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Abstract: This paper focuses on understanding the effects of projected climate change on streamflow
dynamics of the Grand and Thames rivers of the Northern Lake Erie (NLE) basin. A soil
water assessment tool (SWAT) model is developed, calibrated, and validated in a base-period.
The model is able to simulate the monthly streamflow dynamics with ‘Good’ to ‘Very Good’ accuracy.
The calibrated and validated model is then subjected with daily bias-corrected future climatic data
from the Canadian Regional Climate Model (CanRCM4). Five bias-correction methods and their
12 combinations were evaluated using the Climate Model data for hydrologic modeling (CMhyd).
Distribution mapping (DM) performed the best and was used for further analysis. Two future
time-periods and two IPCC AR5 representative concentration pathways (RCPs) are considered.
Results showed marked temporal and spatial variability in precipitation (−37% to +63%) and
temperature (−3 ◦C to +14 ◦C) changes, which are reflected in evapotranspiration (−52% to +412%)
and soil water storage (−60% to +12%) changes, resulting in heterogeneity in streamflow (−77% to
+170%) changes. On average, increases in winter (+11%), and decreases in spring (–33%), summer
(−23%), and autumn (−15%) streamflow are expected in future. This is the first work of this kind in
the NLE and such marked variability in water resources availability poses considerable challenges to
water resources planners and managers.
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1. Introduction

The Great Lakes, bordering Canada and the United States of America (USA), provide fresh
water resources for consumption, transportation, tourism, and power generation, among others,
to the surrounding inhabitants, communities, and industries, thereby contributing significantly to
the environment and economy. Lake Erie—the southernmost and the shallowest of the five lakes is
home to approximately 14 million people [1]. In the last few decades, serious blue-green algae blooms
have been observed in the Lake. As a result of the Great Lakes Water Quality Agreement (GLWQA)
between Government of Canada and USA in 1972, marked reduction of phosphorus load helped to
improve the water quality of the lake significantly [2]. However, in recent times, the algae bloom
resurfaced again mainly due to the increased levels of harmful pollutants and phosphorous primarily
from agricultural lands within the Lake Erie basin [3]. For instance, in 2011, Lake Erie experienced
the largest harmful algal bloom in its historical record, which was estimated to be at least 2.4 times
higher than any previous records [4]. Various ‘economic, management, climatic, and political’ factors
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and their complex interrelations are responsible for the algae blooms [5], which have affected various
sectors and the economy. In light of growing evidence of climatic change, such as significant increases
in winter temperature [6], decreases in snowfall proportion on total precipitation [7], changes in lake
level [8], changes in streamflow input to the lake [9], changes in freeze-thaw frequencies [6], increases
in drought and flood frequency [7], changes in ice cover [9], among others in the Great Lakes area, it is
of paramount importance that climate change impact assessments on different hydrologic and water
quality components are carried out, and plausible adaptation measures are undertaken immediately.
As hydrology is one of the main drivers of pollutants [10], quantification of climate-induced altercation
on different water resources components and on streamflow dynamics is required in the first place.

Currently, there are many studies which have evaluated the effect of climate change on the
streamflow delivery to Lake Erie, but these studies are mainly situated in basins that lie on the USA
side. For instance, Bosch et al. [11] reported annual stream streamflow increases of 6–12% in the future
(2010–2099) from the Western and the Central Lake Erie basin for different emission scenarios (SRES
A1F1 and B1) using 3 Global Circulation Models (GCMs); US National Atmospheric and Oceanic
Administration’s Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1, UK Meteorological Office’s
Hadley Center Climate Model V3 (HadCM3), and US National Center for Atmospheric Research’s
Parallel Climate Model (PCM). Similarly, Culbertson et al. [12] reported that annual streamflow
increased by 6.5–15.9% using an ensemble of 15 GCMs (refer to Culbertson et al. [12] for the full list) in
the Maumee River basin, the largest basin in Western Lake Erie in different emission scenarios (RCP 4.5
and RCP 8.5), and during different future periods (2010–2039, 2040–2069, 2070–2099). Furthermore,
Verma et al. [13] predicted an annual increase of 9.7% in the same river basin. In contrast, very few
climate change impact studies are conducted in the basins draining from the Canadian side. In a
recent study, Li et al. [14] reported, using Proving Regional Climate for Impact Studies (PRECIs) data,
decreases in summer streamflow and increases in winter streamflow during 2071–2100 for SRES A2
and B2 in the Grand River basin, the largest basin of Northern Lake Erie. However, to our knowledge,
there has not been a single study which evaluated climate change impacts on streamflow of the entire
Northern Lake Erie basin. Hence, in this study, we have considered two major river basins—the Grand
and the Thames of Northern Lake Erie, which drain almost 60% of the total basin area.

It is in this scope that we built up, calibrated and validated a hydrological model of the Northern
Lake Erie basin using the Soil and Water Assessment Tool (SWAT) [15] using a high-resolution spatial
and meteorological dataset. The calibrated and validated model in the base period (1980–1993) was
then subjected to bias-corrected high-resolution (25 km × 25 km) future climate data of a regional
circulation model: the Canadian Regional Climate Model (CanRCM4) [16] to quantify streamflow
dynamics in the future. As such, we used the Climate Model data for the hydrologic modeling
(CMhyd) tool [17], and evaluated five bias-correction methods for precipitation and temperature.
Moreover, we considered two IPCC emission scenarios—RCP4.5 & RCP8.5 [18] and two future periods:
mid-(2040–2053) and end-century (2080–2093). We believe that the availability of such a modelling tool,
and we know how the climate-induced hydrological altercations could be helpful to understand the
distribution and availability of water resources in the future, and would help in formulating plausible
management options with the view of mitigating any ill effects on the health of Lake Erie.

2. Materials and Methods

2.1. Study Area

The Northern Lake Erie (NLE) basin is located at Southwestern Ontario region of Canada and has
approximately 21750 km2 of drainage area. The Grand and Thames river basins are the two largest
sub-basins (Figure 1), comprising areas of 6764 and 5883 km2, respectively. Agriculture is the dominant
land-use in both river basins (44% and 69% coverage, respectively, for the Grand and Thames river
basins), followed by pasture (25% and 11%, respectively), forest (17% and 10%, respectively) and urban
(9% and 8%, respectively). (Figure S1). The general weather pattern is cold with dry winters, due to
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the effect of Arctic air from the Northwest, and warm and wet summers due to the tropical air masses
from Gulf of Mexico. However, the basin experiences rather uniform precipitation. Annual mean
precipitation, as calculated using Gridded Climate Dataset for Canada (GCDC) [19] for the period of
1980–1993 varied between 833 and 1000 mm. The amount of precipitation in the central part of the
basin is slightly higher than that in the west and east basin. As the basin lies in a cold climate region,
snowstorms in the winter and snowmelt in the spring is typical in the study area, which results in high
streamflow in the early spring months, March and April. Similarly, annual mean temperature varies
from 5.1 ◦C in the high elevation area to 9.7 ◦C in the low elevation area [19].
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Figure 1. The Great Lakes (inset) with two major river basins—the Grand and the Thames of the
Northern Lake Erie Basin. Also shown are a digital elevation model (DEM), a generated river network,
four streamflow gauging stations (pentagons), the grid-centroid location of the Gridded Climate Dataset
for Canada (GCDC) stations (triangles), and an Environmental Canada (EC) station (Glen Allan) used
for bias-correction of future precipitation and temperature datasets.

