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Abstract:

Fish habitat and aquatic life in rivers are highly dependent on water temperature. Therefore, it is important to understand
andto be able to predict river water temperatures using models. Such models can increase our knowledge of river thermal
regimes as well as provide tools for environmental impact assessments. In this study, artificial neural networks (ANNs) will be
used to develop models for predicting both the mean and maximum daily water temperature. The study was conducted within
Catamaran Brook, a small drainage basin tributary to the Miramichi River (New Brunswick, Canada). In total, eight ANN
models were investigated using a variety of input parameters. Of these models, four predicted mean daily water temperature
and four predicted maximum daily water temperature. The best model for mean daily temperature had eight input parameters:
minimum, maximum and mean air temperatures of the current day and those of the preceding day, the day of year and the
water level. This model had an overall root-mean-square error (RMSE) of 0Ð96 °C, a bias of 0Ð26 °C and a coefficient of
determination R2 D 0Ð971. The model that best predicted maximum daily water temperature was similar to the first model but
excluded mean daily air temperature. Good results were obtained for maximum water temperatures with an overall RMSE of
1Ð18 °C, a bias of 0Ð15 °C and R2 D 0Ð961. The results of ANN models were similar to and/or better than those observed from
the literature. The advantages of artificial neural networks models in modelling river water temperature lie in their simplicity
of use, their low data requirement and their good performance, as well as their flexibility in allowing many input and output
parameters. Copyright  2008 Crown in the right of Canada and John Wiley & Sons, Ltd.
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INTRODUCTION

With ever-increasing environmental concern related to
streams and rivers, water temperature has become an
important parameter to understand and to model (Caissie,
2006). Physical, chemical and biological processes are
all influenced by water temperature (Nemerow, 1985).
For instance, many physical characteristics (such as
viscosity, vapour pressure, density, and surface tension)
are dependent on water temperature. Also, many chemical
reactions, as well as the assimilation of organic matter
and gas solubility (dissolved oxygen), are influenced by
changes in water temperature.

River water temperature is a parameter that influences
almost every aspect of aquatic life. Water temperature
influences the development and the growth rate of aquatic
organisms (Elliot and Hurley, 1997). At high water
temperatures, the metabolic rate of salmonids increases
and, as a result, their energy reserves decline rapidly,
which increases the risk of death among fish (Langford,
1990). Furthermore, temperatures above a lethal threshold
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(e.g. 24 °C) may cause a thermal shock capable of
killing fish after only a few hours of exposure (Bouke
et al., 1975). Therefore, a better understanding of the
thermal regime of streams and rivers and the ability to
predict water temperatures is a great advantage in the
management of water and fisheries resources. It is also
an essential component of environmental impact studies.

Water temperature variations in streams can be influ-
enced by different factors, which are generally charac-
terized as meteorological and geophysical parameters.
The principal meteorological factors include solar radi-
ation, wind speed and air temperature. The water depth,
discharge, turbulence, and stream width are important
geophysical parameters affecting water temperature vari-
ability. Human activity can affect both meteorological
and geophysical parameters, which ultimately impacts on
water temperature. For example, studies have shown that
deforestation near rivers can cause a rise in water tem-
peratures due to reduced shading (Chen et al. 1998a,b).
Climate change, another consequence of anthropogenic
impacts, is projected to impact future water temperature
significantly (Mohseni et al., 2003).

There are many approaches to modelling river water
temperatures, and these can generally be classified into
regression models, stochastic models and deterministic
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models. Regression and stochastic models use classic
statistical techniques where water temperature is related
to relevant input parameters, such as air temperature. In
a deterministic water temperature model, the different
energy components are calculated based on meteorologi-
cal parameters. These energy components are then added
up to reflect the total energy transferred to the river, and
the total energy is also used to explain the water temper-
ature variability.

Many studies have been conducted on the modelling
of water temperatures in streams and rivers. Caissie et al.
(2001) and Marceau et al. (1986) have used stochastic
and deterministic models, whereas Mohseni et al. (1998)
used non-linear regression to predict river water temper-
ature. Deterministic models use a more conceptual mod-
elling approach with cause-and-effect relations between
site characteristics, meteorological parameters and river
water temperatures (Raphael, 1962; Marcotte and Duong,
1973; Morin and Couillard, 1990). Deterministic models
use parameters such as air temperature, relative humid-
ity, solar radiation, and wind velocity in the calculation
of energy fluxes. A major disadvantage of determinis-
tic models is the extent of data required to run these
models, data that are seldom available near study sites.
Therefore, many researchers have relied on stochastic or
other models that are based on statistical relationships
between fewer input parameters and water temperature.
Many of these models require only air temperature and
a continuous time-series of water temperature for the
model calibration. Artificial neural network (ANN) mod-
elling applications have steadily increased over the years;
however, very few applications have addressed the mod-
elling of river water temperatures. ANNs have become
an alternative and a complementary tool to conventional
modelling. As such, ANN models will be developed and
used in the present study to predict both mean and max-
imum temperatures of a small stream catchment.

