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Abstract
Climate change has a significant influence on streamflow variation. The aim of this study is to

quantify different sources of uncertainties in future streamflow projections due to climate

change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (repre-

sentative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM)

are used. The assessment work is conducted for 2 different future time periods (2036 to 2065

and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow fre-

quency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case

study. The results show that the downscaling models contribute the highest amount of uncer-

tainty to future streamflow predictions when compared to the contributions by global climate

models or representative concentration pathways. It is also observed that the summer flows into

Strathcona dam will decrease, and winter flows will increase in both future time periods. In addi-

tion to these, the flow magnitude becomes more uncertain for higher return periods in the

Campbell River system under climate change.
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1 | INTRODUCTION

Impacts of climate change possess a significant threat to the water

resources for all continents in the world. Changing climate will magnify

the existing risks and increase the future risks associated with manage-

ment of water resources systems. The frequency and magnitude of

streamflow are affected by climate change, and there is a clear indica-

tion that changes in streamflow will continue in the future because of

continuous increase in the concentration of greenhouse gasses (GHGs)

in the atmosphere (IPCC, 2013). The streamflow variation is not uni-

form across the world, but it is hydrologic regime specific. For example,
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a decreasing trend in maximum flows has been identified for the mar-

itime provinces of Canada (east coast) and the St Lawrence River basin

(Leclerc & Ouarda, 2007) in the last two decades. On the contrary, in

the northwest and west parts of Canada, an increasing trend in mini-

mum annual flow has been observed for the period of 1970–2005

(Warren & Lemmen, 2014). Variation in magnitude and frequency of

streamflow increases the vulnerability of the water infrastructure.

According to the Public Infrastructure Engineering Vulnerability

Committee of Engineers Canada (Canadian Council of Professional

Engineers, 2008), failure of water resource's infrastructures due to

extreme hydrological events (droughts and floods) will increase across

Canada due to climate change. A study by the Canadian Institute of

Actuaries (2014) found that water‐related insured damage and losses

could increase by about 20% to 30% in the next few decades across

Canada. Simonovic (2008) also suggested that water resource infra-

structure planning, design, and operations should be revised to accom-

modate the expected changes in magnitude and frequency of

streamflows.

Atmosphere–Ocean global climate models (AOGCMs) are credible

and reliable tools for global scale climate analyses. These models are

numerical representation of the earth's climate system, which includes
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biological, chemical, and physical properties of climate variables and

feedback relationships between these variables. Because AOGCMs

provide information on global scale, tools are required for regional

studies to convert the global scale information to local scale. Down-

scaling methods are well known and used for transferring coarse‐scale

climate information to regional scale. Projection of hydro‐climatic

variables using downscaling includes several sources of uncertainties.

Uncertainties may arise from (a) the selection of AOGCM; (b) the

choice of carbon emission scenarios; (c) the choice of downscaling

models (DSMs); (d) the selection of hydrological model and model

parameters; and (e) the internal variability of the climate system.

According to Prudhomme and Davies (2008), selection of AOGCMs

creates more uncertainty in the downscaling process compared to

the choice of emission scenarios or model parameterization. However,

its also found that downscaling methods might be a significant source

of uncertainty in hydrologic projections compared to the choice of cli-

mate models and emission scenarios that are a much less significant

source of uncertainty (Bürger, Sobie, Cannon, Werner, & Murdock,

2012; Mandal, Breach, & Simonovic, 2016a). All the studies mentioned

above they investigated only changes in climatic variables, for example,

temperature or precipitation (Pr). Najafi, Moradkhani, and Jung (2011)

conducted a study to compare uncertainties in predicted future flow

stemming from different global climate models (GCMs), emission sce-

narios, and hydrological models. They considered eight GCMs, two

emission scenarios from CMIP3 (Coupled Model Intercomparison Pro-

ject 3) and four hydrologic models. The Tualatin river basin, Oregan,

USA, was used as a study area. The study concludes that uncertainty

in streamflow due to the GCMs structure is higher than the uncer-

tainty due to the choice of the hydrologic model. However, Najafi

et al. (2011) also suggested that hydrologic model selection is impor-

tant when assessing hydrologic impacts under changing climate condi-

tion. The structural difference in hydrological models and uncertainties

in parameter estimation can affect the spatial and temporal distribution

of runoff. Recently, Surfleet and Tullos (2013) have conducted another

study to explore uncertainties in predicted hydrologic response due to

the choices of GCMs and a hydrological model. They selected the

Santiam River basin in Oregon, USA, for case study purpose and found

that GCM structure and parameterization contribute more to the

uncertainties in predicted flow, compared to the contribution of hydro-

logic models. However, limited literature is available in Canada, which

investigates all sources of uncertainty in streamflow projections under

climate change. Schnorbus, Bennett, Werner, and Berland (2011)

assessed the hydrologic impacts of climate change in three different

watersheds (Peace, Campbell, and Columbia River) of British Columbia

(BC), Canada. This investigation is conducted using a suite of eight

GCMs with three emission scenarios. Climate variables from GCMs

were downscaled using Bias Corrected Spatial Disaggregation method.

This assessment concludes that GCMs are indeed a significant source

of uncertainty when only a single DSM is used. Another study has

been conducted by Das and Simonovic (2012) to assess uncertainty

due to climate change in extreme flood flows for the Upper Thames

River Basin, Ontario, Canada. In this study, three carbon emission sce-

narios and six GCMs with a single weather generator based on the k‐

nearest neighbour (K‐NN) used for downscaling the climate variables.

This study also found that different GCMs introduce more uncertainty
compared to others sources. Dibike and Coulibaly (2005) assessed

impacts of climate change on streamflow in the Saguenay watershed,

Quebec, Canada. They used two DSMs and two hydrological models

for this study. The results of their work show that the variation in river

flow due to the choice of DSM is more significant than the variation

introduced by choice of hydrological model. However, they did not

consider variation due to the choice of emission scenario and/or

GCMs.

Previously, most of the climate change assessment studies con-

ducted in Canada were based on a single downscaling method except

Dibike and Coulibaly (2005) who compared two downscaling tools

and two hydrologic models. The main objective of this paper is to char-

acterize the primary sources of uncertainty in simulated streamflow

under changing climate conditions. The case study area is Campbell

River basin, BC, Canada. The Campbell River is a coastal watershed

in the central part of Vancouver Island. It consists of three reservoirs:

Upper Campbell, Lower Campbell, and John Hart. From this river

catchment, 1,230 GWh (gigawatt hours) of electricity is generated,

which is equal to 11% of Vancouver Island's annual energy demand

(BC Hydro Generation Resource Management, 2012). Hence, the var-

iation in inflow into Campbell River reservoirs may have very signifi-

cant economic and environmental consequences.