The basin is drained by two main rivers—the Grand and the Thames rivers within the NLE basin.
The Grand River basin is the largest watershed in Southwestern Ontario, with a drainage area of
almost 6800 km2. The length of the Grand River is about 300 km from the upper stream near the town
Dundalk, to the mouth of the river on the Lake Erie [20]. The elevation ranges from 172 m to 539 m.
Most of the area is flat, with the slope ranging from 0 to 4% (Figure S3). The Grand River watershed
drains a high-density populated area with five growing cities in its catchment—Kitchener, Waterloo,
Cambridge, Guelph, and Brantford, which is a unique feature of the rivers in the region. The watershed
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is home to approximately 1 million people, which is expected to increase to over 1.4 million by 2031 [21].
Therefore, the effects of human activity on river hydrology and morphology in the Grand River basin
is expected to be significant in the future. The Thames River basin, on the other hand, is the second
largest watershed in Southwestern Ontario, with a catchment area of 5880 km2. It flows approximately
273 km from the upper stream near Tavistock to its mouth at Lake St. Clair. The Upper Thames
River Basin (UTRB) is one of the highly developed areas in the entire basin with a population of
460,000 [22]. Prodanovic and Simonovic [23] reported that UTRB has had well-documented flooding
events since 1700s, and experiences frequent drought spells. Thus, in the light of growing evidences
of climate change, it is evident that the basin would face extra pressure of the climate, demographic,
and anthropogenic changes in the future.

2.2. The Model—Soil and Water Assessment Tool (SWAT)

The SWAT is a continuous-time, semi-distributed, and physically-based watershed-scale model,
which integrates weather, land-use, soil type, surface, and groundwater hydrology to simulate
streamflow, sediment, water quality, etc. within a watershed [15,24]. It is one of the most widely
used hydrological simulators around the world, including the cold climate regions of Canada
after careful parametrization [25–31]. The model divides a watershed into various sub-watersheds.
The sub-watersheds are further divided into Hydrologic Response Units (HRUs), which are unique
combination of land-use, soil and slope. The SWAT requires different spatial and meteorological
datasets, generally integrated using geographic information system (GIS) software [32].

2.3. Model Build-Up, Inputs, Calibration and Validation

We used a 30 mx30 m digital elevation map (DEM, Figure 1) obtained from the Ontario Ministry
of Natural Resources and Forestry [33]. The DEM was then used to delineate the watershed boundary
and streams. Furthermore, the DEM was used to derive two slope classes: 0–4%, and >4% (Figure
S3), which were later used to set up the model. Land use data encompassing the watershed was
generated from 2015 and 2016 spatial crop data layers (CDL) from the Agriculture and Agri-Food
Canada (AAFC) annual crop inventory. In this study, several post-processing techniques were used
to combine CDL and spatial agricultural tile drainage maps (OMAFRA) to prepare a land use/land
cover map at a 30 m resolution that had crop rotations and tile drainage included (Figure S1). Soil data
at a scale of 1:1 million (Figure S2) obtained from Soil Landscapes of Canada (SLC) version 3.2 was
used. Threshold values of 10%, 5%, and 5% for land-use, soil and slope, respectively, were used to
define the HRUs. These processes resulted in a total of 7539 HRUs and 244 sub-basins in the SWAT
model of the study area. Moreover, a 10 km × 10 km gridded GCDC precipitation, and maximum and
minimum temperature data [19] (Figure 1) obtained from AAFC at daily time interval for a period
of 1980–1993 were used. This GCDC data was interpolated from daily Environment Canada climate
station observations using a thin plate smoothing spline surface fitting method [19]. The model was
run for a period 1980–1993, of which the first three years were used as a warm-up period.

2.4. Model Performance Evaluation

We followed the recommendation of Moriasi et al. [34] to evaluate the SWAT model performance
in simulating streamflow in the base period (1983–1993, 1983–1988—the calibration period,
and 1989–1993—the validation period). As such, we considered three goodness-of-fit statistics,
the coefficient of determination (R2), the Nash-Sutcliffe efficiency (NSE) [35], and the percentage
of bias (PBIAS), and the range of values of these statistics, for a particular qualitative rating (very good,
good, satisfactory, and unsatisfactory). In case different goodness-of-fit statistics pointed to different
qualitative ratings, an average qualitative rating was calculated, as adopted by various studies [36,37].
In addition, different graphical plots (e.g., time series, scatter plots, etc.) were also used. We used daily
streamflow measurements (averaged to monthly) at four gauging stations (Figure 1, two each for the
Thames and Grand river basins) for this purpose.
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2.5. Future Climate Data

While numerous climate change projection data exist, we used future climatic data (precipitation,
and minimum and maximum temperatures) from a Canadian regional climate model, the CanRCM4,
to quantify the impacts on streamflow dynamics. The projections from the CanRCM4 are tailored
to applications in Canada and are one of the RCMs used in the Coordinated Regional Climate
Downscaling Experiment (CORDEX) project implemented by the World Climate Research Programme
(WCRP) [16]. The CanRCM4 was developed using a dynamic method with a parent driver, which is a
second generation Canadian Earth System Model (CanESM2, readers are referred to Scinocca et al.,
von Salzen et al. [16,38] for further details). The spatial resolution of the CanRCM4’s horizontal grid of
0.22◦ was equivalent to 25 km. Two emission scenarios, the Representative Concentration Pathway
(RCP) 8.5 and 4.5, as purposed in the Fifth Assessment Report (AR5) by Intergovernmental Panel
on Climate Change (IPCC) [18], were used in this study. The RCP8.5 is a high emission scenario
representing an equivalent concentration of CO2 larger than 1000 ppm in 2100, while RCP4.5 is an
intermediate emission scenario with an equivalent concentration of CO2 ranging from 580 to 720 ppm
in 2100 [18]. Furthermore, two future periods—a mid- (2043–2053) and an end-century (2083–2093)
period were used to assess the impacts. We believe that the inclusion of two emission scenarios and
two future periods will reduce the uncertainties as advocated by Hawkins and Sutton [39]. However,
it should be noted that use of additional climate projection data might be helpful in understanding
the variability in projected streamflow. A study by Cheng et al. [40] in a similar cold climate region
watershed of western Canada using 6 CMIP5 GCMs showed that the ensemble mean projections could
not outperform any GCMs, indicating that the use of a suitable GCM might be enough. However,
choosing an appropriate GCM/RCM after a systematic evaluation of multiple climate models should
always be a preferred option. As such, it should be noted that the parent GCM of the CanRCM4 was
indeed one of the top 3 best performing models for this region of Canada [41].