ANNs have been used since the early 1990s as a
hydrologic modelling tool, particularly in rainfall–runoff,
water quantity and quality predictions, as well as in
groundwater systems modelling and water resources
management (Govindajaru, 2000). The advantage of
ANNs is that the user does not need to know the
relationship between the input and output parameters,
a priori. ANNs are also useful in describing complex
non-linear relationships even when data time-series have
inherent noises or errors (Dreyfus et al., 2002).

Although ANNs have been applied in hydrology during
the past few decades, very few water temperature mod-
elling studies are found within the literature where ANNs
have been used (Bélanger et al. 2005). Also, many sta-
tistical water temperature models (e.g. stochastic and/or
regression models) used only the mean air temperature to
predict mean water temperature. Therefore, the objective
of the present study was to develop ANN models using
many input parameters (such as the minimum, maximum
and mean daily air temperatures) to see whether added
parameters could potentially improve the model’s perfor-
mance. The specific objectives are: (1) to develop ANN

models to predict the mean daily water temperatures
based on air and water temperature (mean, minimum and
maximum) and (2) to develop ANN models to predict
the maximum daily water temperatures using the same
data set as for the mean temperature. In fact, both of
these metrics are generally important from an ecological
perspective and we could not find any instances where
both mean and maximum water temperatures have been
considered within the same modelling study. As a prac-
tical application, these models were developed, tested
and validated using data from Catamaran Brook (New
Brunswick, Canada) and using data from 1992 to 2002.

Previous water temperature modelling studies have
been carried out in Catamaran Brook (Caissie et al., 1998,
2001, 2005); however, none of these models was well
adapted to consider many input parameters (e.g. mean,
minimum, and maximum temperatures) within the same
model. ANN models have this ability of considering
many input parameters; therefore, the present study will
extend current knowledge and understanding on how this
added information can contribute to potentially better
modelling performances.

DATA AND METHODS

Study area

This study was carried out within the Catamaran
Brook in central New Brunswick, Canada, which is
a tributary of the Little Southwest Miramichi River.
Catamaran Brook is located at latitude 46°52Ð70N and
longitude 66°06Ð00W (Figure 1). It is the site of a 15-
year multidisciplinary hydrobiological research study
aimed at quantifying stream ecosystem processes and
the impact of timber harvesting (Cunjak et al., 1990).
Catamaran Brook is 20Ð5 km long, approximately 15 m
wide, 0Ð3 m deep and has a total drainage basin area of
approximately 52 km2. It is one of the Miramichi River’s
most productive Atlantic salmon streams (Randall, 1981).
It is well sheltered by upland slopes and streamside
vegetation, mainly consisting of second-growth, mature
forest species, estimated as 65% coniferous and 35%
deciduous (Cunjak et al., 1990).

A meteorological station situated at mid-basin collects
air temperature data used in this study (Figure 1). Mean,
minimum and maximum values were calculated from
hourly data to carry out the analysis within the present
study. July has the highest mean monthly air temperature
at 18Ð8 °C and January has the lowest with a temperature
of �11Ð8 °C (Caissie and El-Jabi, 1995). A hydrometric
gauge situated at mid-basin monitors the streamflow in
the brook. This station measures hourly water level, from
which discharge is then calculated using a rating curve.
The high flow period occurs from late April to early
May. To date, the highest measured flow at the gauge
was 13 m3 s�1 on 3 May 1991 and the lowest measured
flow was 0Ð016 m3 s�1 on 3 September 1994. The mean
annual flow was calculated at 0Ð62 m3 s�1.

A water temperature sensor was also installed at
mid-basin and it collects hourly water temperature data
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Figure 1. Map of Catamaran Brook showing the location of the water temperature site, hydrometric station and meteorological station

from which mean, minimum and maximum values were
obtained. The study was carried out during the ice-free
period, which extends from approximately day 100 (10
April) to day 320 (16 November). The maximum tem-
perature recorded for the study period (1992–2002) was
24Ð3 °C on 17 July 1999. The mean annual water tem-
perature was calculated at 9Ð8 °C, with July the warmest
month at 15Ð5 °C. The daily summer temperatures follow
an annual cycle (warming and cooling periods), which
peaked on 30 July (Caissie et al., 2005).

Artificial neural networks

The development of ANNs began in the 1950s with the
objective of understanding the functioning of the human
brain and emulating some of its functions. Since the
early 1990s, the method has developed largely because
of powerful new algorithms and computational tools
(Govindajaru, 2000).