The detailed objectives of this study include quantification of the

magnitude and frequency of streamflow in Campbell River basin con-

sidering three main sources of uncertainty introduced by the selection

of downscaling methods, GCMs, and GHGs emission scenarios. Four

GCMs, three emission scenarios, and six DSMs are used for this pur-

pose. The UBC Watershed model (UBCWM; Quick & Pipes, 1977) is

used for hydrologic flow simulation. Several studies (Kay, Davies, Bell,

& Jones, 2009; Najafi et al., 2011; Surfleet & Tullos, 2013) concluded

that GCMs structure is a larger source of uncertainty compare to

hydrologic models and due to the limited resource, we used a single

hydrologic model (UBCWM) for this study.

The following section of the paper describes the study area and

data used. Section 3 provides the assessment framework, including a

brief introduction of the hydrological model. Section 4 shows the

details of hydrologic model calibration and validation. Results and dis-

cussion are presented in Section 5. Summary and conclusions are pro-

vided in Section 6.
2 | STUDY AREA AND DATA USED

The case study area, Campbell River watershed, is situated on the west

coast of Canada (Figure 1a). This river basin is located in a transition

zone between drier east coast and the wet west coast of Vancouver

Island. The river originates from the mountains of central Vancouver

Island and drains into the Strait of Georgia after traveling 33 km

(Figure 1c). Total drainage area of this watershed is approximately

1,856 km2 (BC Hydro Generation Resource Management, 2012).

Annual average Pr during the last 20 years (1994 to 2013) in the catch-

ment is 2,960 mm. The magnitude of Pr is high in the upstream section

of the basin compared to downstream (Figure 1b). As the river origi-

nates from the west‐facing mountains, orographic lifting of warm

moist air from the Pacific Ocean causes heavy Pr in the upstream part



FIGURE 1 (a) Campbell River basin, British Columbia, Canada, with different downscaling locations and reservoirs location; (b) spatial
representation of annual average precipitation (1994–2013); (c) digital elevation model of the Campbell River basin
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of the basin. Campbell River includes three dams, Strathcona, Ladore,

and John Hart (Figure 1a). Strathcona dam is located in the upstream

section of the river, where other two are in the downstream section.

Three reservoirs created by the dams are Upper Campbell Lake reser-

voir, Lower Campbell Lake reservoir, and John Hart Lake reservoir. The

UBCWM hydrologic model simulates inflow into the Upper Campbell

Lake reservoir, and the inflow into other two reservoirs is regulated

by release from the Strathcona dam. The focus of this study is to

assess the inflow variations into the Strathcona dam due to climate

change. UBCWM is calibrated for the area upstream of Strathcona

dam (1,176 km2) excluding the Heber and Crest Diversions.

Daily time series of climate variables (e.g., Pr, maximum tempera-

ture [Tmax] and minimum temperature [Tmin]) are required for

simulating flow using UBCWM. For two of downscaling methods,

bias‐corrected spatial disaggregation (BCSD) and bias correction con-

structed analogues with quantile mapping reordering (BCCAQ), climate

variables (Pr, Tmax, and Tmin) are extracted from the Pacific Climate

Impacts Consortium database (Pacific Climate Impacts Consortium U

of V, 2014). For K‐NN CAD v4 (K‐NN weather generator) and
maximum entropy bootstrap [MEB] weather generator, climate vari-

ables (Pr, Tmax, and Tmin) are obtained from Coupled Model Intercom-

parison Project 5 (CMIP5) database (IPCC, 2013). In addition to these

variables, mean sea level pressure (mslp), specific humidity (hus) at

500 hPa, zonal (u‐wind), and meridional (v‐wind) wind are extracted

from the CMIP5 repository for beta regression (BR) and kernel regres-

sion (KR) downscaling methods following Mandal, Srivastav, and

Simonovic (2016b). All the climate variables extracted for the corre-

sponding GCMs shown inTable 1. For the hydrologic model validation,

historical daily inflow data (1984 to 2013) for the Strathcona dam has

been obtained from the British Columbia Hydro (BC Hydro) repository.
3 | METHODOLOGY

A generalized framework for climate change impact assessment pro-

cess is provided in Figure 2a. At first, climate models corresponding

to different future emission scenarios (representative concentration

pathways [RCPs]) are selected from a pool of climate models provided



TABLE 1 The GCMs used in the study

GCM model GCM resolution (Lon. vs. Lat.) Centre name

CanESM2 2.8 × 2.8 Canadian Centre For Climate Modeling And Analysis

CCSM4 1.25 × 0.94 National Center Of Atmospheric Research, USA

CSIRO‐Mk3‐6‐0 1.8 × 1.8 Australian Commonwealth Scientific and Industrial Research
Organization in collaboration with the Queensland Climate
Change Centre of Excellence

GFDL‐ESM2G 2.5 × 2.0 National Oceanic and Atmospheric Administration's Geophysical
Fluid Dynamic Laboratory, USA

Note. GCMs = global climate models.

FIGURE 2 (a) Generalized framework of future streamflow generation under changing climate condition; (b) framework presenting the assessment
process followed in this study. BCCAQ = bias correction constructed analogues with quantile mapping reordering; BR = beta regression;
BSCD = bias‐corrected spatial disaggregation; KR = Kernel regression; RCP = representative concentration pathway; UBCWM = UBC watershed
model
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in IPCC (2013). For this assessment of inflow uncertainty under chang-

ing climatic conditions, four GCMs are selected, and their details are

given in Table 1. GCMs are selected based on the data availability for

the implementation of downscaling methods (described below) used

in this study. Four emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0,

and RCP 8.5) are suggested for use by the Fifth Assessment Report

of Intergovernmental Panel on Climate Change IPCC; IPCC, 2013).

RCP 2.6 is introduced as a lower GHGs emission scenario, RCP 4.5

and RCP 6.0 represent the intermediate GHGs emission scenarios,

and RCP 8.5 describes the maximum and unabated GHGs emission

conditions. For simulating future hydrologic flow, RCP 2.6, RCP 4.5,

and RCP 8.5 are used in this study. RCP 4.5 is developed based on

the assumption that GHGs emissions will be stabilized by mid‐century

and decrease after that where RCP 6.0 assumes that GHGs concentra-

tion will increase gradually and stabilize shortly after 2100 (van Vuuren

et al., 2011). As the time frame of the study is up to 2100, RCP 4.5 is

selected over RCP 6.0. Coarsely gridded GCMs data are required to

downscale before it can be used for hydrologic analysis on a catchment

scale. Six downscaling methods are used in this study: (a) BCSD (Bürger

et al., 2012); (b) BCCAQ (Werner & Cannon, 2015); (c) delta change

method coupled with a nonparametric K‐NN weather generator

(K‐NN CAD v4; King, Mcleod, & Simonovic, 2015); (d) delta change

method coupled with MEB weather generator (Srivastav & Simonovic,

2014); (e) nonparametric statistical DSM based on the KR (Kannan &
Ghosh, 2013); and (f) BR‐based statistical DSM (BR; Mandal et al.,

2016b). A brief description of these downscaling processes is given

in Appendix A.

