
Geologists Martin Tuchscherer 
[left] and Patrice Rioux  
stand in the middle of a 
boulder field in Nunavik, 
Que., Canada. Predictions 
from AI models can identify 
possible minable ore deposits 
in a vast area.
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In June 2022, six Boeing 737s—fully loaded with tents, food, 
satellite Internet equipment, drones, geophysical survey 
gear, drilling equipment, and a team of experienced geol-

ogists—flew to a remote airstrip in northern Quebec. The 
geologists were hunting for major deposits of the minerals 
needed to power a clean-energy future. Given the mix of 
cutting-edge scientific computing and old-school bravado, it 
was as though they were channeling Alan Turing and Indiana 
Jones simultaneously. • Our startup, KoBold Metals, acquired 
an 800-square-kilometer mineral claim in this region of Canada 
based in part on predictions from our artificial intelligence 
systems. According to the AI, there was good reason to believe 
we’d find valuable deposits of nickel and cobalt buried below 
the surface. Summer snowmelts in this near-arctic area created 
a brief window to bring in a small village’s worth of equipment 
and personnel to test our predictions.

One way to find potential 
minable ore deposits is to 
use a transmitter coil loop 
[below], which—similar to 
a metal detector you’d use 
on a beach—detects induced 

currents in conductive 
bodies deep underground.
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We cofounded KoBold in 2018 with backing from Bill Gates’s 
Breakthrough Energy Ventures and Silicon Valley venture cap-
ital firm Andreessen Horowitz. Our goal is to develop ways to 
discover major new deposits of vital metals needed for electric 
vehicle (EV) batteries—for which there is an enormous and 
growing need.

We’re trying to transform mineral exploration from a 
manual, judgment-guided, trial-and-error process into a data-
driven and scalable science. It’s the mother of all needle-in-a-
haystack problems: Find the significant minable deposits of 
cobalt, copper, lithium, and nickel resting anywhere from 100 
to 2,000 meters deep in the Earth’s surface.

P
r ev enting the most catastrophic impacts of 
climate change requires achieving net-zero green-
house gas emissions by 2050, which includes, among 
many other things, replacing all fossil-fuel-powered 

light cars and trucks with electric vehicles. That, in turn, will 
require manufacturing billions of EV batteries. Even today’s 
demand for the metals outstrips supply—as evidenced by nickel 
prices doubling and lithium prices quintupling over the last year. 
To realize a global transition to electric vehicles, we’ll need to 
discover and mine an additional US $15 trillion worth of cobalt, 
copper, lithium, and nickel by midcentury. (We’re currently on 
target to mine about $3.6 trillion worth of these metals by 2050).

World leaders are well aware of the need. In the United 
States, for example, President Biden invoked the Cold War–era 
Defense Production Act in March 2022 to use the presidential 

powers it grants to encourage domestic production of the min-
erals required in EV batteries. The Inflation Reduction Act, 
signed into law in August 2022, included billions of dollars to 
subsidize the development and operation of metals mines, both 
in the United States and globally.

Investors are aware of the supply challenge as well. In Feb-
ruary 2022, KoBold raised $192.5 million in Series B financing, 
which has gone toward securing more than 50 exploration sites 
in Australia, Canada, Greenland, sub-Saharan Africa, and the 
United States. We plan to use AI to streamline the largely scat-
tershot process of discovering new ore deposits. Once they’re 
discovered, we plan to partner with mining companies for the 
actual mining operations and advise them on efficient 
extraction, again using our AI tools.

For thousa nds of y e a rs,  humans have noticed the 
striking appearances of rocks containing useful minerals. For 
example, the iron sulfides that are the predominant mineral in 
nickel sulfide deposits produce distinct reddish rust when 
exposed to air and rainwater. Weathering turns copper sulfide 
into a variety of brightly colored minerals, including the brilliant 
green ones found in the Statue of Liberty’s patina. These visual 
clues were, for thousands of years, one of the most reliable ways 
to distinguish useful minerals and metals from useless rock.