The basic element used in ANNs is called a neuron or a
node. A neuron is a non-linear algebraic function, param-
eterized with boundary values (Dreyfus et al., 2002). The
signal passing through the neuron is modified by weights
w and transfer functions f. Groups of neurons are called
layers. A neural network generally consists of a finite
number of these layers (Figure 2). The first layer, called
the input layer, is where the information is fed into the
network before it goes through a number of hidden layers
and ends up in the output layer. Hidden layers are inter-
mediate layers between input and output layers. Input
parameters and output variables are often represented by
pi and yi respectively. Signals passing through a neuron
are modified and then passed to neurons in the adjacent
layer (never in the same layer). This process is repeated
until the output layer is reached (Govindajaru 2000).

This study used an ANN model called the multilayer
perceptron, which is only one of many models (e.g. Hop-
field, Hamming, Carpenter, one-layer perceptron, etc.).
The multilayer perceptron uses the back propagation of

Network
Input (pi)

Network
Output (yi)

Input
Layer Hidden

Layer Output
Layer

Figure 2. Illustration of ANN structure

the error gradient. This training algorithm is a technique
that helps distribute the error in order to arrive at a best
fit or minimum error, i.e. a network that best represents
observed versus predicted outputs. After the information
has gone through the network in a forward direction and
the network has predicted an output, an error is associ-
ated with this output in relation to observed data. The
back-propagation algorithm redistributes the errors back
through the model, and weights are adjusted accordingly.
Several iterations are carried out until the error is mini-
mized.

Each neuron from a layer is linked to every neuron
from the next layer. These links are given a synaptic
weight that represents its connection strength (Govinda-
jaru, 2000). A summation is then calculated following
Equation (1) before going through another function f,
called the activation function, to obtain the output:

n D w1,1p1 C w1,2p2 C . . . C w1,ipi C b �1�

The activation function is a function that transforms
the signal and is usually a sigmoid function represented
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by

f�n� D 1

1 C e�ˇn �2�

The sigmoid function is often used in hydrology as it
and its derivative are relatively simple and it accurately
represents non-linear relations (Govindaraju, 2000).

In hydrologic studies, ANN models generally consist
of generating an output given a specific input time-
series. The learning phase, or training, is the process
whereby the network estimates the synaptic weights
(Dreyfus et al., 2002). There are two types of training:
supervised and unsupervised (Dreyfus et al., 2002). The
supervised training needs input and output parameters,
unlike the non-supervised training which needs only input
parameters to run. The present study used the supervised
training method. The ANN model is established through
the training process and while being trained the model’s
performance is tested with different and independent data
(i.e. the testing data set). The testing data set consists
of generally 10–20% of the data set, selected randomly
or sequentially. Although data from the testing are
independent of those from the training, the testing helps
the training process of ANNs. As such, if the network
performs well on the testing data, then the ANN model
is expected to perform well on any other data. During
the testing, the model is evaluated to make sure that the
model is not overtraining. The testing is a validation
that is done simultaneously with the training process.
Once the network has been trained, another independent
set of data is sent through the ANN model as a true
validation phase. This is carried out to see how well the
ANN model is able to predict the underlying phenomenon
using an independent data set that was not part of the
training process. If the ANN produces similar results in
the training, testing and validation phases, i.e. similar
coefficients of determination R2, then it can be used as
a modelling tool. The present study used the software
NNMODEL 32 (version 1Ð2 2Ð0 Copyright 1994–1998
Neural Fusion Shareware) to develop an ANN model to
predict water temperatures.

River water temperature models

In total, eight models were developed in this study:
four models predicting the mean water temperature
(MEAN1 to MEAN4) and four predicting the maximum
water temperature (MAX1 to MAX4; Table I). Predic-
tions were made at the daily time step for both mean and
maximum water temperatures. The input parameters for
these models are combinations of the following parame-
ters: day of the year, the minimum, maximum and mean
air temperatures of the present day, the minimum, maxi-
mum and mean air temperatures of the previous day, and
the water level. The mean air temperature and the mean
water temperature at Catamaran Brook were calculated
based on data taken each hour over a 24 h period.

These specific parameters were selected because they
were more readily available than complete weather sta-
tion data (including solar radiation, wind speed, etc.) and

Table I. Different ANN models developed to predict mean and
maximum river water temperatures at Catamaran Brook

Model Input parametersa

Mean daily water temperature
MEAN1 1–8 (day, min., max., mean, level)
MEAN2 1, 4, 7, 8 (day, mean, level)
MEAN3 1, 3, 4, 6, 7, 8 (day, max., mean, level)
MEAN4 1, 2, 3, 5, 6, 8 (day, min., max., level)

Maximum daily water temperature
MAX1 1–8 (day, min., max., mean, level)
MAX2 1, 3, 6, 8 (day, max., level)
MAX3 1, 3, 4, 6, 7, 8 (day, max., mean, level)
MAX4 1, 2, 3, 5, 6, 8 (day, min., max., level)

a (1) Day of year (e.g. 1 April D 91); (2) minimum air temperature of
the present day (°C); (3) maximum air temperature of the present day;
(4) mean air temperature of the present day; (5) minimum air temperature
of the previous day; (6) maximum air temperature of the previous day;
(7) mean air temperature of the previous day; (8) water level (m).

because previous studies had shown their importance in
non-deterministic water temperature models (Cluis, 1972;
Song and Chen, 1977; Stefan and Preud’homme, 1993;
Mohseni and Stefan, 1999; Bélanger et al., 2005). The air
temperature of the previous day was used in all models,
because air and water temperature are strongly corre-
lated and they both show some level of autocorrelation
(Kothandaraman, 1971; Cluis, 1972).