Climate variables are obtained from four GCMs (Table 1) of CMIP5

for selected emission scenarios (IPCC, 2013). These variables are

downscaled using different downscaling methods listed above. Down-

scaled GCM output is used as an input into a hydrological model to

generate future flow series for the study area. Based on geospatial

extents of a study, a distributed, semidistributed or lumped hydrologic

models can be used for future flow generation. Hence, a continuous

semidistributed hydrologic model (UBCWM) is used for this study.

The framework of this assessment work is shown in Figure 2b. The

details of the methodology followed are given below:

Step I: For downscaling purpose, climate variables (Pr, Tmax, Tmin,

mslp, hus at 500 hPa, u‐wind, and v‐wind) are extracted from the

CMIP5 repository. As GCM outputs have a different spatial resolu-

tion, all the climate data variables are spatially interpolated before

downscaling to 10 different locations (Table 2) within the basin

using inverse distance weighting (IDW) technique (Srivastav,

Schardong, & Simonovic, 2014). According to this technique, data

for a particular station is inversely proportional to the square of

the distance between the station and the nearest grid data point.

The weight associated with four nearest grid points to a particular



TABLE 2 Downscaling locations in the Campbell River basin, British Columbia, Canada

Station Elevation (m) Latitude (oN) Longitude (oW)

Elk R ab Campbell Lk 270 49.85 125.8

Eric Creek 280 49.6 125.3

Gold R below Ucona R 10 49.7 126.1

Heber River near Gold River 215 49.82 125.98

John Hart Substation 15 50.05 125.31

Quinsam R at Argonaut Br 280 49.93 125.51

Quinsam R nr Campbell R 15 50.03 125.3

Salmon R ab Campbell Div 215 50.09 125.67

Strathcona Dam 249 49.98 125.58

Wolf River Upper 1490 49.68 125.74

2080 MANDAL AND SIMONOVIC
station (vi) can be calculated using Equation 1. Equation 2 is used

for calculating the sum of the weighted average of climate variable

for the station vi.

Wj ¼
1
d2j

1
d21
þ 1

d22
þ 1

d23
þ 1

d24

(1)

vi tð Þ ¼ ∑
4

j¼1
Wj × vj tð Þ (2)

where d1, d2, d3, and d4 are the distances of the station (vi) from the

four nearest grid points; vj is climate variable value from the grid

points; and vi(t) is the sum of weighted average for a particular time.

Step II: Using IDW, climate variables (Pr, Tmax, Tmin, mslp, hus at

500 hPa, u‐wind, and v‐wind) are interpolated for the near future

period (2036 to 2065) and the far future period (2066–2095).

These climate variables are used as input to downscaling. Four

downscaling methods are used, including K‐NN CAD v4, KR, BR,

and MEB.

Step III: For BCCAQ and BCSD, gridded downscaled climate vari-

ables (Pr, Tmax, and Tmin) are obtained from Pacific Climate

Impacts Consortium database. IDW is used to convert the gridded

data into stations data.

Step IV: Climate data derived from the downscaling methods is spa-

tially interpolated to be used by the UBCWM following Das and

Simonovic (2012). The IDWmethod is used for patial interpolation

(US Army Corps of Engineers, 2000).

Step V: The interpolated climate, variables (Pr, Tmax, and Tmin) are

used by the calibrated UBCWM to simulate daily streamflow data

for the two future time periods.

Step VI: At the end, statistical analysis has been performed to com-

pare the simulated streamflow datasets with the observed data

set. Python 3.2 is used for statistical analysis. For flow frequency

analysis, we combined R “ismev” package (Heffernan, 2016) with

Python.

In this study, the UBCWM is used to simulate streamflow in the

Campbell River basin. This is a continuous hydrological model and only

need Pr, Tmax, and Tmin to simulate flow. As the UBCWM was
designed from minimum meteorological parameters, it is very useful

in the mountainous watershed, for example, Campbell River watershed

where meteorological and flows data are often spare (Micovic & Quick,

2009). Because the hydrologic response of a mountainous watershed

depends on elevation, UBCWM adapted the “area‐elevation band”

concept. This concept includes orographic gradients of temperature

and Pr that are assumed as dominate gradients of hydrological behav-

ior in the mountainous catchment and act similarly for each storm. The

UBCWM not only estimates streamflow in a catchment but also pro-

vides information about groundwater storage, soil moisture, surface

and subsurface components of runoff, energy available for snowmelt,

snowpack water equivalent, the area of snow cover, evapotranspira-

tion, and interception losses (Quick & Pipes, 1977). The UBCWM

integrates multiple meteorological submodels as described in (Micovic

and Quick, 1999). The following sections provide information about

hydrological model calibration and validation.
4 | HYDROLOGIC MODELLING

The hydrologic model UBCWM is calibrated by BC Hydro for Campbell

river system and used in this study. UBCWM is available as a hydrolog-

ical modeling framework under the name “Raven” (Craig & Snowdon,

2010). Raven considers a catchment as the integration of multiple sub-

basins where a number of noncontiguous and contiguous hydrological

response units (HRUs) are assembled. Each HRU setup is based on a

single combination of vegetation cover, terrain type, and land use or

land type. Also, each HRU has a defined soil profile and stratified aqui-

fer. Raven has a large number of user‐customized subroutines, which

can be used to develop a number of existing hydrologic models.

UBCWM is emulated successfully in Raven by BC Hydro.

For this assessment purpose, the model is validated using

observed data. Due to an inadequate amount of historical observed

climate data, daily Pr, Tmax, and Tmin have been extracted from

ANUSPLIN data set (0.1° latitude × 0.1° longitude), Environment

Canada (Hutchinson & Xu, 2013). These data sets are extracted for a

20‐year time period (1984 to 2013). ANUSPLIN data set is generated

using “thin‐plate smoothing spline” algorithm and broadly used in

climate studies (Irwin, Srivastav, Simonovic, & Burn, 2016; Mandal

et al., 2016b among others). As the ANUSPLIN data set has a different

spatial resolution from GCMs, all the variables are spatially
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interpolated using IDW to downscaling locations (Table 2) and used as

input to the UBCWM. Multiple statistical indices, Nash–Sutcliffe effi-

ciency (NSE) index, Pearson correlation coefficient (R2), root mean

square error (RSME), and relative bias are used to compare UBCWM

simulated flow with the observed historical flow (1984 to 2013;

Table 3) at different temporal scales. NSE index is a goodness‐of‐fit

index, which is used to compare model simulated data with observed

data. For accurate model prediction NSE should be 0. However, in this

study, the value of NSE is high for all four temporal scales. For total

annual flow, the NSE reaches 0.6, which is not acceptable. Dimension-

less statistical index, for example, R2 plays an important role in the

assessment of both the hydrologic and statistical significance during

a hydrologic model validation (McCuen, 2016). For example, if R2

between predicted and measured values is high, that means the model

outputs have quite similar pattern with measured values. R2 varies

between 0 to 1. High R2 indicates a good correlation between

observed and simulated data, which is desired. The results are showing

R2 values between 0.83 to 0.89 for different temporal scales. These

values can be improved. RSME is a dimensioned statistical index, and

low RSME is desired in hydrologic model validation. However, the

results obtained in this study show a very high value of RSME,

6540.6 for total annual flow, which is not acceptable. Relative bias is

used for comparing different data sets. Relative bias lower than 5% is

usually recommended as the threshold value in hydrologic model vali-

dation (McCuen, 2016). However, the results obtained in this study

show relative bias higher than 5%, which is again not satisfactory.

