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Abstract
Aquatic megafauna are difficult to observe and count due to the inaccessibility and 
issues of detectability. Traditional transect and helicopter counts are useful for ob-
taining population estimates, but they often have logistical and cost limitations. The 
recent proliferation of drone technology offers an innovative way of surveying ani-
mal populations. However, data collected from drones are hindered by an analysis 
bottleneck that increases the time needed to process them. Convolutional Neural 
Networks (CNNs) are an emerging category of deep learning that can automate this 
data analysis process. Here, we compare traditional methods with drone surveys, by 
detecting and counting Nile crocodiles (Crocodylus niloticus) and common hippopot-
ami (Hippopotamus amphibious). We evaluate the utility of CNNs for object detection 
and quantification in complex environments. Drone counts were more accurate than 
traditional methods; identifying 21% more crocodiles. Where vegetation was open, 
hippo counts with a drone showed a similar pattern (identifying 43% more). When 
vegetation was dense the drone produced less-accurate population estimates than 
traditional methods. CNN accuracy was limited (85%) due to the reduced training 
dataset available for the CNN. However, with an expanded data set, object detection 
is likely to be more accurate, making it more applicable for expedited and automated 
data analysis.
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Résumé
La mégafaune aquatique est difficile à observer et à dénombrer en raison de 
son inaccessibilité et des problèmes liés à sa détectabilité. Les dénombrements 
traditionnels par transect et par hélicoptère sont utiles afin d'obtenir des estimations 
de la population, mais ils comportent souvent des limites logistiques et financières. 
La prolifération récente de la technologie des drones offre un moyen novateur de 
recenser les populations animales. Cependant, l'efficacité du recueil de données par 
les drones est entravée par un goulot d'étranglement causé par le processus d'analyse, 
qui augmente le temps de traitement nécessaire de ces mêmes données. Les 
réseaux neuronaux convolutifs (RNC) sont une catégorie émergente d'apprentissage 
approfondi qui peut automatiser ce processus d'analyse de données. Notre objectif 
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1  |  INTRODUC TION

Many wildlife populations are undergoing significant decline due 
to an increasing anthropogenic pressures, such as habitat degrada-
tion and intensive poaching (Lhoest et al., 2015). This has led to ex-
tinction rates that are a hundred-fold greater than the background 
extinction rates (Hodgson et al., 2018). Accurate and efficient pop-
ulation estimates are crucial for ecological studies and wildlife man-
agement (Elsey & Trosclair, 2016; Gray et al., 2019; Hodgson et al., 
2018). The effectiveness of management decision-making is often 
dependent upon the quality and quantity of the ecological data upon 
which decisions are based. This means that improved data collection 
methods may herald more effective ecological outcomes (Dunstan 
et al., 2020; Hodgson et al., 2018).

Traditional methods of surveying large animals, such as drive 
counts and aerial counts, have proven to be a popular and successful 
way of obtaining population estimates (Jachmann, 2002). However, 
problems with safety, cost, visibility, statistical integrity and logistics 
have hindered the application of these methodologies (Jachmann, 
2002; Jones, 2003). Observer efficiency is an important source of 
bias leading to underestimates of population size, especially where 
animals live in large congregations (Linchant et al., 2018). Therefore, 
these methods produce highly variable results (Combrink et al., 
2011; Jachmann, 2002).

Drones (also known as unmanned aerial vehicles (or UAVs)) allow 
for high-resolution data acquisition in both the spatial and tem-
poral domain and may overcome the constraints of terrestrial and 
occupied aircraft counts (Jiménez López & Mulero-Pázmány, 2019; 
Seymour et al., 2017; Thapa et al., 2018). The recent proliferation of 
non-military applications of drones over the last decade has been of 
growing interest to the scientific community (Wich & Pin Koh, 2018). 
The use of drones for surveying is an increasing facet of conserva-
tion ecology and has the potential to revolutionise the way in which 

animals and their habitats are monitored (Elsey & Trosclair, 2016; 
Longmore et al., 2017; Witczuk et al., 2018). This methodology is 
increasingly viewed as a supplement to, or a replacement of, tradi-
tional methods of surveying flora and fauna (Christie et al., 2016).