Data from days 100 to 320 (10 April to 16 November)
were used for each year of the study. This corresponds
approximately to the period of the year when there is no
ice in the brook. Missing data were present in 1992 from
day 100 to day 127 (10 April to 7 May) and day 218
to day 224 (6–12 August). Therefore, periods of missing
data in 1992 were not modelled. The first 7 years of data
(1992 to 1998) were used for model training and testing.
Data from 1992 to 1996 were used for the training itself,
whereas a sequential data set (1997 and 1998) was used
for testing. The testing is considered a validation step
while the ANN model is being trained. The remaining
4 years (1999 to 2002) were used for model validation.

For the training period, the parameters of the ANN
(i.e. maximum number of iterations, maximum number
of hidden neurons and learning rate) were selected to
minimize the error between the predicted and observed
water temperatures. This was carried out by selecting
different parameters until the best results were obtained
without overtraining the ANN model.

Modelling performance criteria

To determine the performance of each model, three
criteria were used: the RMSE, the bias and the coefficient
of determination R2.

The RMSE represents the error associated with the
model and can be calculated using

RMSE D

√√√√√√
N∑

iD1

�Pi � Oi�
2

N
�3�
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Table II. Results of ANN models for the prediction of mean water temperatures at Catamaran Brook

Model Input parametersa Period Bias RMSEb R2

MEAN1 1–8 Training (1992–1996) 0Ð47 0Ð96 0Ð974
Testing (1997–1998) 0Ð69 1Ð17 0Ð965
Validation (1999–2002) �0Ð20 0Ð84 0Ð981
All years (1992–2002) 0Ð26 0Ð96 0Ð971

MEAN2 1, 4, 7, 8 Training 0Ð51 1Ð01 0Ð972
Testing 0Ð70 1Ð27 0Ð957
Validation �0Ð20 0Ð87 0Ð979
All years 0Ð28 1Ð01 0Ð967

MEAN3 1, 3, 4, 6, 7, 8 Training 0Ð57 1Ð03 0Ð973
Testing 0Ð80 1Ð27 0Ð961
Validation �0Ð11 0Ð82 0Ð981
All years 0Ð36 1Ð01 0Ð970

MEAN4 1, 2, 3, 5, 6, 8 Training 0Ð60 1Ð05 0Ð972
Testing 0Ð81 1Ð30 0Ð960
Validation �0Ð07 0Ð82 0Ð981
All years 0Ð39 1Ð03 0Ð969

a (1) Day of year (e.g. 1 April D 91); (2) minimum air temperature of the present day (°C); (3) maximum air temperature of the present
day; (4) mean air temperature of the present day; (5) minimum air temperature of the previous day; (6) maximum air temperature of
the previous day; (7) mean air temperature of the previous day; (8) water level (m).
b RMSE: root-mean-square error.

where Pi represents the predicted water temperature, Oi

represents the observed water temperature and N repre-
sents the number of daily water temperature observations
within a given time period.

The bias represents the mean of all the individual
errors and indicates whether the model overestimates or
underestimates the water temperature within a particular
time period. It is calculated using

bias D 1

N

N∑
iD1

�Pi � Oi� �4�

The coefficient of determination represents the percent-
age of variability that can be explained by the model. It
is calculated using

R2 D




N
N∑
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N∑
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2

�5�

where parameters have been defined above.

RESULTS

Results for the eight ANN models developed for Cata-
maran Brook are shown in Table II (mean daily water
temperature) and Table III (maximum daily water tem-
perature). Table II shows that MEAN1 (i.e. when con-
sidering all input parameters) provided the best overall

Table III. Results of ANN models for the prediction of maximum
water temperatures at Catamaran Brook

Model Input
parametersa

Period Bias RMSE R2

MAX1 1–8 Training
(1992–1996)

0Ð87 1Ð53 0Ð952

Testing
(1997–1998)

1Ð62 1Ð94 0Ð962

Validation
(1999–2002)

�0Ð05 1Ð28 0Ð967

All years
(1992–2002)

0Ð67 1Ð53 0Ð948

MAX2 1, 3, 6, 8 Training �0Ð97 1Ð59 0Ð952
Testing �0Ð35 1Ð37 0Ð950
Validation �1Ð84 2Ð22 0Ð962
All years �1Ð18 1Ð82 0Ð946