Figure 3(a‐d) presents time series comparison of simulated and

observed flow at different temporal scales (daily, monthly, quarterly,

and yearly). It shows that the UBCWM often fails to capture the

extreme flow events. Figure 3(e‐g), represents the Q‐Q plot between

model generated and historical daily, monthly, and quarterly flows,

respectively. The Q‐Q plots also show that for higher quantiles, simu-

lated flow is not matching the observed data. However, if we review

Figure 3(d) after 2010, the simulated streamflow matches with

observed streamflow very well.

BC Hydro (BC Hydro Generation Resource Management, 2012)

reported that the Herber dam used to release water into the Campbell

River system until 2012 when it was decommissioned. The Herber

river is located approximately 70 km west of the city of Campbell river.

It naturally flows southwest for approximately 14 km before joining

the Elk river, which later joins Strathcona reservoir. During this

14‐km stretch, the Herber river connects Crest lake, Mud lake, and

Upper and Lower Drum lakes before joining the Elk river. The Herber

river connects with Crest lake through a wood stave and diverts water,

when available. The Herber diversion used to divert on average

1.1 m3/s into Elk river where annual mean inflow to Strathcona reser-

voir is 77.5 m3/s. Although the diverted flow from Herber diversion is
TABLE 3 Hydrological model performance statistics (1984–2013) in the C

Time period Nash–Sutcliffe efficiency (NSE) Pearson correlation c

Total daily flow 0.35 0.83

Total monthly flow 0.39 0.88

Total quarterly flow 0.36 0.89

Total annual flow 0.60 0.85
much smaller than the inflow into Strathcona reservoir, the total

annual amount of 35 Mm3/year represents a significant contribution

to the Strathcona reservoir volume. The Herber diversion has been

decommissioned in 2010 (BC Hydro Generation Resource Manage-

ment, 2012). The hydrologic model (UBCWM) was calibrated in 2014

by BC Hydro. Therefore, UBCWM does not consider additional flow

from the Herber dam before 2010 and that is the possible explanation

for unsatisfactory validation results. For further investigation, the new

validation period has been selected, 2012–2013, for daily and monthly

streamflow analyses. For yearly flow validation, we considered a 3‐

year time span (2010 to 2013). The validation results for a new period

are shown in Table 4. Due to inadequate data set after 2013, we

selected 3 years (2010–2013) for new validation period. There are

studies (Asokan & Dutta, 2008; Refsgaard, 1997) conducted in the past

using less than 5 years of data for hydrological model validation. For

the new validation period (2010 to 2013), the NSE value is improved

compared to the validation using 1984–2013 period. The NSE value

for total annual flow is 0.08. An improvement is also observed for

other three indexes. Relative bias is lower than 5% for all four temporal

scales. Simulated daily, monthly, quarterly, and yearly streamflow for

new validation period are shown in Figures 4(a‐d), respectively. These

plots confirm that the UBCWM generated flow is quite similar to the

observed flow. Figure 4(f) shows a Q‐Q plot between model generated

and historical flows. It also certifies that the UBCWMmodel generated

streamflow matches historical flow. Therefore, from the validation

analyses, it can be concluded that the UBCWM performs well in

capturing historical flow.
5 | RESULTS AND DISCUSSION

Downscaled climate variables (Pr, Tmax, and Tmin) are used with the

hydrologic model for future flow generation. The simulated flow is

generated and analyzed for two future time periods (2036–2065 and

2066–2095). Figures 5–7 present cumulative distribution function

(CDF) of simulated flow for different emission scenarios, GCMs and

DSMs, respectively. The CDF is a useful tool for assessing the intensity

of the occurrence of high/low flow in the catchment. It has been found

that CDFs obtained from different emission scenarios are quite similar

(Figure 5). A similar pattern can be found in Figures 6 and 7. However,

RCP 4.5 and RCP 8.5 show the high intensity of flow compared to his-

torical flow in the near future (2036–2065; Figure 5c and 5e). In far

future (2066–2095), a high intensity flow is found for RCP 2.6 and

RCP 8.5 (Figure 5b and 5f). Another observation is that flow intensity

in higher quantiles is subject to higher uncertainty for different RCPs

and GCMs (Figures 5 and 6). However, Figure 7 shows that in higher

quantile CDFs are less flattered compare to Figures 5 and 6. Results
ampbell River basin, British Columbia, Canada

oefficient (R2) Root mean square error (RSME) Relative bias (%Bias)

46.78 −13.69

296.33 −13.72

563.20 −13.72

6540.60 −11.32



FIGURE 3 (a‐d) Daily, monthly, quarterly, and yearly simulated and observed total inflow into the Strathcona reservoir, British Columbia, Canada,
respectively, (1984–2013); (e‐g) daily, monthly, and quarterly Q‐Q plot of simulated and observed total inflow into the Strathcona reservoir (1984–
2013), respectively
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TABLE 4 Hydrological model performance statistics for (2012–2013) in the Campbell River basin, British Columbia, Canada

Period
Nash–Sutcliffe
efficiency (NSE)

Pearson correlation
coefficient (R2)

Root mean square
error (RSME)

Relative bias
(%Bias)

Total daily flow 0.27 0.87 30.61 −2.28

Total monthly flow 0.18 0.91 210.67 −1.40

Total quarterly flow 0.15 0.92 421.56 −1.40

Total annual flow (2010–2013) 0.08 0.97 952.51 −2.16

FIGURE 4 (a‐d) Daily (2012–2013), monthly (2012–2013), quarterly (2012–2013), and yearly (2010–2013) simulated and observed total inflow of
the Strathcona reservoir respectively; (f) daily Q‐Q plot of simulated and observed total inflow of the Strathcona reservoir (2012–2013)
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in Figures 5 and 6 are generated for fixed choice of DSMs (BCSD,

BCAAQ, BR, KR, K‐NN CAD v4, and MEB), wherein Figure 7, the

resulting CDFs are obtained for different DSMs. Different DSMs are

developed using different statistical methods and assumption, and

therefore, the downscaled values may show variation in flow intensity.

For further investigation, comparison of a single combination of RCP,

GCM, and DSM is included in Figure 8. Results in Figure 8 confirm that
variations in streamflow due to the choice of DSMs are higher

compared to the variations due to the selection of RCPs or GCMs.