The behaviour and habitat of aquatic mammals make collecting 
survey data particularly challenging. This is due to the fact that they 
spend much of their time underwater, move rapidly over large areas 
and occupy remote habitats (Anderson & Gaston, 2013; Gray et al., 
2019). As a result, aerial surveys are typically used to collect popu-
lation data on these species (Chrétien et al., 2016). Drones are able 
to carry out similar tasks as helicopters, often more reliably, at lower 
costs, and inducing less disturbance on the target species (Ezat 
et al., 2018; Linchant et al., 2018; Raoult et al., 2020; Schofield et al., 
2019). Hodgson et al. (2016) found that drone derived estimates of 
population size, resulted in smaller cumulative variances than other 
methods. However, drones are restricted by a shorter flight time 
than conventional helicopters, which drastically reduces the area 
that can be surveyed.

Whilst drones can collect detailed information rapidly, they do 
not overcome an existing data analysis bottleneck (Nguyen et al., 
2017; Seymour et al., 2017). Specifically; manually counting animals 
in resultant imagery is time consuming and inefficient. One possi-
ble method for overcoming this constraint is to employ automated 
methods for detection, localisation and enumeration of target an-
imals (Corcoran et al., 2021). A range of techniques can be incor-
porated with varying degrees of accuracy (Kalantar et al., 2016; 
Ventura et al., 2018). Convolutional Neural Networks (CNNs) are a 
prominent and rapidly expanding category of deep learning classi-
fier, inspired by the neural connections in the brain (Lee et al., 2017). 
These allow efficient discrimination of objects in noisy and complex 
environments (Dujon & Schofield, 2019; Gray et al., 2019) and may 
expedite the data analysis process (Brodrick et al., 2019). CNNs are, 
however, complex to implement, computationally intensive, and may 

est ici de comparer les méthodes traditionnelles avec les relevés effectués par des 
drones, en détectant et en comptant les crocodiles du Nil (Crocodylus niloticus) et les 
hippopotames communs (Hippopotamus amphibious). Nous cherchons à évaluer l'utilité 
des RNC dans la détection et la quantification d'objets dans des environnements 
complexes. Le dénombrement effectué au moyen de drones était plus précis que celui 
obtenu par des méthodes traditionnelles; nous avons identifié 21  % de crocodiles 
supplémentaires. Les dénombrements d'hippopotames effectués avec un drone 
montraient une tendance similaire (43 % de plus) dans les zones à végétation ouverte. 
Dans les zones à végétation dense, les estimations de population effectuées à l'aide du 
drone étaient moins précises que celles réalisées par des méthodes traditionnelles. La 
précision des RCN était limitée (85 %) en raison de la quantité limitée des ensembles 
de données d'apprentissage disponible pour ces derniers. Cependant, la détection 
d'éléments est susceptible d'être plus précise avec des ensembles de données plus 
étendus, ce qui rendrait son utilisation plus adéquate aux fins d'accélération et 
d'automatisation des analyses de données.
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require more data than is practicable for most ecological studies 
(Dujon et al., 2021; Gray et al., 2019).

In this study, we evaluate the comparative effectiveness of using 
ground, helicopter and drone counts for surveying populations of 
Nile crocodiles (Crocodylus niloticus) and hippopotami (Hippopotamus 
amphibious) in two South African protected areas. As different re-
serves use a variety of survey methods, and emerging technologies 
offer new and innovative census techniques, it is essential to differ-
entiate between these methods, so as to maximise the efficiency of 
the identification of population changes over spatial and temporal 
periods. As a new and innovative solution to the existing data analy-
sis bottleneck, machine learning has had few real-world applications. 
There have been a small number of studies that have applied ma-
chine learning to analyse aerial imagery in Africa (Eikelboom et al., 
2019; Kellenberger et al., 2018); however, these methods have been 
semi-automatous and still require large amounts of data analysis. 
Given the continued ecological decline, innovative technologies 
such as CNNs and drones may offer scientists more accurate and 
efficient methodologies, thereby aiding conservation initiatives. The 
paucity of research data on the subject means that our research can 
act as baseline data to inform and advise future studies in this prom-
ising method for population monitoring.