MAX3 1, 3, 4, 6, 7, 8 Training 0Ð43 1Ð11 0Ð969
Testing 1Ð05 1Ð59 0Ð956
Validation �0Ð27 1Ð06 0Ð974
All years 0Ð29 1Ð19 0Ð962

MAX4 1, 2, 3, 5, 6, 8 Training 0Ð30 1Ð07 0Ð968
Testing 0Ð91 1Ð52 0Ð955
Validation �0Ð41 1Ð12 0Ð973
All years 0Ð15 1Ð18 0Ð961

a (1) Day of year (e.g. 1 April D 91); (2) minimum air temperature of
the present day (°C); (3) maximum air temperature of the present day;
(4) mean air temperature of the present day; (5) minimum air temperature
of the previous day; (6) maximum air temperature of the previous day;
(7) mean air temperature of the previous day; (8) water level (m).

results for mean daily water temperature with an RMSE
of 0Ð96 °C (1992–2002). This model also showed the
lowest overall bias at 0Ð26 °C and the highest R2 (0Ð971).
Although other models showed slightly higher RMSE and
biases, as well as lower R2, it was noted that all ANNs
developed for mean daily water temperature performed
relatively well with RMSE below 1Ð03 °C (all years).
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Among these models, it should be noted that MEAN2
represents a more classic modelling application, where
mean water temperatures are predicted using mean air
temperatures.

A comparison by periods showed that the testing
period generally had higher RMSEs (1Ð17–1Ð30 °C),
higher biases (0Ð69–0Ð81 °C) and correspondingly lower
coefficients of determination than the training period
(Table II). In contrast, the validation period showed
the lowest RMSEs (0Ð82–0Ð87 °C) with a generally
negative bias (�0Ð07 to �0Ð20 °C) and the highest
R2.

When considering the modelling of maximum water
temperature, the best overall model was MAX4 with
an RMSE of 1Ð18 °C (1992–2002; Table III), although
MAX3 provided very good results as well (RMSE D
1Ð19 °C). The best overall bias was also observed for
MAX4 at 0Ð15 °C and the coefficient of determination
was calculated at 0Ð961. Unlike ANNs for mean water
temperatures, which all performed well, some ANN mod-
els for maximum water temperatures showed significantly
higher RMSE, particularly MAX1 (RMSE D 1Ð53 °C)
and MAX2 (RMSE D 1Ð82 °C), with correspondingly
lower coefficients of determination (0Ð948 and 0Ð946;
Table III).

A comparison of performances during different peri-
ods showed that RMSEs were generally higher during the
testing (1Ð52–1Ð94 °C) than during the training, with the
exception of MAX2 (Table III). Results during the vali-
dation period were variable among models. For instance,
MAX1 showed the best performance during the vali-
dation (RMSE D 1Ð28 °C), whereas MAX2 showed the
worst performance at 2Ð22 °C. MAX3 and MAX4 showed
similar performances during the validation and training
periods. For maximum water temperature, coefficients
of determination were somewhat variable among peri-
ods and varied between 0Ð950 and 0Ð974 (Table III).
The bias was generally positive during the training and
testing periods (with the exception of MAX2), whereas
negative values were observed during all validation peri-
ods.

Among all ANN models, two were chosen out of the
eight to study intra- and inter-annual performances: one
for the mean daily water temperature and one for the
maximum daily water temperature. MEAN1 was chosen
for the mean temperature and MAX4 was chosen for
the maximum temperature based on the best overall
performance of these models (RMSE, bias and R2).
MAX4 had the same input parameters as MEAN1, with
the exception that mean values of air temperatures were
not included.

When looking at interannual performance, MEAN1
performed best in years 1995, 1999 and 2000, with
RMSEs of 0Ð72 °C, 0Ð79 °C and 0Ð77 °C respectively
(Table IV). The years 1994 and 2002 were very simi-
lar, with RMSEs of 0Ð81 °C. The worst performance was
observed in 1997, with an RMSE of 1Ð30 °C. The lowest
biases for MEAN1 were observed in 1996 and 2002, with
respective values of �0Ð02 °C and �0Ð07 °C, whereas the

Table IV. Results of the ANN (MEAN1) in the modelling of
mean water temperatures at Catamaran Brook

Year Bias RMSE R2

1992 0Ð62 1Ð08 0Ð959
1993 1Ð03 1Ð15 0Ð990
1994 0Ð31 0Ð81 0Ð984
1995 0Ð40 0Ð72 0Ð988
1996 �0Ð02 0Ð99 0Ð973
1997 1Ð06 1Ð30 0Ð979
1998 0Ð32 1Ð03 0Ð964
1999 �0Ð23 0Ð79 0Ð985
2000 �0Ð19 0Ð77 0Ð978
2001 �0Ð32 0Ð97 0Ð977
2002 �0Ð07 0Ð81 0Ð988