2.6. Bias-Correction Methods

This study used the Climate Model data for hydrologic modeling (CMhyd) [17], which can be
used both for extracting and bias-correcting climate variables that are obtained from GCMs and
RCMs. The CMhyd is tailor-made to prepare simulated climate variables for climate change impact
studies with the SWAT model. The tool offers several bias-correction methods, including linear scaling,
non-linear scaling, and distribution mapping. Readers are referred to Rathjens et al. [17] for further
details about the tool. These bias-correction methods are explained briefly hereafter.

Since the performance of bias-correction methods is stationary between different weather
stations [42], one real-time Environmental Canada weather station—the Glen Allan (Figure 1) was
chosen as a reference station to evaluate the following bias-correction methods. The annual mean
precipitation at the station, calculated using daily data during the period of 1964–1993, was 961.2 mm.
Similarly, the mean summer precipitation was 254.7 mm—slightly higher than the winter mean
(216.8 mm). Moreover, the mean annual temperature was 6.6 ◦C, calculated using the same time
frame. To further evaluate the bias-correction methods, GCDC stations (Figure 1) were also used.
This served as a proxy-validation of the improvements achieved through each of the following
bias-correction methods.

2.6.1. Linear Scaling (LS) of Precipitation and Temperature

For the precipitation time series, a ratio was defined as the quotient of the long-term mean of the
observed monthly precipitation to that of the RCM simulations. The ratio was then used to multiply
the simulated daily precipitation of the corresponding month [43].

Pcon,cor(d) = Pcon(d) ×
(

Pobs(m)

Pcon(m)

)
(1)
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Psec,cor(d) = Psec(d) ×
(

Pobs(m)

Pcon(m)

)
(2)

where, Pcon,cor(d) is the corrected daily precipitation in the corresponding month during the control
period; Psec,cor(d) is the same during the future period; Pcon(d) is the uncorrected daily precipitation
in the corresponding month during the control period; Psec(d) is the same during the future period;
Pobs(m) is the observed monthly mean precipitation in the corresponding month during the control
period; Pcon(m) is the simulated monthly mean precipitation in the corresponding month during the
future period.

For temperature time series, however, an additive term is was defined as the difference between
the long-term mean of the observed monthly temperature, and that of the RCM simulations.
The additive term was then added to the simulated daily temperature of the corresponding month [43].

Tcon,cor(d) = Tcon(d) +
(

Tobs(m) − Tcon(m)

)
(3)

Tsec,cor(d) = Tsec(d) +
(

Tobs(m) − Tcon(m)

)
(4)

where, Tcon,cor(d) is the corrected daily temperature in the corresponding month during the control
period; Tsec,cor(d) is the same during the future period; Tcon(d) is the raw daily temperature in the
corresponding month during the control period; Tsec(d) is the same during the future period; Tobs(m) is
the observed monthly mean temperature in the corresponding month during the control period; Tcon(m)

is the simulated monthly mean temperature in the corresponding month during the future period.

2.6.2. Local Intensity Scaling (LOCI) of Precipitation

It is widely reported that RCM simulations tend to overestimate the numbers of drizzle days,
and wet-days frequency of the RCM simulated precipitation time series would be larger than that of
the observed precipitation [44,45]. As the LS method can only adjust the mean, the LOCI method was
thus developed, using a wet-days threshold to further adjust the wet-days frequencies [46]. In this
method, three steps were generally defined. First, the wet-days threshold was determined so that
numbers of days, excluding the days when precipitation was smaller than a chosen threshold value in
the RCM simulations, was the same as that of the observed wet-days when precipitation exceeded
0 mm. The governing equations of the LOCI method are [47]:

P1
con,(d) =

{
0, i f Pcon,(d) < Pthres

Pcon,(d), otherwise
(5)

P1
sec,(d) =

{
0, i f Psec,(d) < Pthres

Psec,(d), otherwise
(6)

where P1
con,(d) is the transitional daily precipitation during the control period; P1

sec,(d) is the same during
the future period; Pcon,(d) is the original daily precipitation during the control period; Psec,(d) is the
same during the future period; Pthres is the threshold.

Secondly, a scaling factor was calculated as a ratio of wet-day intensity between the observed
precipitation time series and the RCM simulations, and later adjusted using the adopted precipitation
threshold [46]:

s =
µ(Pobs,m,d/Pobs,m,d > 0)− 0

µ(Pcon,m,d/Pcon,m,d > Pthres)− Pthres
(7)
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Finally, the corrected daily precipitation was computed using a scaling factor multiplied by
transition daily precipitation:

Pcon,cor(d) = s × P1
con,(d) (8)

Psec,cor(d) = s × P1
sec,(d) (9)

where Pcon,cor(d) is the corrected daily precipitation during the control period; Psec,cor(d) is the same
during the future period; s and P1

sec,(d) is the same in Equations (5)–(7).

2.6.3. Power Transformation (PT) of precipitation

It is widely accepted that the LS and LOCI methods cannot adjust biases in the variance [47].
Hence, a non-linear method, also referred to as the power transformation (PT), which uses an
exponential form of P∗ = aPbm to further adjust the standard deviation of RCM simulations [48,49],
was also tested. As such, two steps were generally followed. Firstly, a scaling factor, bm, was calculated
to ensure that the coefficient of variance of RCM was the same as that of the observations on a monthly
basis [47]:

f(bm) = 0 = CVm(Pobs(d))− CVm

(
Pbm

con(d)
)

(10)

Next, the same procedure as the LS method was applied to Pbm
con(d) and Pbm

sce(d) such that the
monthly mean precipitation was the same between RCM simulated and observed precipitation
time series.

2.6.4. Variance Scaling (VS) of temperature

While PT is an effective way to correct both mean and variance of precipitation time series,
the method, however, cannot be used to adjust the variance of the temperature time series, since
the temperature is normally distributed [50]. Therefore, another method—the variance scaling (VS),
was applied to bias-correct the temperature time series [47], and is given as [48]:

Tcor,m,d = [Tcon,m,d − µ(Tcon,m)]×
σ(Tobs,m)

σ(Tcon,m)
+ µ(Tobs,m) (11)

where Tcor,m,d is the corrected daily temperature; Tcon,m,d is the uncorrected daily temperature in
the corresponding month during the control period; σ(Tobs,m) is the standard deviation of the
observed temperature time series in the corresponding month; σ(Tcon,m) is the standard deviation of
RCM temperature time series in the corresponding month; µ(Tobs,m) is the observed monthly mean
temperature in the corresponding month.