The mining industry’s rate of successful exploration—mean-
ing the number of big deposit discoveries found per dollar 
invested—has been declining for decades. At KoBold, we some-
times talk about “Eroom’s law of mining.” As its reversed name A
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In order to survey large areas quickly, KoBold uses a 
helicopter [right] carrying a transmitter coil loop 
35 meters in diameter that can detect conductive bodies, 
such as ore deposits, below the surface. Conductivity 
data from KoBold’s helicopter surveys can be used to 
produce models of potential underground distributions 
[far right]. The blue represents nonconductive igneous 
rock, while the yellow, orange, and red circles indicate 
areas of conductivity, from least to most conductive.
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suggests, it’s like the opposite of Moore’s law. In accordance with 
Eroom’s law of mining, the number of ore deposits discovered 
per dollar of capital invested has decreased by a factor of 8 over 
the last 30 years. (The original Eroom’s law refers to a similar 
trend in the cost of new pharmaceutical discoveries.)

Geologically speaking, the decline in new discoveries is 
largely because most of the easy-to-spot deposits, such as those 
on the surface, have been found. New discoveries will be deeper 
underground, concealed by layers of rock.

In fact, the vast majority of Earth’s ore deposits are still 
waiting to be found. The chemical and physical processes that 
form these ores occur at temperatures and pressures that exist 
kilometers below the surface. That is, these ore deposits are 
not formed at the surface; tectonic processes bring only a small 
minority of them there long after they were formed. That small 
minority constitutes the bulk of the deposits being mined today. 
The mining industry has the equipment and the technology to 
mine ore deposits that lie deep underground—the problem is 
finding those deposits in the first place.

You might expect the mining industry to be investing heavily 
in exploration, as well as in R&D to improve its exploration meth-
ods. But it’s not. Over the past several decades, large companies 
have relied less on their own exploration programs and more on 
acquiring discoveries made by other companies. Mining-company 
shareholders expect dividends, not innovation.

A
t KoBold, we’re treating exploration as an infor-
mation problem—finding and analyzing multiple 
types of data in order to uncover what we’re looking 
for. In particular, it’s an information problem in 

which acquiring more of those data types comes at a high cost. 
Our solution is to combine AI systems with geoscience exper-
tise to figure out what piece of information reduces our uncer-
tainty the most.

There is a vast body of geoscience information already in 
the public domain, but it’s dispersed and fragmented. Some of 
it comes from government-funded geological surveys, and 
some comes from surveys conducted by private companies 
that were required to make their findings public. This informa-
tion is spread across millions of data sets, including geological 
maps showing types of rocks observed in different locations; 
geochemical measurements of the concentrations of dozens 
of elements in samples of rock, soil, drill cores, plants, and 
groundwater; geophysical measurements of the gravitational 

field, magnetic field, natural and induced electric currents, seis-
mic waves, and radiation from the decay of heavy-element 
nuclei in Earth’s crust; satellite imagery—in both visual and 
infrared bands—measuring the spectral reflectance of minerals 
at the Earth’s surface; and text reports describing field obser-
vations. The volume of data is, in a word, overwhelming.

What’s more, these data sets range from state-of-the-art 
mass spectrometry measurements to hundred-year-old maps 
hand-painted on linen. Each data set is useful, and, combined 
in the right way, the full collection is potent—if you can make 
sense of it.

Our data system, called TerraShed, parses this information 
and brings it into a standard form to make it accessible and 
searchable by both humans and algorithms. Curating the data 
and putting it through quality control are just the first steps. 
We then use various algorithms to guide our decisions about 
what data to collect at each stage in the exploration process, 
from getting a sense of whether a particular deposit is worth 
mining all the way to construction of the mine itself.

TerraShed doesn’t produce simplistic treasure maps: It 
doesn’t spit out an “X marks the spot” in response to the data. 
Instead, we have hundreds of different proprietary modules 
that guide each decision in the exploration process. 