2  |  METHODOLOGY

The research was conducted in Tembe Elephant Park (TEP) and 
Ndumo Game Reserve (NGR), which are both located in the 
KwaZulu-Natal Province of South Africa and managed by Ezemvelo 
KZN Wildlife (EKZNW) (Figure 1). The Muzi Swamp, is an extensive 
system covering about 560-ha, stretching for 25km from north to 
south along the eastern edge of the reserve (Gaugris & Van Rooyen, 
2010; Van Eeden, 2007; Van Rooyen et al., 2004) consisting of dense 
reedbeds, with stands of Phragmites australis as the most abundant 
species (Van Rooyen et al., 2004). The Muzi swamp represents the 
only natural source of permanent water within the reserve and thus 
possesses high densities of animals, including the only populations 
of hippos and crocodiles within the reserve. These water bodies act 
as a focal point for this study.

NGR (10,000-ha) is one of the oldest game reserves in South 
Africa. Established in 1924 as a sanctuary for hippopotami. Situated 
on the Mozambique Coastal Plain (−26.890264, 32.300418) it sup-
ports the third largest crocodile population in South Africa (Calverley 
& Downs, 2014; Combrink, 2004). The reserve is inherently patchy 
and characterised by a mosaic of permanent and ephemeral pans, 
streams and rivers with varying degrees of connectivity, which 

F I G U R E  1  Map of Tembe Elephant Park & Ndumo Game Reserve
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fluctuate on a seasonal basis (Calverley & Downs, 2014). The largest 
permanent pan in NGR is Lake Nyamathi (55ha), which possesses the 
highest densities of crocodiles and hippos in the reserve (Calverley, 
2013; Calverley & Downs, 2014, 2015). This lake will act as the focal 
point for research within this reserve. Lake Nyamathi is an irregular 
oval shape. During the study the lake had a 1.8km longitudinal axis 
running East to West and a maximum width of 531m. The Northern 
shore is characterised by a fringe forest of fever trees (Acacia xan-
thophloea) with gently sloping lawns of couch grass (Cynodon dac-
tylon). The Southern shore is rockier and possess a steeper slope 
(Calverley, 2013; Calverley & Downs, 2015).

The field work was conducted from 30th July to 18th September 
2019. All of the different surveys were carried out at the same time 
of day (11am - 2pm), and under similar climatic conditions (tempera-
ture (±SD) =23(±3)°C; clear sky; windspeed (±SD) 5(±2)mph). This 
reduced the chances of external variables influencing the counts. 
The different methods were carried out on separate days, so as to 
reduce the disturbance bias from the other counting methods.

In NGR Lake Nyamathi is circumnavigated by a road, which is ap-
proximately 30m from the shoreline and offers a clear field of view 
across the lake. A vehicle was driven at low speeds (10km/hour) and 
the crocodiles and hippos were counted by two observers (Figure 2). 
The data were collected using ArcGIS Collector (ESRI, 2018-2019); 
the species and GPS location was recorded. 10 X 42 binoculars were 
used to assist the counting of individuals. A total of three repeats 
were carried out. In the case of TEP there is no road, which runs 
along with the Muzi Swamp where the water bodies were located. 
This made it necessary to carry out the ground counts on foot, which 
involved walking a transect of 7.2km along the southern side of the 
Muzi Swamp (Figure 2). As was the case with NGR, two observers 
counted crocodiles and hippos, whilst a third recorded the informa-
tion using ArcGIS collector. Due to the logistics and risks associated 
with walking in a’Big 5’ reserve, in an area that had the highest den-
sities of animals, only one count was possible.