Average historical and future seasonal flow statistics for different

RCPs, GCMs, and DSMs are shown inTables 5–7, respectively. Table 5

indicates that mean winter flow will increase, with estimated range

between 13% to 19% in the near future (2036–2065) and 15% to

29% in the far future (2066–2095) for different emission scenarios.



FIGURE 5 Cumulative probability distribution of simulated (2036–2065 and 2066–2095) and historical (1984–2013) daily streamflow into the
Strathcona reservoir, BC, Canada for different emission scenarios. BCCAQ = bias correction constructed analogues with quantile mapping
reordering; BCSD = bias‐corrected spatial disaggregation; BR = beta regression; RCP = representative concentration pathway

FIGURE 6 Cumulative probability distribution (CDF) of simulated (2036–2065 and 2066–2095) and historical (1984–2013) daily streamflow into
the Strathcona reservoir, BC, Canada for different global climate models
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However, summer mean streamflow will decrease by at least 51% in

the near future and 66% in the far future (Table 5). A similar kind of

trend is found in Tables 6 and 7.

The results indicated that the winter flow will increase where

other seasonal flow will decrease, in both future time periods (Tables 6

and 7). Summer flow will decrease from 49% to 57% in near future and

58% to 66% in the far future where winter flow will increase 5% to

23% and 13% to 32% in near and far future, respectively, for different

GCMs (Table 6). Results indicate that the summer flow in the near

future will be reduced up to a maximum of 69% compared to the his-

torical flow where the highest decrease in the flow of 71% may be

experienced in the far future (Table 7). Only the KR model provides

different results (Table 7). To summarize, the summer flow in the

Campbell River basin (BC, Canada) will be highly affected by the
changing climate conditions. Spring flow will range from −9% to

−19% and −12% to −52% for near and far future, respectively, except

for KR model results. Streamflow during fall will decrease in the range

from −7% to −23% and −2% to −49% for near and far future, respec-

tively, except KR model results.

Figures 9–11 present box plots of projected mean monthly simu-

lated streamflow with the historical flow. It is clearly visible that the

mean monthly flow in Figures 9 and 10 is quite different when

compared to the flows in Figure 11. In Figure 11, for summer months

(May, June, and July), future flows for both time periods are less than

historical summer mean flows. However, in Figure 11, variation in

mean monthly flows is very less compared to Figures 9 and 10. These

results also support the hypothesis that the choice of DSMs introduces

a higher level of uncertainty in streamflow prediction compared to the



FIGURE 7 Cumulative probability distribution (CDF) of simulated (2036–2065 and 2066–2095) and historical (1984–2013) daily streamflow of
the Strathcona dam, BC, Canada for different downscaling methods. BCAAQ: Bias correction constructed analogues with quantile mapping
reordering; BCSD: Bias corrected spatial disaggregation; BR: Beta regression based statistical downscaling model; KR: Nonparametric statistical
downscaling model based on the Kernel regression; KnnCAD v4: Delta change method coupled with a nonparametric K‐nearest neighbor weather
generator; MBE: Delta change method coupled with maximum entropy weather generator (MBE)

MANDAL AND SIMONOVIC 2085
choice of RCPs and GCMs. In addition, the results in Figure 10 confirm

that future summers will be drier and future winters will be wetter

compared to the historical time period (1984–2013). Schnorbus et al.

(2011) investigated hydrologic impacts of climate change in the

Campbell River basin where they found that decreasing trend (−14%

for A1B scenario) in future Pr (2041 to 2070) for June, July, and August

and increasing trend (5% to 11%) in October through December. This

study also found that monthly mean temperature would have a signif-

icant and strong signal of shifting to warmer temperature throughout
the year and particularly higher for July, August, and September in

future (2041 to 2070). Streamflow in the Campbell River is fed by a

mix of rain and snowmelt. As the temperature is increasing, it has been

predicted that snowfall will decrease throughout the fall and winter

where rainfall will increase (Schnorbus et al., 2011) in this river basin.

This leads to a conclusion that the streamflow in this river basin will

be rainfall dominated compare to the hybrid mix (snow and rain).

Due to projected higher temperature in mid‐winter and early spring

(Schnorbus et al., 2011), snow will melt faster than before, whereas



FIGURE 8 Cumulative probability distribution (CDF) of simulated (2036–2065) and historical (1984–2013) daily streamflow of the Strathcona
dam, BC, Canada for (a) RCP 2.6; (b) CSIRO‐Mk‐3‐6‐0; and (c) beta regression (BR)‐based statistical downscaling model
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less snow will be available for melt because of significant reduction of

historical spring freshet. This evidence is the possible reason behind

the increasing flow in winter and less flow in summer (Figure 10). From

this study, it can be concluded that the Campbell River basin will

become a pluvial regime (rainfall dominated) in future from the hybrid

nival–pluvial regime (snow influenced). Schnorbus et al. (2011) also

provided similar conclusion in their study. The details about flow fre-

quency analysis are given in the following section.
5.1 | Flow frequency analysis

The generalized extreme value (GEV) distribution is used for flow fre-

quency analysis. GEV is an integration of continuous probability dis-

tributions that combines the Gumbel (EV1), Frechet, and Weibull

distributions and is widely used in flow frequency analysis (Das,

Millington, & Simonovic, 2013; Das & Simonovic, 2012; Fowler &

Wilby, 2010). The GEV has three parameters, for example, location,

shape, and scale. The shift in the distribution is described by the loca-

tion parameter where the scale parameter describes the spread of the

distribution and the shape parameter describes the skewness. If the

shape parameter (k) = 0, GEV becomes Gumbel distribution, and
when k < 0, it is transformed in Weibull distribution. If k > 0, then

the GEV is converted into the Frechet distribution. CDF and probabil-

ity distribution function of GEV are defined as follows (Hosking &

Wallis, 1997):

F x; α; κ; ξð Þ ¼ exp − yð Þ−1
κ

n o
when yi0 & κ ≠ 0 (3)

¼ exp − exp
x−ξ
α

� �� �
when κ ¼ 0 (4)

f x; α; κ; ξð Þ ¼ α−1 y½ � −1−1κð Þ exp −y−
1
k

� �
when κ≠0 (5)

¼ α−1 exp −
x−ξ
α

� �� �
exp − exp −

x−ξ
α

� �� �� 	
when κ ¼ 0; (6)

where y ¼ 1þ κ x−ξ
α


 �� 
;ξ is the location parameter; αis the scale

parameter; and κis the shape parameter.