2.6.5. Distribution Mapping (DM) for Precipitation and Temperature

Distribution mapping (DM), also referred to as histogram equalization, quantile-quantile
mapping, or probability mapping, is a popular bias-correction method used in numerous climate
change studies [44,45,51,52]. The basic principle was to fit the parameters of transfer functions of
RCM-simulated data to that of observed data based on the monthly mean value. Typically, two
transfer functions are suitable for describing climate data: the Gamma and Gaussian distributions for
precipitation and temperature, respectively. For precipitation, firstly, random precipitation intensity
was specified and was used to determine the cumulative probability of simulated precipitation. Then,
based on the cumulative probability, the corrected precipitation value is selected. For temperature,
the cumulative probability of simulated temperature data could be determined. Then, according to the
probability, the corrected temperature value can be selected.
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2.7. Evaluation of Bias-Correction Methods

As depicted already, different bias-correction methods for precipitation and temperature
would be used. The performance of each bias-correction methods would be evaluated using
frequency—as well as time-series-based statistics. As such, we used mean, median, standard deviation,
coefficient-of-variation, and 90th percentile as frequency-based statistics for both precipitation and
temperature. Moreover, probability and intensity of wet-days were considered for precipitation.
Furthermore, we used four time-series-based statistics, R2, PBIAS, NSE, and mean absolute error
(MAE). Finally, monthly time series plots were analyzed in order to evaluate temporal patterns of
bias-corrected precipitation and the temperature CanRCM4 dataset.

Furthermore, it is widely reported that a bias-correction method that performs well in the historical
case is expected to perform better for the future scenarios [47]. It thus becomes imperative to assess the
accuracy of streamflow dynamics using all bias-corrected CanRCM4 datasets, and to compare them
with streamflow simulations using the observations and with those simulated using the raw dataset.
This would further refine our search for the best performing bias-correction method during the base
period, which would then be used for further analysis in the future periods. As such, 12 different
combinations were defined and simulated with the SWAT model to assess streamflow dynamics
in the base period. In order to compare the performance of the different bias-correction methods
on streamflow simulations, baseline streamflow simulations were used as the reference simulations
at four streamflow gauging stations, two each for the Grand and Thames river basins (Figure 1).
The performance of different combinations of bias-correction methods on streamflow was evaluated
using three time-series-based goodness-of-fit statistics (R2, PBIAS and NSE).

3. Results and Discussion

3.1. Streamflow Results in the Base Period

Figure 2 shows a graphical comparison of observed and simulated monthly streamflow during
the calibration as well as the validation period at four stations, two each for the Grand River and the
Thames River. Similarly, the goodness-of-fit statistics of the model results are presented in Table 1.
In general, there is a significant correlation between simulated and observed streamflow in both of the
watersheds. Similarly, the simulated streamflow also followed the trend of the observations. During
the calibration period, in the Grand River, the PBIAS value ranged from −10% to −2% from the
upper watershed location to the downstream location, NSE value ranged from 0.78 to 0.77, and R2

values ranged from 0.8 to 0.88. The qualitative ratings, as calculated from the range of values of these
goodness-of-fit statistics recommended by Moriasi et al. [34], ranged from ‘Satisfactory’ to ‘Very Good’.
On average, the qualitative ratings at both upstream and downstream stations are calculated to be
‘Good’. In the Thames River, the PBIAS ranged from 7% to 1%, the NSE ranged from 0.84 to 0.91,
and the R2 ranged from 0.85 to 0.9 from the upper watershed location to the downstream location.
As per the calculated goodness-of-fit statistics, the model performance in the calibration period varied
from ‘Good’ to ‘Very Good’. On average, the qualitative ratings were ‘Very Good’ at both stations in
the Thames River basin. In general, the model performances during the validation period were found
to be similar, when compared with that of the calibration period. Our model results were comparable
to the reported statistics in similar cold climate regions of Canada [25–31].
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Figure 2. Time series plots of observed and simulated monthly streamflow at: (a) Grand River
near Marsville (b) Grand River at Brantford (c) Thames River at Ingersoll (d) Thames River at
Thamesville during both calibration and validation periods. Also shown is the precipitation time
series as inverted bars.
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Table 1. Goodness-of-fit statistics and qualitative ratings of streamflow simulation results during both
calibration and validation periods at four stations.

Streamflow Gauging Stations Calibration Validation

R2 PBIAS
(%) NSE R2 PBIAS

(%) NSE

Grand river near Marsville 0.80(G) –10(S) 0.78(G) 0.77(G) –14(S) 0.74(G)

Grand river at Brantford 0.88(VG) –2(VG) 0.77(G) 0.83(G) –7(G) 0.72(G)

Thames river at Ingersoll 0.85(VG) 7(G) 0.84(VG) 0.75(G) 5(G) 0.73(G)

Thames river at Thamesville 0.91(VG) 1(VG) 0.91(VG) 0.88(VG) 3(VG) 0.88(VG)

VG: Very Good; G: Good; S: Satisfactory; US: Unsatisfactory

R2: Coefficient of determination; PBIAS: Percentage of bias; NSE: Nash-Sutcliffe Efficiency

3.2. Performance of Different Bias-Correction Methods

3.2.1. Precipitation

Four bias-corrected methods used in this study significantly improved simulated precipitation
time series as indicated by goodness-of-fit statistics of both frequency- and time-series-based statistics
(Table 2). Figure 3 shows the graphical comparison plots of these statistics calculated for the observed,
raw and bias-corrected daily precipitation data.

Table 2. Frequency- (daily) and time-series- (monthly) based statistics for the precipitation of
observed, raw CanRCM4, and bias-corrected (using four methods) CanRCM4 datasets during a
period of 1964–1993.

Statistics Obs. Raw LS LOCI PT DM

Frequency based
Mean (mm) 2.71 2.39 2.71 2.71 2.71 2.69

Median (mm) 0 0.21 0.24 0 0.39 0
Standard Deviation (mm) 6.14 6.1 7.14 7.26 6.14 7.28
Coefficient of Variation (-) 2.26 2.55 2.63 2.68 2.26 2.7

90th Percentile (mm) 8.6 6.89 7.57 7.69 7.81 7.5
Probability of Wet Days (%) 47.12 81.1 81.1 46.89 81.1 46.89

Intensity of Wet Days (mm/day) 5.76 2.95 3.34 5.79 3.34 5.75
Time-series based

Coefficient of Determination - R2 - 0.04 1 1 1 0.99
Percentage Bias - PBIAS (%) - 11.8 0.01 0 0 0.69

Nash-Sutcliffe Efficiency - NSE - –0.7 1 1 1 0.99
Mean Absolute Error - MAE (◦C) - 16.92 0.01 0 0.01 1.08