A Long Ranger helicopter containing four people was flown 
on a predetermined north-south oriented axis over TEP and NGR 
(Figure 2). The transects were situated 1km apart and arranged sys-
tematically to cover the entire reserve. The helicopter was flown at 
a height of 90m above the ground and at speeds of approximately 
30–40 knots (~55–75 km/h). When hippos and crocodiles were ob-
served the helicopter deviated from the transect, and a total count 
was undertaken with a camera to validate the sightings. The data 
were captured on a notebook computer using Cartalinx v1.2 (Hagan 
& Eastman, 1999) which, when connected to a GPS, allowed simulta-
neous collection of flight path information, animal number and spe-
cies. Mapping the distribution of hippos and crocodiles was done by 
importing the data into ArcGIS Pro (ESRI, 2019a).

The drone surveys were carried out with a standard DJI Mavic Pro 
2 quadcopter with a 77 degree field of view. A Polar Pro (Polar Pro, 
2019) ND4 polarising filter was used to reduce the glare from the sur-
face of the water bodies. Pix4D mapper (Pix4D, 2019) is a software 
package used to transfer drone imagery into a georeferenced digital 
spatial model. For this study Pix4D mapper was used to create a pre-
determined flight plan over the focal area, and to autonomously fly the 
drone in grid pattern whilst capturing aerial imagery (Figure 2). The 
drone was flown in parallel lines at an altitude of 100m above ground 
level, at a speed of 12 km/h. The drone camera was set to 90° and 
the white balance set to ‘sunny’. The ground sample distance (GSD), 
being the distance between adjacent pixel centres on the ground, was 
0.02m. A total of 1335 images were taken of Lake Nyamathi and 550 
images were taken from the Muzi swamp. Due to the drone's limited 
battery life, it was necessary to map the target area in separate instal-
ments. This involved landing the drone during the flight plan and ex-
changing the battery before continuing with the flight plan. The study 
was approved by UWE’s Animal Ethics and Welfare Committee (UWE 
Bristol, 2020) prior to study commencing. There were no obvious 
negative interactions with the crocodiles and hippos; further animal 
ethical considerations can be found in Mulero-Pázmány et al. (2017).

F I G U R E  2  Survey Routes in Tembe Elephant Park & Ndumo Game Reserve

(a) (b)
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The aerial drone images were mosaicked using the Pix4D map-
per software in order to obtain a single multiband RGB image of the 
lake/swamp, known as an ortho-mosaic. The ortho-mosaics were 
manually checked for inconsistencies, for example animal move-
ments between adjacent images. However, no inconsistencies were 
identified. A total of seven ortho-mosaics were created: four of 
Nyamathi and three of the Muzi Swamp.

The process of developing CNNs was carried out using an ESRI 
(2019b) workflow as a template and the algorithm and methodology 
were adapted to better suit the target species. Due to the limited 
number of hippos identified in the drone imagery, crocodiles were 
chosen as the target species. Crocodiles were present in larger 
number allowing the larger training set to be created, improving the 
accuracy of the algorithm. In the first instance the crocodiles were 
manually and systematically counted in the ortho-mosaic. Then 
using ArcGIS Pro's training samples tool, individual crocodiles were 
selected and exported as a Tiff file, which ensured that the training 
data retained RGB bands. The training samples were taken from a 
range of specifications, for example basking, partially submerged, 
overlapping crocodiles etc., this allowed the CNN to identify croc-
odiles in the broadest range of environments/ behaviours. Each 
training sample comprised a 448  ×  448  ×  3 (RGB) tensor and ac-
companying label classifying the tensor as positive or negative (1 or 
0, respectively). To further augment the training set, the images un-
derwent random horizontal flipping. The training samples had croc-
odiles centred randomly within the image window, which was done 
to simulate the random positioning of crocodiles in the feature map.