The flow frequency analysis is conducted using ismev package in

R‐studio combined with python environment (Heffernan, 2016). The

flow frequency curves are shown in Figure 12. The flow frequency



TABLE 6 Historical (1984–2013) and future mean seasonal flows (m3/s) (5th, median—50th, and 95th percentile estimates) for different GCMs in
Upper Campbell Lake reservoir, British Columbia, Canada

2036–2065 2066–2095

Historical 5th 50th 95th
Change in median

value (%) 5th 50th 95th
Change in median

value (%)

CCSM4

Winter 7602 5324 7999 14413 5 5320 8620 15422 13

Spring 7762 3814 6229 15238 −19 3137 6436 14369 −17

Summer 6661 1455 3000 6441 −54 1241 2506 5924 −62

Fall 6923 2812 5302 13040 −23 2481 5498 12706 −20

CSIRO‐Mk3‐6‐0

Winter 7602 4186 9053 16274 19 4524 10023 16261 31

Spring 7762 3877 7021 15699 −9 3223 6567 14184 −15

Summer 6661 1802 3332 6103 −49 1473 2373 5440 −64

Fall 6923 2375 6371 12974 −7 2539 6727 12945 −2

CanESM2

Winter 7602 8569 9368 16284 23 8446 10054 17810 32

Spring 7762 6272 6942 18321 −10 5168 6604 16728 −14

Summer 6661 1605 2855 7172 −57 1422 2242 6207 −66

Fall 6923 5294 5985 13105 −13 5165 6048 12729 −12

GFDL‐ESM2G

Winter 7602 4561 8925 16994 17 4357 9426 17082 24

Spring 7762 4682 6694 15561 −13 3621 6682 15175 −13

Summer 6661 1771 3358 7569 −49 1771 2771 7242 −58

Fall 6923 3883 5580 14911 −19 4025 5768 15531 −16

TABLE 5 Historical (1984–2013) and future mean seasonal flows (m3/s) (5th, median—50th, and 95th percentile estimates) for different emission
scenarios in Upper Campbell Lake reservoir, British Columbia, Canada

2036–2065 2066–2095

Historical 5th 50th 95th
Change in median

value (%) 5th 50th 95th
Change in median

value (%)

RCP 2.6

Winter 7602 4553 8591 15397 13 4586 8744 15233 15

Spring 7763 4202 6772 16726 −12 4115 6750 16459 −13

Summer 6661 1726 3254 7282 −51 1518 3393 6650 −49

Fall 6924 3245 5714 12990 −17 2729 5821 12853 −15

RCP 4.5

Winter 7602 4758 9094 16221 19 4763 9306 16897 22

Spring 7763 4085 6681 15319 −13 3346 6568 14821 −15

Summer 6661 1745 3232 7110 −51 1608 2697 6062 −59

Fall 6924 3142 5895 13382 −14 3021 6260 13312 −9

RCP 8.5

Winter 7602 4896 8884 16962 16 4663 9802 17312 29

Spring 7763 3925 6528 15558 −16 2922 6111 13857 −21

Summer 6661 1631 2694 6235 −59 1276 2265 5686 −66

Fall 6924 2645 5612 13342 −19 3341 5912 12930 −14

Note. RCP = RCP=representative concentration pathway.
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curve derived from the observed historical data is also shown in

Figure 12. The results are presented for various return periods from

2 to 200 years. The figure summarizes the impact of choosing different

GCMs and DSMs on the flows corresponding to different return

periods. It is found that the uncertainty increases with the increase in
the return period where CDFs become flattered. It is also found that

in the far future, CDFs are flatter compared to the near future time

period. The average percentage changes in flow magnitudes are shown

in Table 8. The maximum average percentage changes of the 50‐year

flow magnitude between future climate (2036–2065 and 2065–



TABLE 7 Historical (1984–2013) and future mean seasonal flows (m3/s) (5th, median—50th, and 95th percentile estimates) for different down-
scaling methods in Upper Campbell Lake reservoir, British Columbia, Canada

Downscaling
method Historical 5th Median 95th

Change in median
value (%) 5th Median 95th

Change in median
value (%)

BCCAQ Winter 7602 8382 9493 10884 24 8846 10284 11313 35
Spring 7762 5807 6260 6877 −19 5466 5878 6403 −24
Summer 6661 1791 2019 2324 −69 1587 1886 2403 −71
Fall 6923 5361 5935 7098 −14 5419 6094 7686 −11

BR Winter 7602 6601 7479 12394 −1 4175 4927 10806 −35
Spring 7762 6111 6782 8840 −12 2829 3651 5830 −52
Summer 6661 3903 4251 4562 −36 1179 1530 2038 −77
Fall 6923 4752 5850 8945 −15 2373 3523 5783 −49

KR Winter 7602 9995 12077 13866 58 10426 12499 13846 64
Spring 7762 11003 11756 14867 51 8810 10688 12997 37
Summer 6661 1577 2813 4195 −57 3905 4893 6890 −26
Fall 6923 8307 9138 11452 31 8289 8917 11578 28

BCSD Winter 7602 8150 9170 9918 20 8627 9636 10918 26
Spring 7762 6098 6358 7237 −18 5378 5830 6749 −25
Summer 6661 1889 2156 2520 −67 1618 1879 2530 −71
Fall 6923 4889 5602 6374 −19 5351 6075 6897 −12

KnnCADV4 Winter 7602 7218 8334 8942 9 7786 8502 9517 12
Spring 7762 6663 7003 7553 −9 6304 6752 7412 −13
Summer 6661 3601 4259 4960 −36 2423 3629 5121 −45
Fall 6923 4946 5459 6450 −21 4864 5497 6353 −20

MBE Winter 7602 7589 8257 9223 8 7858 8796 9998 15
Spring 7762 6386 6942 7624 −10 6594 6818 7344 −12
Summer 6661 4560 5243 5724 −21 3070 4488 6087 −32
Fall 6923 5194 5846 6468 −15 5246 5911 6722 −14

Note. BCCAQ=bias correction constructed analogues with quantile mapping reordering; BCSD=bias‐corrected spatial disaggregation; BR=beta regression;
KR=Kernel regression.

FIGURE 9 Boxplots showing projected mean monthly simulated streamflow for the near future (2036–2065) and the far future (2066–2095) with
historical (1984–2013) observed flow into the Strathcona dam, BC, Canada for different emission scenarios. RCP=representative concentration
pathway
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2095), and the historical (1984–2013) are, respectively, −20.2% and

−5.7%. In the near future, for RCP 8.5, a decreasing trend is observed

with the increase in the return period. On the contrary, in the far future

for RCP 8.5, an increasing trend is observed with the increase in the

return period. RCP 8.5 considers maximum amount of GHGs emission

in the atmosphere, which is approximately three times of today's

carbon emission by the end of this century (van Vuuren et al., 2011).

GHGs emissions have a positive correlation with atmospheric temper-

ature (IPCC, 2013). Therefore, the Pr pattern can be changed
significantly. This can be a possible reason for decreasing trend of flow

magnitude for near future. Table 9 shows a comparison between his-

torical and future flow return periods for different emission scenarios.

For all emission scenarios, the return period of higher flow event will

increase in both future time periods. For example, 1,250 m3/s flow

had a return period of 11 years, but it will change to 20 years (2036–

2065) and 21 years (2066–2095) for RCP 2.6 emission scenarios

(almost doubled). A similar trend could be found for other emission

scenarios too.