LS: Linear Scaling; LOCI: Local Internsity Scaling; DM: Distribution Mapping

Raw CanRCM4 data seriously underestimated the mean precipitation for the months of August
to October, compared to that of the observations, resulting in an overall underestimation (2.39 mm
compared to 2.71 mm). However, all the bias-correction methods effectively reduced the discrepancy.
No significant differences on performance between four bias-correcting methods were found. As for
the standard deviation (SD), the raw data again showed marked temporal heterogeneity (Figure 3).
Compared to that of the observations (6.14 mm), the SDs for the months of January to June, calculated
using the raw CanRCM4 data were overestimated, while they were underestimated in the following
months, resulting in an overall SD value of 6.1 mm. After bias-correction, significant improvements in
the temporal trend of the SDs were evident (Figure 3). While the PT method perfectly adjusted the SD,
the other three methods tended to over-adjust the SDs, especially for the months of April and December.
Similarly, the raw dataset tends to overestimate the coefficient-of-variation (CV) for most of the months,
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except for March. The LS-, LOCI-, and DM-based bias-correction methods were found to be poor to
adjust CV, as the resulting CVs were found to be 2.63, 2.68, and 2.7, respectively, which were seriously
overestimated compared to the observed value of 2.26. In contrast, the PT method was found to be the
best method in adjusting the biases in CV with zero overall bias. Moreover, the biases on 90th percentile
precipitation for the raw CanRCM4 dataset were apparent in different months (Figure 3), resulting
in an overall underestimation (6.89 mm), compared to the observations (8.6 mm). After applying
bias-correction methods, all methods significantly reduced biases, but the extent of improvements
were fairly comparable (7.5–7.81 mm, compared to 8.6 mm for the observations). Furthermore, the raw
CanRCM4 dataset significantly overestimated the probability of wet-days (81.1%), compared to the
observations (47.12%) as did the LS and PT methods (81.1%). The LOCI and DM methods, on the
other hand, improved both the temporal trend and the overall statistics of the probability of wet-days
significantly (46.89% for both methods, compared to 47.12% for the observations). Finally, the raw
CanRCM4 dataset significantly underestimated the intensity of wet-days in all months, resulting in a
significant overall underestimation (2.95 mm/day compared to 5.76 mm/day for the observations)
which was contrary to the trend that was observed for the wet-days frequency. After applying
bias-correction methods, similar results to the observed probability of wet-days were obtained (better
performance of LOCI and DM methods compared to the LS and PT methods).
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Furthermore, from the view point of time-series-based statistics, the R2 value calculated for the
raw dataset was rather poor (0.04), which might have been a result of the coarse resolution of the
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CanRCM4 (25 km × 25 km). After applying bias-correction methods, significant improvements on
R2 values were obtained, being close to the perfect value of 1.0. Moreover, PBIAS values improved
significantly (from 10.80% to <0.69%). Similar improvements were observed from other statistics, such
as NSE and MAE.

Observing the temporal trend and analyzing the goodness-of-fit statistics, it was found that while
the LS method effectively removed the bias in mean precipitation, it failed to improve other statistics
such as the standard deviation and probability of wet-days. The LOCI and DM methods, on the
other hand, could significantly improve the mean, the probability of wet-days, and the intensity of
wet-days. However, these methods over-adjusted variability statistics such as standard deviation.
A similar result was observed for the coefficient-of-variation, too. In contrast, the PT method could
significantly improve the variability statistics while it was found to be rather poor in adjusting the
probability as well as intensity of wet-days. Hence, from the results, it could be stated that, except for
the LS, other three methods (LOCI, PT and DM) have shown their own advantages to bias-correcting
precipitation time series. The results further highlighted the need of bias-correcting raw RCM or GCM
datasets before using them for any climate change impact assessments. Contrasting the results for the
probability of wet-days and wet-days intensity indicated that the raw CanRCM4 dataset tended to have
a more frequent number of wet-days of lower intensities compared to the observations. Interestingly,
raw CanRCM4 data showed significantly lower wet-days intensities of precipitation, especially for the
summer months (June to August), which are of higher importance to erosion and sediment transport,
and nutrients exports to receiving waters.

As stated in Section 2.6, we also used GCDC stations to validate the accuracy of the bias-correction
methods on precipitation and temperature. Results showed comparable accuracy to that obtained for
the Glen Allen station (Table 2, Figure 3). As an illustration, both frequency- and time-series-based
results (Tables S1 and S2) obtained for a GCDC station located near to the outlet of the Grand River
basin showed comparable accuracy to those obtained for the Glen Allen (located in the upstream part of
the basin). This also validated the need to bias-correct the raw CanRCM4 data using different methods.

3.2.2. Temperature

Since the results of different bias-correction methods for minimum temperature time series were
similar to that of the maximum temperature, we presented the results of maximum temperature
analysis, for clarity purposes. Table 3 shows the frequency- and time-series-based goodness-of-fit
statistics, while Figure 4 presents graphical comparison between observed, and raw, as well as
bias-corrected, daily maximum temperature data.

Table 3. Frequency- (daily) and time-series- (monthly) based statistics for maximum temperature of
the observations, raw CanRCM4, and bias-corrected (using three methods) CanRCM4 datasets during
the period of 1964–1993.

Statistics Obs. Raw LS VS DM

Frequency based
Mean (◦C) 10.83 14.47 10.83 10.83 10.83

Median (◦C) 11.1 13.92 10.71 10.93 11.42
Standard Deviation (◦C) 11.71 13.21 11.83 11.71 11.71
Coefficient of Variation 1.08 0.91 1.09 1.08 1.08

90th Percentile (◦C) 26 32.49 26.77 26.08 26.01
10th Percentile (◦C) –5 –1.69 –4.12 –4.83 –4.37

Time-series based
Coefficient of Determination - R2 - 0.92 0.93 0.94 0.93

Percentage Bias - PBIAS (%) - –33.84 –0.02 –0.01 –0.01
Nash-Sutcliffe Efficiency - NSE - 0.84 0.93 0.94 0.93

Mean Absolute Error - MAE (◦C) - 4.23 2.31 2.05 2.2
LS: Linear Scaling; VS: Variance Scaling; DM: Distribution Mapping
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As illustrated above, the raw CanRCM4 dataset tended to significantly overestimate mean
maximum temperatures for all months, except for the late autumn season (October and November)
months, leading to an overall overestimation (14.47 ◦C), compared to the observations (10.83 ◦C).
However, after applying different bias-correction methods on the raw CanRCM4 dataset, this problem
was effectively resolved. Raw CanRCM4-based standard deviations (SD) tended to overestimate the
SDs for the months of May to October: however, the contrary was observed in other months, leading to
an overall overestimation (13.92 ◦C), compared to the observations (11.71 ◦C). After applying different
bias-correction methods, the SDs calculated for the VS and DM methods were in close agreement,
while the SD for LS method was slightly higher (11.83 ◦C). Moreover, a similar trend to that observed
in the mean temperature has been observed for the 90th percentile and 10th percentiles of maximum
temperature—a serious overestimation by the raw CanRCM4 dataset and a near perfect match after
applying bias-correction methods. However, the coefficient-of-variation (CV) calculated for the raw
CanRCM4 dataset was slightly lower (0.91 ◦C) than that of the observations (1.08 ◦C). The CVs
calculated for bias-corrected CanRCM4 dataset were in close agreement with those of the observations.

Furthermore, from the viewpoint of time-series-based statistics, unlike that observed for
precipitation, R2 values for the raw and bias-corrected CanRCM4 datasets were fairly comparable
(0.92 to 0.94). However, PBIAS for the raw CanRCM4 dataset (−33.84%) improved significantly after
applying any of the bias-correction methods (−0.01% to 0.02%). A similar trend was observed for NSE
and MAE.

As obtained for precipitation, both frequency- and time-series-based results for temperature
(Table S2) also showed comparable results for the chosen GCDC station to that of the Glen Allen station.
This further highlights the need to apply different bias-correction methods to the raw CanRCM4 data.