All years 0Ð26 0Ð96 0Ð971

Table V. Results of the ANN (MAX4) in the modelling of
maximum water temperatures at Catamaran Brook

Year Bias RMSE R2

1992 0Ð35 1Ð06 0Ð955
1993 0Ð97 1Ð18 0Ð986
1994 0Ð03 0Ð88 0Ð981
1995 0Ð29 0Ð81 0Ð985
1996 �0Ð18 1Ð31 0Ð957
1997 1Ð35 1Ð64 0Ð973
1998 0Ð47 1Ð39 0Ð963
1999 �0Ð71 1Ð23 0Ð977
2000 �0Ð47 1Ð11 0Ð973
2001 �0Ð42 1Ð12 0Ð976
2002 �0Ð05 1Ð02 0Ð979

All years 0Ð15 1Ð18 0Ð961

worst biases were observed in 1993 (1Ð03 °C) and 1997
(1Ð06 °C). The highest coefficients of determination were
observed in 1993–1995, 1999 and 2002, with all values
exceeding 0Ð98.

With regard to MAX4 for the prediction of maximum
water temperatures, the lowest RMSEs were attained
in 1994 and 1995, with values of 0Ð88 °C and 0Ð81 °C
respectively (Table V). Other years generally revealed
values exceeding 1 °C; however, very good performances
were observed in 1992 (1Ð06 °C) and 2002 (1Ð02 °C). The
highest RMSEs for maximum water temperatures were
observed in 1997 and 1998, with values of 1Ð64 °C and
1Ð39 °C respectively. The best performances in relation
to biases for MAX4 were observed in 1994 and 2002,
with values of 0Ð03 °C and �0Ð05 °C, although most years
showed a bias lower than 1 °C (with the exception of
1997, which showed a bias of 1Ð35 °C). Coefficients of
determination among years were consistent with other
performance criteria, and values generally exceeded 0Ð97
for most years.

Figure 3 provides information on the intra-annual
water temperature variability and the overall ANN mod-
elling performance for mean daily temperatures at Cata-
maran Brook using MEAN1. This figure shows that
MEAN1 captured the water temperature variability very
well, particularly in 1994, 1995, 1999 and 2002, where

Copyright  2008 Crown in the right of Canada and John Wiley & Sons, Ltd. Hydrol. Process. 22, 3361–3372 (2008)
DOI: 10.1002/hyp



STREAM TEMPERATURE MODELLING USING ANNS 3367

1992

0

5

10

15

20

25

100 120 140 160 180 200 220 240 260 280 300 320

Day of year

M
ea

n
 d

ai
ly

 W
T

 (
°C

)

Observed
Predicted

1993

0

5

10

15

20

25

100 120 140 160 180 200 220 240 260 280 300 320

Day of year

M
ea

n
 d

ai
ly

 W
T

 (
°C

)

1994

0

5

10

15

20

25

100 120 140 160 180 200 220 240 260 280 300 320

Day of year

M
ea

n
 d

ai
ly

 W
T

 (
°C

)

1995

0

5

10

15

20

25

100 120 140 160 180 200 220 240 260 280 300 320

Day of year

M
ea

n
 d

ai
ly

 W
T

 (
°C

)

1996

0

5

10

15

20

25

100 120 140 160 180 200 220 240 260 280 300 320

Day of year

M
ea

n
 d

ai
ly

 W
T

 (
°C

)

1997

0

5

10

15

20

25

100 120 140 160 180 200 220 240 260 280 300 320

Day of year

M
ea

n
 d

ai
ly

 W
T

 (
°C

)

Figure 3. Mean daily water temperature modelling for Catamaran Brook (New Brunswick, Canada) using ANN MEAN1

both time-series (observed and predicted) were almost
superimposed. A poorer modelling performance was
observed in 1993, although an offset of approximately
1 °C seems evident. Moreover, the ANN model generally
showed poorer predictions early in the spring of each
year with an overestimation of water temperature. This
overestimation was most noticeable in the years 1997 and
2001, although 1994 and 1996 showed some overestima-
tion as well. In contrast, ANN models showed excellent
predictions towards the end of each year. There are other
short periods where the water temperatures were poorly
predicted (e.g. 1996, days 158 to 169). Conversely, mid-
summer water temperatures (between day 180 and 240)
were very well captured by the ANN model for mean
water temperature, particularly in 1994, 1995, 1999 and
2001, where summer temperatures were slightly higher
than in other years. In general, MEAN1 captured the
water temperatures well and no systematic or consistent
departures were noticeable.