In order to train the object detector, a Single Shot Multibox 
Detector (SSD) (Liu et al., 2016) was implemented using Jupyter Lab 
(Anaconda, 2019). The SSD model is a feed forward convolutional 
network that produces a fixed number of bounding boxes and scores 
for the presence of object class instances in those boxes. The scor-
ing system is based on the presence of key features, such as edges, 
curves or colour gradient. This feature creates a deeper layer in the 
bounding boxes and aggregates the features from the previous lay-
ers, combining them into groups of curves and edges that may indi-
cate a crocodile tail or head. This step is followed by a non-maximum 
suppression step to produce the final detections. The early network 
layers are based on standard SGG-16 architecture developed by 
Simonyan and Zisserman (2014), which has shown high quality image 
classification and superiority over other networks (Canziani et al., 
2016; Liu et al., 2016; Russakovsky et al., 2015). This architecture 
acts as a base for the CNN, and auxiliary structures will be used in 
order to produce detections highlighting a number of key features. 
A convolutional feature layer was added to the end of the base net-
work to allow for predictions at multiple scales. Every added feature 
layer can produce a fixed set of detection predictions using convo-
lutional fillers. For a feature layer the basic element for predicting 
parameters for a potential detection is a kernel, which produces ei-
ther a score for a category or shape offset, relative to the default 
training scheme. At each of the locations where the kernel is applied, 
it employs a binary normalised exponential function, which the final 
fully connected layer and its learnt combinations of features; are 

valued between 0 and 1, with high values signalling high confidence 
of the crocodile in the image window. Finally, the ortho-mosaic is 
divided into a set of default bounding boxes. The default boxes tile 
the ortho-mosaic in a convolutional manner, so the position of each 
box relative to its corresponding cell is fixed. At each cell, the offsets 
are predicted relative to the box shape and colour gradient. At each 
box, at a given spatial location, the value and the offset relative to 
the original box shape is recorded. This is extrapolated across the 
entire ortho-mosaic, yielding numbers of observed crocodiles in the 
survey area. A simple way to detect objects in an image is to divide 
the image into a grid. The SSD is responsible for identification within 
each cell. The SSD also adds convolutional layers to the architecture 
so as to ensure that the spatial size of the final layer is the same size 
of the grid. This allows the SSD to be fast and efficient, whilst taking 
advantage of the grids within each image window. For this project 
a grid of 4x4 was implemented, which divided each training sample 
into 16 sections, making it effective for crocodiles.

Once the appropriate model was constructed, it was trained over 
several epochs, with an epoch being the number of complete passes 
over the training dataset the algorithm has completed. The accuracy 
and loss were monitored during the CNN training. The training pro-
cess was stopped when the accuracy and loss didn't improve over 
consecutive epochs (Figure 3).

In this case, 50 epochs were used to train the model. During 
the training, the model compares the default boxes to the corre-
sponding ground truth (training data). Initially the model began by 
matching each ground truth to the default box, with the best overlap 
higher than a threshold of 0.5. This allows the network to predict 
high scores for multiple overlapping default boxes rather than the 
model picking only one that has the maximum overlap (Liu et al., 
2016). At each epoch, the loss (error rate) and validation set (indica-
tion of model learning) for the training data was reported. The model 
is continuously trained until the validation loss begins to increase. 
This is an indication that the model is beginning to overfit to the 
training data. The optimum model hyper-parameters were selected 
to minimise the loss on the validation set. For the CNN, the sizes of 
convolutional kernel and batch are 4 and 16, respectively. The model 

F I G U R E  3  Loss graph outlining the training of the CNN
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was then imported into ArcGIS and run over a trimmed portion of 
the ortho-mosaic, which included Lake Nyamathi and a 4m margin, 
which consisted of open ground adjacent to the water's edge where 
the crocodiles would bask in the sun. This decreased the running 
time of the model and also decreased the objects (e.g. trees), which 
could give false positives. Refer to Figure A1, which shows a flow 
chart of the CNN analysis, and Figure A2, which displays an over-
view of the CNN architecture.