From the analyses, it was found that all bias-correction methods significantly improved the raw
CanRCM4 maximum temperature dataset. The biases in the mean temperature calculated for the three
bias-correction methods were all in close agreement. Overall, with the exception of mean temperature,
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the VS- and DM-based bias-corrected CanRCM4 datasets resulted in slightly better frequency-based
statistics in comparison to the LS-based bias-corrected CanRCM4 dataset. The VS-based bias-corrected
CanRCM4 dataset resulted in slightly better time-series-based statistics than those calculated for
other methods. From the evaluation of the raw and bias-corrected CanRCM4 datasets for maximum
temperatures, the need of bias-correction for temperature dataset was further highlighted.

3.2.3. Streamflow

Table 4 presents time-series-based goodness-of-fit statistics calculated for different combinations
of bias-correction methods for precipitation and temperature in simulating streamflow at four
gauging stations.

Table 4. Goodness-of-fit statistics for streamflow simulation in baseline, raw, and 12 different
combinations of bias-correction methods for temperature and precipitation.

Simulations/
Combinations

Grand River near
Marsville

Grand River at
Brantford

Thames River at
Ingersoll

Thames River at
Thamesville

R2 PBIAS
(%) NSE R2 PBIAS

(%) NSE R2 PBIAS
(%) NSE R2 PBIAS

(%) NSE

Baseline 0.93 –10.9 0.91 0.94 –4.25 0.86 0.81 6.42 0.79 0.98 1.63 0.97
Raw 0.61 11.49 0.22 0.68 4.77 0.64 0.69 –2.01 0.59 0.83 –4.01 0.81

P(LS) + T(LS) 0.68 –44 0.46 0.77 –36.66 0.52 0.62 –36.69 0.3 0.78 –29.81 0.52
P(LS) + T(VS) 0.67 –43.36 0.4 0.76 –36.6 0.51 0.62 –35.99 0.25 0.83 –22.07 0.56
P(LS) + T(DM) 0.67 –43.24 0.43 0.77 –36.78 0.52 0.6 –36.72 0.28 0.76 –29.57 0.5

P(LOCI) + T(LS) 0.73 –26.7 0.6 0.83 –18.86 0.73 0.67 –19.95 0.48 0.86 –15.35 0.75
P(LOCI) + T(VS) 0.71 –25.91 0.54 0.81 –18.62 0.72 0.67 –19.03 0.43 0.86 –14.68 0.73
P(LOCI) + T(DM) 0.73 –25.95 0.58 0.83 –18.93 0.73 0.65 –19.97 0.46 0.85 –15.16 0.73

P(PT) + T(LS) 0.7 –52.83 0.44 0.77 –43.77 0.49 0.72 –41.55 0.43 0.78 –33.81 0.56
P(PT) + T(VS) 0.69 –52.39 0.39 0.77 –43.92 0.48 0.74 –41.11 0.41 0.77 –33.37 0.54
P(PT) + T(DM) 0.7 –52.23 0.42 0.77 –43.97 0.49 0.72 –41.63 0.42 0.76 –33.75 0.54
P(DM) + T(LS) 0.78 –14 0.72 0.84 –6.2 0.83 0.63 –7.04 0.57 0.92 –4.95 0.9
P(DM) + T(VS) 0.78 -13.45 0.69 0.85 –6.19 0.83 0.64 –6.13 0.56 0.92 –4.34 0.9
P(DM) + T(DM) 0.79 –13.44 0.72 0.85 –6.48 0.84 0.63 –7.07 0.58 0.91 –4.9 0.89

P: Precipitation; T: Temperature
LS: Linear Scaling; VS: Variance Scaling; DM: Distribution Map; LOCI: Local Intensity Scaling; PT: Power Transformation

As expected, the baseline scenario has resulted in the best goodness-of-fit statistics, as we used a
calibrated parameter set and an observed meteorological (GCDC, Figure 1) data set for this analysis.
Raw CanRCM4-based streamflow resulted in systematically lower values of all statistics at all four
stations. For instance, at Grand River near Marsville, the R2 value decreased to 0.61, compared to
0.93 calculated for the baseline; and the NSE value decreased to 0.22, compared to 0.91, calculated
for the baseline. The values of goodness-of-fit statistics increased for all bias-correction methods
and their combinations, when compared to those that were calculated for raw CanRCM4, which
further highlights the need of bias-correction on the raw future climate dataset. Furthermore, for
our case, the choice of a particular bias-correction method for temperature did not seem to affect the
streamflow simulation results profoundly. For instance, the goodness-of-fit statistics for combinations
P(LS) + T(LS) and P(LS) + T(VS) were fairly comparable across all stations. However, the choice of
a particular bias-correction method for precipitation tended to affect streamflow simulation results
profoundly. As illustrated, the goodness-of-fit statistics for the combination of P(LOCI) + T(LS) were
consistently better than those obtained for the combination of P(LS) + T(LS) across all stations. Our
findings suggest that the selection of a particular bias-correction method for precipitation would
exert greater control than that for temperature, and highlights the need for a proper bias-correction
method for raw CanRCM4 precipitation data. Overall, after a systematic evaluation of all the
combinations was completed, it was evident that the combination of P(DM) + T(DM) performed
the best, and the precipitation and temperature dataset obtained after respective bias-corrections were
used for further analysis.
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3.3. Streamflow Results in Future Periods

Figures 5 and 6 shows the spatiotemporal variation of mean monthly changes in precipitation (%)
and mean temperature (◦C) at the sub-basin spatial scale. Table 5 shows the basin-wide changes in
precipitation (%), mean temperature (◦C), green water flow (evapotranspiration—ET, %) and green
water storage (soil water, %) in a monthly time interval. Here, we opted to use the terminologies that
are consistent with the so-called ‘green and blue water paradigm’, as advocated by Falkenmark and
Rockström [53]. It should be noted that we did not validate either the green water flow or green water
storage due to the unavailability of the data. However, because we achieved “very good” streamflow
results at multiple locations, it is fair to assume that these two important components (green water flow
or green water storage) were well simulated when using a physically-based model such as the SWAT.
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On average, precipitation was projected to increase in the winter and spring months, and to
decrease in the summer and autumn months. The increases and decreases tended to be more extreme
for the higher emission scenario (RCP8.5), and for the end-of-century period (2083–2093). The highest
increase in precipitation was expected in the month of May, and during the mid-century period for
the RCP8.5 scenario (+55%) while a decrease of −11% was expected in the same month for the same
emission scenario, but in the end-of-century period. This shows marked heterogeneity in the projected
precipitation changes as per the emission scenarios and in different future periods. The summer
precipitation, which was of particular importance for crop growth, as most of the crops would be in
their most critical stage (e.g., flowering), was expected to decrease, on average—the highest decreases
were in the month of August (−6% to −27%). Interestingly, for both emission scenarios and in both
future periods, spring (March-May) precipitation was projected to increase, on average (up to +55%).
Our results were comparable to those reported in similar Canadian watersheds [26,54–56]; including
by Rahman et al. [57] in the Ruscom River basin, and in the watersheds around the Great Lake basins,
such as those reported by Cousino et al. [58] and Culbertson et al. [12] in the Maumee River basin, by
Bosch et al. [11] in four basins draining to Lake Erie from the USA, by Li et al. [14] in the Grand River
basin, and by Samantha et al. [59] in the Western Lake Erie basin, among others.
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Table 5. Projected changes in basin-wide average precipitation, mean temperature, green water flow
(evapotranspiration–ET) and green water storage (soil water) in two emission scenarios and during
two future periods, compared to the base period.