Intra-annual results for MAX4 (maximum daily water
temperature) are presented in Figure 4. As reflected by
slightly higher RMSEs, this model did not predict the
maximum water temperature as well as the mean daily
water temperature (i.e. MEAN1). However, the overes-
timation observed in MEAN1 at the beginning of each
year was not present in MAX4. As in MEAN1, the pre-
dictions were better in autumn than during other times of
year. Very good results were observed in 1992, 1994,
1995 and 2001, where a very close fit was observed
between predicted and observed autumn temperatures.
The ANN model for maximum daily temperatures pro-
duced less satisfying results in 1993, 1997 and 1998,
where it overestimated water temperatures throughout the
summer. There is also a short period in 1996 (between
days 156 and 183) where the model underestimates the
highest temperatures, and this period was consistent with
that of a lower performance for mean water temperatures
(i.e. MEAN1).
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Figure 3. (Continued )

DISCUSSION

In general, it was observed that ANN models were very
good for the prediction of river water temperatures, with
RMSE close to 1 °C for mean daily water temperature
and with a slightly higher RMSE for maximum water
temperature (i.e. RMSE D 1Ð2 °C). ANN models with
the best overall performances were then chosen for both
mean and maximum temperatures (i.e. based on the R2,
RMSE and bias). The models that showed the best results
using a variety of input parameters were MEAN1 for the
mean water temperature and MAX4 for the maximum
temperature.

MEAN1 showed the best results for the prediction of
the mean daily water temperatures; however, MEAN2
is considered a more classic application where mean
daily water temperature is predicted using mean daily
air temperature (i.e. using the mean to predict the
mean). Whereas MEAN1 gave the best overall results,
the performances of MEAN2 and other models showed

good results, comparable to MEAN1 (Table II). The
biases and coefficients of determination among all ANN
models predicting mean water temperatures showed very
comparable results, with R2 > 0Ð97 and bias <0Ð39 °C.

The ANN modelling results were compared with
those of previous studies. For example, the results of
MEAN1 were comparable to and/or better than those
of Marceau et al. (1986), which used both deterministic
and stochastic models. For instance, Marceau et al.
(1986) showed RMSEs ranging from 1Ð10 to 2Ð52 °C
with a mean overall RMSE of 1Ð86 °C (1968–1971) for
their stochastic model, whereas their deterministic model
showed a slightly higher mean RMSE (2Ð30 °C). The
results of ANN models were also compared with other
modelling results from Catamaran Brook, namely those
obtained using a stochastic model (Caissie et al., 1998)
and using an equilibrium temperature concept model
(Caissie et al., 2005) (Table VI). At Catamaran Brook, a
mean overall RMSE of 1Ð21 °C was calculated using the
equilibrium temperature concept model (Caissie et al.,
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Figure 4. Maximum daily water temperature modelling for Catamaran Brook (New Brunswick, Canada) using ANN MAX4

2005), whereas RMSEs ranged between 1Ð0 and 1Ð3 °C
when using stochastic models (Caissie et al., 1998). The
results of this and previous studies show that the present
ANN model (i.e. MEAN1) provides a slightly better
modelling performance with an improvement exceeding
0Ð2 °C, which can be considered significant within these
magnitudes of temperatures (¾1 °C).

For the prediction of the maximum water temper-
atures, MAX2 represents a more classic approach to
modelling, where maximum air temperatures are used to
predict maximum water temperatures. MAX2 performed
somewhat poorly compared with MAX4, which showed
the best overall results (using the minimum and max-
imum air temperature, day of year and water level as
input parameters). In particular, MAX2 had an RMSE of
1Ð82 °C compared with 1Ð18 °C for MAX4, which rep-
resents an improvement of 0Ð64 °C over the period of
11 years. Unlike mean water temperature, where a sig-
nificant improvement was not necessarily obtained by

Table VI. Modelling performances of previous studies at Cata-
maran Brook for both mean and maximum water temperatures

Year Mean water temperature (°C) Maximum water
temperature (°C)

Stochastic
modellinga

Equilibrium
temperature

conceptb

Stochastic modellingc

1992 1Ð28 0Ð95 1Ð48
1993 0Ð96 1Ð20 1Ð51
1994 1Ð57 1Ð13 1Ð62
1995 1Ð24 1Ð04 1Ð48
1996 — 1Ð33 1Ð48
1997 — 1Ð24 1Ð49
1998 — 1Ð29 —
1999 — 1Ð38 —

All years 1Ð26 1Ð21 1Ð51

a Caissie et al. 1998.
b Caissie et al. 2005.
c Caissie et al. 2001.
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Figure 4. (Continued )

adding more input parameters, adding parameters sig-
nificantly improved the ANN modelling of maximum
water temperatures. In fact, the results showed that, when
adding another input parameter, a significant improve-
ment was realized in the modelling (e.g. MAX3 and
MAX4; Table III). This represents one of the strengths
of ANN models, whereby they can easily accommodate
a variety of input parameters within the same study.