FIGURE 10 Boxplots showing projected mean monthly simulated streamflow for the near future (2036–2065) and the far future (2066–2095)
with historical (1984–2013) observed flow into the Strathcona dam, BC, Canada for different global climate models

FIGURE 11 Boxplots showing projected mean monthly simulated streamflow for the near future (2036–2065) and the far future (2066–2095)
with historical (1984–2013) observed flow into the Strathcona dam, BC, Canada for different downscaling models. BCCAQ = bias correction
constructed analogues with quantile mapping reordering; BCSD = bias‐corrected spatial disaggregation; BR = beta regression; KR = Kernel
regression

FIGURE 12 Simulated flow frequency results of the Strathcona dam, BC, Canada using GEV for different emission scenarios between two future
time periods. BCCAQ = bias correction constructed analogues with quantile mapping reordering; BCSD = bias‐corrected spatial disaggregation;
BR = beta regression; KR = Kernel regression; RCP = representative concentration pathway
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TABLE 8 Average percentage changes in streamflow magnitude between baseline period (1984–2013) and future time periods in Upper Campbell
Lake reservoir, British Columbia, Canada

Return period (year)

2036–2065 2066–2095

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

5 −14.0 −13.2 −16.1 −13.8 −12.5 −6.6

10 −14.1 −14.4 −17.8 −15.0 −13.6 −6.8

50 −13.0 −16.1 −20.2 −16.0 −14.4 −5.7

100 −11.8 −16.4 −21.0 −16.0 −14.0 −4.6

150 −11.0 −16.5 −21.1 −15.6 −13.4 −3.9

200 −10.3 −16.6 −21.3 −15.2 −13.0 −3.2

Note. RCP = RCP=representative concentration pathway.

TABLE 9 Comparison of historical (1984–2013) and projected flow return periods for two future time periods (2036–2065 and 2066–2095) in
Upper Campbell Lake reservoir, British Columbia, Canada

Return period (year)

Flow (m3/s) Historical

2036–2065 2066–2095

RCP
2.6

RCP
4.5

RCP
8.5

RCP
2.6

RCP
4.5

RCP
8.5

800 3 4 4 4 4 4 3

1000 5 8 8 10 8 8 6

1250 11 20 21 26 21 20 14

1500 22 40 45 57 45 42 28

1900 60 105 135 178 130 117 75

Note. RCP = RCP=representative concentration pathway.
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6 | CONCLUSIONS AND SUMMARY

This study used multiple RCPs, GCMs, and DSMs to assess the

uncertainty in streamflow due to climate change. The analyses are

performed for the case study of Campbell River basin in BC, Canada,

with the focus on Strathcona dam location. Most of the previous

regional studies in Canada found that the choice of GCMs is the big-

gest source of uncertainty in downscaling processes. The analyses in

the Campbell River basin performed with different RCPs, GCMs, and

DSMs show that the choice of DSMs has a higher influence on

streamflow variation compared to the choice of GCMs or RCPs. DSMs

are developed based on a statistical relationship between climate var-

iables. DSMs includes multiple assumptions, selections of statistical

parameters (e.g., scale, shape, and skewness), and climate variables

(predictand and predictors), which make a DSM different from other

DSMs. Therefore, structure and procedure followed in a DSM could

be possible reasons for significant streamflow variation for various

DSMs. Hence, it is important to use multiple DSMs during climate

change impact assessment. Mandal et al. (2016a) reached a similar con-

clusion in the study of Pr projection under changing climatic condi-

tions. It is to be expected that if the Pr pattern is affected, then the

streamflow will change too. However, the previous study, Mandal

et al. (2016a) does not quantify the amount of Pr or future streamflow

changes. According toWarren and Lemmen (2014), an increasing trend

in average annual Pr can be found on the west coast of Canada where

snowfall has decreased in last 61 years (1950 to 2010). Therefore,

quantifying changes in streamflow due to climate change is an impor-

tant contribution of this study that makes it different from the
previous work. Another important difference of this study is the anal-

ysis of propagation of sources of uncertainty in the projected

streamflow, which is discussed in Section 5.

From Table 7, it can be found that all the DSMs show similar

pattern, for example, increasing trend in streamflow for winter and a

decreasing trend for other seasons except KR and BR. However, KR

agrees with summer and winter flow trend with other DSMs where

BR captures streamflow pattern for all seasons except winter. BR and

KR models are regression based, and multiple predictors variables

(Tmax, Tmin, mslp, hus at 500 hPa, u‐wind, and v‐wind) are used to

build a relationship between predictors and predictand (here Pr). These

predictor variables are correlated with each other (positive or negative;

Mandal et al., 2016b), which could be the reason for disagreement

between KR and BR results when compared with other DSMs.

For the purpose of this study, a single hydrologic model (UBCWM)

is used which is an obsolete model and a limitation of this study at this

stage. The selection of hydrologic models depends upon the study

region, data availability, basin characteristics, and study purposes but

often the model is selected, which is readily available. In this case,

BC Hydro provided the calibrated model (UBCWM). In addition, Kay

et al., (Kay et al., 2009) investigated the role of different hydrologic

models and found that the choice of the hydrologic model also contrib-

utes to the uncertainty in projected streamflow. Also, projected

streamflow is highly sensitive to hydrologic model parameterization

(Jiang et al., 2007; Poulin, Brissette, Leconte, Arsenault, & Malo,

2011). However, it has been found that uncertainty due to the hydro-

logical model structure is more significant compared to model parame-

ter uncertainty. Therefore, streamflow generation using multiple
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hydrological models with multiple RCPs, GCMs, and DSMs may be

advised for the continuation of the presented work. There are two

other dams in the basin (Ladore and John Hart) that are connected

with the Strathcona dam. Hence, quantifying stream flow uncertainty

due to climate change at all three dam locations could be another area

of future research. Another limitation of the study is the use of a single

river catchment. The consistency of GCMs varies substantially from

one region to another. Rupp, Abatzoglou, Hegewisch, and Mote

(2013) and Kay et al. (2009) also suggested that multiple catchments,

or different locations, should be analyzed in order to obtain a more

comprehensive understanding of different sources of uncertainty.

Focus of the present work is in the development of the uncertainty

assessment methodology that can be used with multiple catchments

for more thorough analyses of uncertainty. This work is considered

as a potential future research topic. In this study, only four GCMs are

used due to data availability for all DSMs. GCMs use mathematical

relationships to simulate global climate system in three spatial dimen-

sions with respect to time. GCMs simulate different atmospheric com-

ponents (temperature, sea ice, and humidity) at various scales

(horizontal spacing and grid size) and include many complexities

(parameterization schemes). Some GCMs are based on the same ana-

lytical procedures and even share the same mathematical equations.