Variables Emission
Scenarios/Periods Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Precipitation
Changes (%)

RCP4.5 Mid-century –12 16 11 23 11 6 –5 –27 0 2 –19 –15
RCP8.5 Mid-century –1 7 15 27 55 4 –10 –6 –21 21 –3 –23
RCP4.5 End-century –6 26 18 32 19 31 –40 –12 –22 31 –7 –5
RCP8.5 End-century 3 38 8 27 –11 18 -1 –27 -2 21 –16 6

Average
Temperature

Changes
(◦C)

RCP4.5 Mid-century 4.5 5.8 5.6 6.5 4.5 2.4 2.5 0.2 –2.0 –0.1 –0.3 –0.1
RCP8.5 Mid-century 4.6 4.7 6.3 6.5 5.2 3.3 3.0 0.4 –0.7 –0.8 0.5 0.8
RCP4.5 End-century 6.7 7.7 9.4 9.2 5.9 3.1 2.9 –0.7 –2.8 –1.9 –0.8 0.3
RCP8.5 End-century 7.8 7.9 12.4 12.5 8.8 6.1 5.6 2.0 0.4 –0.4 –0.2 5.6

Green
Water Flow
Changes (%)

RCP4.5 Mid-century 125 128 58 39 38 9 –12 –26 –23 –8 15 10
RCP8.5 Mid-century 123 119 55 36 42 7 –11 –23 –12 –12 18 19
RCP4.5 End-century 170 157 73 54 51 5 –22 –39 –23 –12 10 15
RCP8.5 End-century 188 173 88 70 53 1 –16 –48 –34 –15 9 56

Green Water
Storage

Changes (%)

RCP4.5 Mid-century –15 –21 –10 –3 –22 -35 –37 –33 –4 5 –4 1
RCP8.5 Mid-century –15 –19 –12 –2 –21 -35 –40 –12 –12 9 0 –9
RCP4.5 End-century –19 –23 –15 –3 –34 -30 –52 –9 –9 14 –1 –1
RCP8.5 End-century –20 –22 –20 –19 –56 -50 –37 –6 12 12 –4 –9

As observed for precipitation, there existed marked spatial and temporal variabilities in the
projected mean temperature. In the spatial scale, the changes in the upper parts of the basin were
slightly more extreme than those in the lower parts of the basin. Moreover, the changes were more
extreme for the RCP 8.5 emission scenario and during the end-of-century period. During the winter
and spring months, the increases were the highest (up to +12.5 ◦C, in April for the RCP 8.5 during
the end-of-century period). The increasing trend in temperature was expected to continue until July.
The temperature, however, was expected to decrease in the autumn months, contrary to most of the
studies conducted in surrounding basins [11,12,14,57,58].
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With the increasing trend in temperatures during the winter season (up to +7.9 ◦C), the green
water flow (evapotranspiration—ET) increased significantly (up to +188%), thereby decreasing the
green water storage (soil moisture, up to −23%), even if the winter season was projected to receive more
precipitation, on average (up to +38%). These increases in winter precipitation could have the so-called
‘rain-on-snow’ (ROS) effects which have the potential to accelerate snowmelt, thereby decreasing
snowpack and lowering the soil water content in spring [60], which was what we observed—decreases
of up to −56% on green water storage in the spring season. These projected decreases in green water
storage could affect crop sowing and plantation dates. In the summer season, projected decreases in
precipitation (up to −40%) and projected increases in temperature (up to +6.1 ◦C) seemed to have
offsetting effects, as green water flow was expected to decrease, on average. This could be attributed
to projected decreases in green water storage (up to −52%), which consequently restricted the ability
of crops to allow increased green water flow as a result of projected increases in summer temperature.
Such consistent decreases of green water storage (up to −52%) during the summer period, a crucial
period of time for crop growth and development, would have serious implications on the crop yield,
as crops might experience water-stress conditions. Consequently, farmers may have to irrigate their
crop field in order to optimize the crop yield. In the autumn season, green water flow decreases
(up to −34%) as a result of projected decreases (on average) in temperature (up to −2.8 ◦C), thereby
increasing green water storage (up to +14%).

Figure 7 shows the monthly streamflow dynamics in the baseline and future periods at four
gauging stations. In general, there was a clear shift of spring snowmelt toward the late winter months
or the early spring months. Additionally, decreases in the average summer streamflow were noted,
which corresponded to the observations made in similar cold climate regions [26,54–56,61,62] including
those in the Great Lake basin [11–14,57,58].

In the Grand River near Marsville, mean monthly streamflow was projected to increase in mid-
and late-winter months (January and February), late-spring (May), and early- and mid-summer
months (Figure 7 & Table S4). Furthermore, there was also a clear shift in the occurrence of spring
snowmelt to earlier months (February). This particular gauging station is located in the upstream part
of the Grand River basin (Figure 1), where the changes in winter temperatures clearly showed higher
increases in comparison to other parts of the basin (Figure 6), thereby significantly increasing green
water flow (evapotranspiration—ET, Figure S4). Such elevated winter temperatures compounded by
projected increases in late-winter (February) precipitation in this region (Figure 5), results in increases
(+20 to +83%, Table S4) in February streamflow. As a consequence, streamflow during the early spring
months (March and April) was projected to decrease substantially (−39% to −51% during March,
and −60% to −72% during April), despite projected increases in precipitation during these months,
since less snowpack was available for melting, and thus soil moisture level was depleted (Figure S5,
Table S4). Interestingly, during the summer months, changes in precipitation (−37% to +54%, Figure 5
& Table 5) had been reflected in the streamflow dynamics (−77% to +170%). Such high variability
in the projected changes of summer streamflow poses additional challenges to water managers and
planners. During the autumn months, as similarly observed with summer streamflow, the magnitude
of changes varied profoundly as per RCPs and future periods. For instance, for RCP8.5 in August,
streamflow was projected to increase by +119% during the mid-century period, but was expected to
decrease by –57% during the end-of-century period (Figure 7 & Table S4). When analyzing the spatial
variability of projected changes in precipitation and temperature at upstream regions of the Grand
River basin, it was clear that the slightest of changes in these climate variables could translate into
amplified changes on streamflow.
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In the Grand River at Brantford (the downstream station, Figure 1), changes in streamflow had
generally followed the trend observed in Marshville (the upstream station, Figure 1) for the winter
and spring months—a clear shift in the occurrence of spring snowmelt to an earlier month (February)
and decreases in early spring (March and April) streamflow. In spring months, the importance of
antecedent soil moisture level and of temperature exerting greater control than precipitation, were
clearly highlighted in such cold climate region watersheds. For instance, in March, the precipitation
in RCP8.5 during the end-of-century period was projected to increase by 17% (Table S4); however,
streamflow was shown to decrease (−40%, Table S4). This was due to the fact that temperature was
expected to increase significantly (+13.1 ◦C, Table S3), thereby increasing green water flow (+130%).
Such decreases in streamflow were also a result of lower green water storage in the previous month
(−20%, Table S3). However, summer streamflow at Brantford was projected to decrease (up to −68%),
corresponding with findings of Li et al. [14] in the same river basin. While the differences in the
projected changes of streamflow between RCP 4.5 and RCP8.5 during the mid-century period were
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fairly comparable (with the exception of July), contrasting results were evident, especially during the
summer months in the end-of-century period (Figure 7). This could be related to the differences in the
projected increases in temperature. During the end-of-century period, even though the magnitudes of
changes in precipitation were fairly comparable (Figure 5), changes in temperature were significantly
higher for RCP8.5 (Figure 6, Table S3), thereby increasing the green water flow (Figure S4, Table S3)
and decreasing soil water storage (Figure S5, Table S3). Similarly, autumn streamflow, on average,
was projected to decrease (up to −64%), reflecting the average projected decreases in precipitation.
It should be noted that autumn temperature was expected to decrease, implying that precipitation
exerts greater control on streamflow dynamics than temperature, in autumn months.