Our exploration program in northern Quebec provides a 
good case study. We began by using machine learning to predict 
where we were most likely to find nickel in concentrations sig-
nificant enough to be worth mining. We train our models using 
any available data on a region’s underlying physics and geology, 
and supplement the results with expert insights from our geol-
ogists. In Quebec, the models pointed us to land less than 20 km 
from currently operating mines.

After we acquired the relevant land rights, our geologists 
worked out of a field camp on-site, making observations and 
taking measurements of rock outcrops. Across the more than 
800 km2 of our claims, the choice of which rocks to sample is 
practically limitless. Time and money, however, are not—and in 
the region we were working, there’s less than a three-month 
window when the ground is free of snow.

So, the information challenge becomes: How do we decide 
which rocks to sample?

We built Machine Prospector, which comprises the 
machine-learning models, with historic data, such as informa-
tion from previous discoveries elsewhere in the province. It 
helped us predict which rocks we should sample, given the 

JUNE 2023  SPECTRUM.IEEE.ORG  25Authorized licensed use limited to: francis bedard. Downloaded on July 05,2023 at 18:33:21 UTC from IEEE Xplore.  Restrictions apply. 



limited time we had. Specifically, we were looking for spots 
where eons-long geologic processes would have formed nickel- 
and cobalt-rich magmatic sulfide deposits.

Predictions in hand, our field geologists fanned out. Some 
headed to the places that seemed most likely to yield these 
magmatic sulfides. Others went to locations where the pre-
dictions were the most uncertain. Collecting data from places 
with uncertain predictions improves the next generation of 
models more than just collecting data where the models are 
already confident.

When the field team returned to camp in the evening, they 
uploaded that day’s data via satellite. Our data scientists, working 
all over the globe, then retrained the models based on the new 
data points. The resulting new predictions changed the map of 
potential sample sites over the whole region and guided the 
team’s decisions on where to go next. By incorporating new field 
information in almost real time, our model’s adaptive predictions 
effectively shortened the learning cycle from a season to a day.

Our models generated predictions with 80 percent lower false 
positive and false negative rates compared to conventional pre-
dictions from geological maps. Such maps are constructed by 
making observations of the rocks at a relatively small number 
of locations and then using a set of rules and principles to extend 
those observations to larger regions. That means the conven-
tional predictions are largely inference—and worse, they result 

in unquantified uncertainty. In other words, we don’t know what 
we don’t know about how accurate those maps are. By compar-
ison, KoBold’s predictive models do quantify uncertainty, which 
in turn guides our data collection, as the most uncertain rocks 
often represent the most valuable ones to sample. 

T
h e r esu lts f rom  one of our staked claims 
during that 2022 field season in northern Quebec 
are a perfect example of how our unique approach 
to exploration pays off.

Guided by the results from our AI systems, our field team 
found a large boulder field that geologist Lucie Mathieu iden-
tified as very anomalous, and not typical of the kind of igneous 
rock making up most of the region’s boulders.

The boulder field originally piqued our interest after elec-
tromagnetic measurements we had taken indicated unusually 
high conductivity—consistent with the kinds of minerals we 
were seeking. The electromagnetic data was gathered by a heli-
copter towing a 30.5-meter-diameter transmitter coil loop for 
a daily time-domain electromagnetic survey. For these surveys, 
the transmitter pulses current through the loop at 7.5 hertz, 
which induces currents in conductive materials underground. 
When the transmitter pulse ends, the receiver coil detects the 
decay of those induced subsurface currents, enabling us to 
build a three-dimensional model of the subsurface rocks’ con-

Geologist Dave Freedman [left] stands behind a 
row of core samples at KoBold’s Cape Smith site 
in Nunavik, Que., Canada, taken from areas of 
interest to confirm AI predictions. Brownish 
flecks in the core sample above, KSC 22-07, 
reveal the presence of magmatic pyrrhotite.
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ductivity. The high electrical conductivity of the ore minerals 
we’re seeking is just one of several things that we can use to 
distinguish ore from other rock.

