 1 étiquette 1 étiquetté (apnée) + 1 étiquette verte spagetti 23 # 50 6 # 46 1 1 (pont amont) 2 105 étiquettés # 44 113 (pont aval) 22 étiquettés 2 # 43 28 1 1 étiquetté # 42 l étiquetté # 36 5 7 1 # 21 1 # 20 2 # 18 l étiquetté # 16 # 10 2 Fin: 15h00 SOUS-TOTAL 221 252 31 145 étiquettés # <u>Plusieurs nids un peu parto</u>it 291 TOTAL 32 259 où il y a du saumon

ANNEXE 10

INVENTAIRE DES REPRODUCTEURS EFFECTUÉ LE 10 NOVEMBRE 1988

OPÉRATION RÉGIONALE 01

RIVIERE PORT-DANIEL

PROGRAMME D'OBSERVATION DE SAUMONS

AUTOMNE 1988

DATE	NOM DE LA FOSSE	viève Caron NOMBRE DE SAUMONS OBSERVÉS		NIVEAU D'EAU			REMARQUES	INITIALE.
		GRILSE	ADULTE	BAS	MOYEN	HAUT		1111
10 novembre	Petite fourch						Petite fourche ă estuaire Début: 7h30 (apnée + cand	ì
1988	# 67	3	7		X		2 étiquettes jaunes	
							2 étiquettes	
· · · · · · · · · · · · · · · · · · ·	# 65		4				(canot + apnée)	
	# 64		2				l étiquette	
	# 61		2				l étiquette	_
	# 57		2				l étiquette	
	Plaisance						5 étiquettes	
	# 52	11	7.				(canot + apnée)	<u> </u>
							(canot + apnée)	
	# 50	4	8	ļ			3 étiquettes	_
	# 49]	2					
	# 48		11					
	Pont amont						15 étiquettes	
	# 44	2	19				(canot + apnée)	.
	Pont aval						14 étiquettes	-
	# 43	6	26			-	(apnée)	-
	# 42		2				2 étiquettes	
	# 41		1				l étiquette	
	# 36		5				l étiquette	
								-

OPÉRATION RÉGIONALE 01

RIVIERE PORT-DANIEL (suite)

PROGRAMME D'OBSERVATION DE SAUMONS

DATE	NOM DE LA FOSSE	NOMBRE DE SAUMONS OBSERVÉS		NIVEAU D'EAU			REMARQUES
		GRILSE	ADULTE	BAS	MOYEN	HAUT	REMARQUES
10 novembre 1988	# 33	3	7		Х		
1300		3					
	# 29		1				, , , , , , , , , , , , , , , , , , ,
	# 8		2				l étiquette Fin: 11h50

					ļ		
	TOTAL	20 +	98 =		118		49 étiquettés
				-			
					<u> </u>		
	NOTE: - Semi	le y avoir	quelques	saumo	ns nou	velleme	nt montés dans la rivière
		(bien colo					
		1		i .	ettés	ont de	grosses plaques blanches
		le corps			lac com	nosõs (ce l saumon indigène et l
	1	remarque p ron étiquet	t	Coup	ies com	puses (e i saumon margene ec i
			1	tous	nivel	ės par	la dernière crue d'eau.
		ļ		<u> </u>		<u> </u>	Alain Lehoux
		1		}	<u> </u>		ļĀ