In the Thames River at Ingersoll (with the exception of RCP8.5 during end-of-century period),
mid-winter (January) streamflow was projected to decrease (up to −33%). Furthermore, for RCP8.5
during mid-century and RCP 4.5 during end-of-century, peak streamflow was projected to occur in
May, with increases of +140% and +144%, respectively (Figure 7 & Table S4). Such significant increases
were driven by projected increases of localized precipitation in sub-basins draining to this station
(increases up to 55% and 26%, respectively, which were significantly higher than other locations,
Table S3). This highlights the effects that localized changes in climatic variables can have in smaller
watersheds, with a short time of concentration. As also observed in two stations of the Grand River
basin, streamflow in the early spring months (March and April) was projected to decrease consistently
(up to −43%), irrespective of the emission scenario and the future period. Similarly, summer and
autumn streamflow were also projected to decrease, on average, which was in line with the conclusions
of Culbertson et al. and Verma et al. [12,13] in the Maumee River basin, Cherkauer and Sinha [9] in six
watersheds of Lake Michigan, and Chien et al. [63] in four watersheds of midwestern US.

In Thamesville, the downstream station of the Thames River basin (Figure 1), the general trends
of: increases in winter streamflow, decreases in early- and mid-spring (March and April, respectively)
streamflow, decreases in summer and autumn (on average) streamflow, and a clear shift of peak
early-spring (March) streamflow to late-winter (February), were observed. However, significant
increases in May streamflow (up to +115%, Figure 7 & Table S4) for RCP8.5 during the mid-century
period and RCP4.5 during the end-of-century period (+55%) were evident at this station, as well as
at the upstream station, due to projected increases in precipitation (63% and 54%, respectively, refer
Table S3). Furthermore, mid- (October) and late-autumn (November) streamflow were expected to
increase (up to +56%), reflecting the projected changes in precipitation.

From the analyses, it is clear that there existed marked spatial variability in the projected changes
in streamflow, due to the spatial heterogeneity of precipitation and temperature changes, and of
evapotranspiration and soil water storage changes. Furthermore, there existed marked differences in
the streamflow changes as per the RCPs and the future periods (Figure 8). For instance, at the Grand
River near Marsville, January streamflow would vary between 7.2 to 13.6 m3/s (Figure 8). This further
highlights the need to consider spatial variability and availability of water resources distribution in
the future, as well as the need to consider different emission scenarios and different future periods in
such climate change impact assessments. The results of this study also warranted that region-specific
adaptation measures need to be placed in the Lake Erie Basin in order to lessen the impacts of climate
change on the basins water resources in the future. Moreover, the need for bias-correction on the raw
CanRCM data was further highlighted by the marked differences in streamflow projections, based
on the raw and bias-corrected climate data (Figure 8). As we did not endeavor to present streamflow
results derived by the raw climate data, we did not further elaborated on it. However, precautions
should be taken when inferring the future streamflow variabilities, which were based on the raw
climate data.
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Figure 8. Time series plot of mean monthly streamflow in the baseline period (line with markers)
and range (maximum and minimum, as shaded area) of streamflow in the future period (for different
future periods and emission scenarios) at (a) the Grand River near Marsville; (b) the Grand River
at Brantford; (c) the Thames River at Ingersoll; and (d) the Thames River at Thamesville, with raw
(bias-not-corrected) and bias-corrected datasets.

4. Conclusions

This work demonstrates the need for the application and evaluation of different bias-correction
methods (and their combinations) before forcing climatic data into a calibrated and validated SWAT
model for climate change impact assessment, considering that the bias-correction methods significantly
improved the raw climatic data. Furthermore, the advantages of analyzing climate change impact on
different spatial and temporal scales, considering different components of the hydrological cycles, were
illustrated. The severity of the impact differed for each of the components. As an example, streamflow
was projected to decrease in all seasons (spring: −33%, summer: −23% and autumn: −15%), with the
exception of winter (+11%), as a response to the projected warmer (up to +14 ◦C) and wetter (up to
+63%) climate in these two rivers of the NLE basin.

This study is first of its kind to explore the region-specific temporal variability in water resource
availability. Such variability poses a considerable challenges to water planners and managers, as well
as the integrated water resources management of these two river basins. We believe that the availability
of such a modelling tool, and the knowledge of climate-induced hydrological altercations could be
helpful in understanding the distribution and availability of water resources in the future, and would
aid in the formulation of plausible management options in the view of mitigating any ill effects on the
health of Lake Erie.
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s1, Figure S1: Land use map of the study area. Land use names are presented as in SWAT database, Figure
S2: Different soil types in the study area. Soil names are presented as in the Ontario Ministry of Agriculture,
Food and Rural Affairs, Figure S3: The slope map of the study area, Figure S4: Changes in green water flow
(evapotranspiration—ET) in different future periods and for different emission scenarios, compared to the base
period, Figure S5: Changes in green water storage (soil water) in different future periods and for different emission
scenarios, compared to base period, Table S1: Frequency- (daily) and time-series- (monthly) based statistics for
precipitation of observation, raw CanRCM4, and bias-corrected (using four methods) CanRCM4 datasets during a
period of 1980–1993 at a pixel near the outlet of the Grand river basin, Table S2: Frequency- (daily) and time series-
(monthly) based statistics for the maximum temperature of observation, raw CanRCM4, and bias-corrected (using
three methods) CanRCM4 datasets during a period of 1980–1993 at a pixel near the outlet of the Grand river basin,
Table S3: Projected future changes in mean monthly precipitation, mean temperature, evapotranspiration, and soil
water storage, averaged for the sub-basins upstream of four stations, Table S4: Projected future changes in mean
monthly streamflow at four stations.
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