Therefore, future climate predictions using an arbitrary number of

GCMs may be very precise and consistent for a particular region, but

it may be inaccurate as the outcome can be consistently biased. For

example, Rupp et al. (2013) found that two GCMs, MIROC‐ESM‐

CHEM and MIROC‐ESM, to perform poorly in Europe and Southeast

Asia. However, these two models perform well in Africa. Therefore,

selection of GCMs is crucial for uncertainty analysis and may be a

potential future research area.

Another main observation of the presented study is that the

winter flow will be increasing in both future time periods considered

(2036–2065 and 2065–2095), where the summer flow will be decreas-

ing by atleast 21%. These findings can have a serious effect on the

management of water resources infrastructure in the basin, which is

one of the main components of the BC hydropower generation sys-

tem. However, a major weakness of river flow forecast under climate

change is limited validation. There is a prospect for testing the primary

flow patterns relative to recent empirical trends, which provide an

opportunity for future work. The recommendations of the study pre-

sented in this paper are as follows: (a) the new water resources infra-

structure planning and design guidelines should be developed in

order to include the changing climatic conditions in the future and (b)

the serious review of the current operational rules for the water

resources infrastructure in the basin should be conducted in with the

main goal of finding the best adaptation strategies to changing future

conditions.
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APPENDIX

BRIEF DESCRIPTION OF DOWNSCALING
METHODS

A.1 | Bias‐corrected spatial disaggregation (BCSD)

BCSD is a gridded downscaling method and efficiently used for down-

scaling GCM output (Werner, 2011; Werner & Cannon, 2015; Wood,

Leung, Sridhar, & Lettenmaier, 2004). BCSD follows three steps: At

first, monthly GCM simulated data is bias corrected using observed

gridded data at GCM grid scale. Quantile mapping approach is used

for the bias correction. In the next step, bias corrected monthly climate

data is downscaled using interpolation at each local station and multi-

plied by a scaled factor. This step is called “local scaling,” and the scale

factor removes long term bias between observed and simulated cli-

mate variable. The following equation is used for local scaling process:

Pds x; tð Þ ¼ Pmod x; tð Þ Pobsh imon

Pmodh imon
; (A1)

where Pmod(x, t) is GCM simulated coarsely gridded monthly averaged

climate variable at location x and t is a time in months “mon”; Pds(x, t)

is downscaled monthly climate variable; and ⟨...⟩mon is monthly mean

of climate variable over the calibration period. In the final step, daily

time series is generated from monthly mean climate data set using sto-

chastic resampling technique (Wood, Maurer, Kumar, & Lettenmaier,

2002).

A.2 | Bias correction constructed analogues with quantile
mapping reordering (BCCAQ)

BCCAQ is a hybrid gridded downscaling method which combines bias‐

corrected climate imprint and bias correction constructed analogues

(BCCA) where bias‐corrected climate imprint is cited as “inverse

BCSD”(Werner & Cannon, 2015). BCCA adopts quantile mapping as

a bias correction method and same spatial aggregation as BCSD, but

it considers information from daily GCM anomalies instead monthly.

A.3 | K‐nearest neighbor weather generator (K‐NN CAD
V4)

K‐NN CAD V4 is a nonparametric multisite weather generator based

on K‐nearest neighbors (K‐NN; King et al., 2015). It is an updated ver-

sion of K‐NN CAD V3 (Eum, Simonovic, & Kim, 2010) where block

resampling and perturbation technique were introduced. The mathe-

matical description of perturbation process is as follows:

y j
ppt;tþi ¼ λpptx

j
ppt;tþi þ 1−λpptð Þztþ i; i ¼ 1;2; ::::n; (A2)

where yjppt;tþiis the perturbed precipitation value for t + t th day in jth

location and t is current day; λppt value varies in between 0 to 1 (0

means data series are totally perturbed and 1 means no perturbation

in the results); xjppt;tþi is reshuffled nonzero precipitation value for

t + ith day in jth location; and Zt + icomes from two parameters log‐nor-

mal distribution.

This model can preserve statistical features of observed historical

climate variables with historical extremes.
A.4 | Maximum entropy bootstrap based weather genera-
tor (MEBWG)

MEBWG is a nonparametric multisite, multivariate weather generator

developed by Srivastav and Simonovic (2014). This method consists

of three main steps: (1) orthogonal transformation of spatially corre-

lated climate variables at different locations; (2) generation of synthetic

replications of climate variables using maximum entropy bootstrap

(MEB); and (3) apply an inverse orthogonal transformation of synthetic

climate variables to restore spatial correlation. Using the following

equations, maximum entropy density is constructed:

m1 ¼ 0:75O1 þ 0:25O2; (A3)

mk ¼ 0:25Ok−1 þ 0:5Ok þ 0:25Okþ1;∀k ¼ 2;3; ::::; t−1; (A4)

mt ¼ 0:25Ot−1 þ 0:75Ot; (A5)

where t is time step and Ot is rank matrix derived from the principal

component analysis.

These above equations satisfy ergodic theorem (mean preserving).

This method is free of modeling parameters and computationally

inexpensive.

A.5 | Nonparametric multivariate kernel regression (KR)
model

A multivariate multisite nonparametric KR model was developed by

Kannan and Ghosh (2013). This model first projects precipitation

states of the study area using classification and regression trees. In

the final step, the model simulates multisite precipitation amounts

conditioned on the estimated precipitation states using KR. The

general form of KR's conditional expectation can be formulated as

follows:

E Y=Xð Þ ¼ m Xð Þ ¼ ∫yf y=xð Þ
fx xð Þ ; (A6)

where Y is the simulated precipitation; X is principal component of

the predictor variables; f(y/x) is conditional probability density func-

tion (pdf) of Y given X = x; and fx(x) is marginal pdf of X.

In the downscaling model, the pdf in Equation A6 is replaced by

kernel density estimator and expressed as follows:

mh xð Þ ¼
∑
n

i¼1
Kh x−Xið ÞYi

∑
n

i¼1
Kh x−Xið Þ

; (A7)

where mh(x) the expected is value Y for a condition of Xi = x and Kh

is the kernel with bandwidth h. This method was first successfully

applied at eight different locations in the Mahanadi river basin,

India.

A.6 | Multisite and multivariate beta regression (BR) model

A multisiteBR‐based downscaling method was proposed by Mandal

et al. (2016b). BR model simulates precipitation at multiple locations

conditioned on precipitation states. This model integrates an unsu-

pervised clustering technique (K‐means), classification and
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regression trees, principal component analysis and BR. The BR

model works in two phases. In the first phase, it predicts precipita-

tion states of a catchment, and in final step, it simulates future pre-

cipitation based on precipitation states. Large‐scale climate

variables, for example, daily maximum and minimum air surface

temperature, mslp, hus at 500 hPa, zonal (u‐wind), and meridional

(v‐wind) wind are used as predictor variables for this model to
predict precipitation. The generalized mathematical formulation of

BR model is given as follows:

Pt ¼ FR Xt=Stð Þ; (A8)

where Pt is the simulated precipitation at a certain location at time

t, Xt is predictor variables, and St is precipitation state of the

catchment.