Very few studies are found within the literature where
the maximum water temperatures are modelled on a
daily basis, although this is a very important parameter
from an aquatic habitat perspective. One such study was
conducted at Catamaran Brook, where six years of data
were analysed using a stochastic model (Caissie et al.,
2001) and the RMSEs are also presented in Table VI.
The results of MAX4 were compared with those results.
In that study, Caissie et al. (2001) calculated an overall
RMSE of 1Ð51 °C (1992–1997) using a stochastic water
temperature model. MAX4 showed an RMSE of only
1Ð18 °C (1992–2002), which represents an improvement

of 0Ð33 °C, although the study period was different. For
the stochastic model, the worst performance year was in
1994, with an RMSE of 1Ð62 °C, which is comparable
to the worst performance year for MAX4 (1997 at
1Ð64 °C; Table V). Conversely, the best performance year
with the ANN model was significantly better than the
stochastic model (0Ð81 °C for the ANN model compared
with 1Ð48 °C for the stochastic model).

Intra-annual performances showed that ANN models
(for both mean and maximum temperatures) performed
best in late summer and autumn, although the midsum-
mer temperatures were also well captured during most
years. These results suggest that discharge potentially
plays a role in the modelling performance, as the autumn
period frequently experiences predominantly low water
levels. This could potentially result in more effective
thermal exchange during this time of year and, there-
fore, result in better modelling performances. MEAN1
showed a slight overestimation of water temperatures
in early spring, which is consistent with results from
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other models predicting mean water temperatures (Caissie
et al., 1998, 2005). In fact, stochastic and equilibrium
temperature models both showed such an overestimation
in early spring, a phenomenon that has been previously
explained as a potential snowmelt influence. During the
early spring, the atmospheric energy is most likely con-
tributing to snowmelt and soil heating processes and,
therefore, the water temperatures are not increasing as
rapidly as air temperatures. ANN models within this
study showed results consistent with those of previous
studies. In contrast, ANN models for maximum temper-
ature, particularly MAX4, did not show such an over-
estimation in early spring, and this model performed
relatively better during that time of year. Overall, it was
observed that both mean and maximum water temperature
models showed consistent intra-annual performances. For
example, when the mean water temperature model per-
formed well, such as in 2001, the maximum water tem-
perature ANN model performed equally well (Figures 3
and 4). The same is true for the period where the model
did not perform as well. For instance, a slight overesti-
mation was observed in 1997 and 1998 for mean tem-
peratures, and such was also the case for the maximum
temperature of the same years.

CONCLUSIONS

Studies have shown that river water temperatures can
depend on complex factors, including climate (alti-
tude, latitude), streamside vegetation, river geomorphol-
ogy, basin topography and others (Ward, 1985; Caissie,
2006). Although water temperature is influenced by many
hydrometeorological and geophysical factors, it can be
predicted using a variety of models (from simple to com-
plex models). These include regression models (Crisp
and Howson 1982; Erickson and Stefan 2000), stochas-
tic models (Marceau et al., 1986; Caissie et al., 1998)
and full energy budget or deterministic models (Raphael,
1962; Morin and Couillard, 1990; Sinokrot and Stefan,
1993).

ANN hydrology modelling applications have steadily
increased over the past decade; however, very few
applications have addressed the modelling of river water
temperatures. As such, the present study investigated
ANN models using a variety of input parameters to
predict both mean daily and maximum daily water
temperature within the same study.

In conclusion, ANN models were very effective in
the predicting of both mean and maximum daily water
temperatures conducted within the present study. The
ability to predict both of these temperature metrics within
the same study can be very important in aquatic and
ecosystem studies. We also concluded from the present
study that the combination of input parameters does
not seem to be as important for predicting daily water
temperatures, as most models provided very similar
results and performances. Such was not the case for
predicting maximum water temperature, where different

input parameters provided much more variable results.
Nonetheless, in the case of maximum water temperatures,
significant improvements in the modelling could be
realized by adding more input parameters over the more
classic approach (e.g. using maximum air temperature to
predict maximum water temperature). ANN models are
well adapted to these types of analysis, where different
input parameters are tested to find out which parameters
provide the best outcome. It was also concluded from
the present study that ANN water temperature models
are as good as other water temperature models, namely
models based on the equilibrium temperature concept
and stochastic models, with performances in the range
of 1 °C (mean water temperature) to 1Ð2 °C (maximum
temperature).

ANNs are first and foremost interpolation tools with
good generalization capability. This was shown in the
present study by modelling long-term water temperature
time-series. However, ANN models should be applied
with caution, especially in the extrapolation domain, as
unexpected results could arise because the model may not
be trained for those conditions. Nevertheless, the advan-
tage of ANN models was shown within this study. This
is based on their capability as a universal approximator,
as well as on the simplicity of model development, appli-
cation, and future model updating. Current study results
showed that ANN models can effectively extract water
temperature relationships between input and output time-
series; as such, ANN models can be a very powerful
modelling tool in water resources and fisheries manage-
ment, which should not be neglected.
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