Using helicopter and geophysical survey equipment is expen-
sive, and in the north the windows of good weather are short 
and unpredictable. Where we send the bird, and how we manage 
the trade-off between aerial coverage and spatial resolution, are 
vital considerations.

We can use the collected data to build three-dimensional 
models of the probable locations of ore in the subsurface, which 

is a computationally difficult problem. Put simply, we have a 
limited set of measurements of the induced fields taken in a 
two-dimensional plane just above the surface, and from that we 
are trying to infer the properties (here, the conductivity) of a 
three-dimensional volume of the subsurface. There are an 
infinite number of subsurface rock configurations that are con-
sistent with the surface data.

The conventional approach in the industry is to build a 
best-estimate model that tries to fit a huge number of param-
eters, which can easily exceed the number of data points. 
Anyone who has tried to solve a system of n equations for 2n 
unknowns knows that there is no unique solution to the prob-
lem. The traditional methods used in the industry to choose 
one of the many potential solutions can often incorporate 
assumptions that are inconsistent with geologic processes and 
are prone to confirmation bias. 

To do better, we quantify the uncertainty in our predictions 
about the subsurface. Our machine-learning models are trained 
on many fewer parameters than traditional best-estimate 
models, and the parameters are directly related to the key explo-
ration questions: How many conductive bodies are present? 
How deep are they? What is their orientation? Is their conduc-
tivity in the range that’s consistent with high concentrations of 
ore minerals? The output of our models is the joint probability 
distribution of these parameters.

Ultimately, the most useful data to collect is that which 
reduces the uncertainty of finding an ore 
deposit that can be mined. Together with 
our collaborators at Stanford Universi-
ty’s Mineral-X initiative, we have devel-
oped a novel way of quantifying how 
useful an incremental piece of data is. We 
published the framework, which we call 
“efficacy of information,” in Natural 
Resources Research in March 2022, and we 
used it to design our drilling program for 
our northern Quebec exploration and for 
our other expeditions.

Over the course of the summer in 
Quebec, we drilled 10 exploration holes, 
each more than a kilometer away from 
the last. Each drilling location was deter-
mined by combining the results from our 
predictive models with the expert judg-
ment of our geologists. In each instance, 
the collected data indicated we’d find 
conductive bodies in the right geologic 
setting—possible minable ore deposits, 
in other words—below the surface. Ulti-
mately, we hit nickel-sulfide mineraliza-
tion in 8 of the 10 drill holes, which 
equates to easily 10 times better than the 
industry average for similarly isolated 
drill holes. 

We were also pleased with how accu-
rate and specific the predictions were. 
For instance, at hole KSC-22-004, our 
data scientists predicted a conductive 
body to be located somewhere between 

130 and 170 meters below the surface. Upon drilling, we 
encountered highly conductive rocks at 146 meters.

That particular discovery was made just days before the end 
of the field season. The data helped define the subsurface geology 
so that our team will start the next season—which begins soon—
by making the most effective drill holes to establish the shape 
and size of that ore deposit.

Assuming that ore deposit and others we’ve begun to iden-
tify in the area turn out to be as promising as we hope, we’ll be 
well on our way toward another mine for one of the crucial 
metals needed to electrify the planet. Collectively, the world 
needs at least 1,000 new mines to be developed by midcentury 
to provide enough critical metals to produce enough EVs and 
avoid the worst consequences of climate change. That’s a tall 
order. But by applying new AI systems like KoBold’s, we may 
just be able to dig up new opportunities fast enough.  

Audry Afango [far left] and Morgan McNeill work with a receiver on a ground 
electromagnetic loop in the middle of an angular boulder field in Nunavik, 
Que., Canada. On the right, McNeill, a geophysics technician, uses a 
superconducting quantum interference device (SQUID) to conduct a ground 
electromagnetic survey to pick up faint magnetic fields from conductive 
bodies underground.
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