The model was validated by reviewing the detections manually 
and systematically using ArcGIS Pro and comparing them to the 
manual counts. The instances of duplicate detections, false positives 
or any false negatives encountered were recorded. The evaluation 
metric used in this experiment is the margin of error (1) for the num-
ber of crocodiles detected after applying the CNN, where D is the 
number of detected crocodiles in the image after application of the 
CNN and N is the actual number of crocodiles in the image.

As was carried out by Li et al. (2019) the precision, recall and 
F1-score are calculated via equations (2)-(4), respectively, where True 
Positive (TP) indicates the number of correctly identified crocodiles, 
the False Positive (FP) indicates the number of other objects that are 
incorrectly identified as crocodiles, and the False Negative (FN) indi-
cates the number of crocodiles not detected.

3  |  RESULTS

Results of ground, helicopter and drone comparative surveys for 
TEP are summarised in Table 1. The drone data allowed precise 
mapping of the TEP floodplain with extensive detail allowing easy 
identification of individual crocodiles and hippopotami. The ortho-
mosaic obtained from the aerial imagery, shows the water bodies in 
the Muzi Swamp that have not yet dried up (Figure 4C). A total area 
of 82.7 hectares were mapped in three separate battery instalments, 
on three separate occasions (Table 1) and the hippos and crocodiles 
were counted manually. Only hippos in one pod were seen from 
the drone imagery, and these were basking in the middle of a pan in 
open water (Figure 4F). In the three repetitions, only one pod was 
located, which was in the same pan on each repetition. The ground 
and helicopter surveys observed a separate pod of hippos in a north-
ern pan, which were not detected in the drone survey (Figure 4A, 4B 
& 4C). These hippos were observed in both instances emerging from 

hydrophytic reed beds into open water when the counters were in 
close proximity (<30m) or flew near the general area.

Results of ground, helicopter and drone comparative surveys 
for NGR are summarised in Table 2. The hippos were found in two 
separate pods that were either basking on the edge of the lake or 
wallowing in the water. The mean number of crocodiles counted 
was 126 (SD=9.9). A slightly higher density of crocodiles was found 
on the northern edge of the lake (Figure 4D, 4E) where the ground 
was less rocky. The helicopter counts counted 15 hippos in the same 
two pods as did the drive counts. A total of four drone censuses 
were conducted over lake Nyamathi. This involved mapping a total 
area of 57 hectares. As was the case with the ground and helicopter 
surveys, the hippos were in two distinctive pods: the first basking 
on the northern bank of the lake, and the second; wallowing in the 
water (Figure 4F). The drone counts again showed similar spatial 
data as the ground counts, with a higher density of crocodiles on the 
northern shore.

Figure 5 shows the CNN applied to an ortho-mosaic conducted 
in Nyamathi. The overall F1-Score (accuracy) of the model was 84% 
(Table 3). Analysis of the results obtained by the CNN found that the 
outputs (precision, recall and F1-score) were relatively consistent 
and ranged from 84–85.6%. False positives were generally due to 
either sections of downed tree trunks or occasionally birds. Manual 
counts were seen to have better detection capability, on average 
counting +14.43% more crocodiles than the CNN.

4  |  DISCUSSION

The ability of the drone to complete unmanned flights on this scale 
whilst surveying wildlife is incredibly promising and highlights the 
logistical potential for this technique in undertaking future surveys. 
The results show that when counting crocodiles, the drone yielded 
higher population estimates. In NGR the drone counted 21.6% more 
crocodiles than ground surveys and 21.1% more than helicopter 
surveys. In TEP results showed a similar pattern (drone was 100% 

(1)Marginoferror =
(D − N)

N
× 100.

(2)Precision =
TP

TP + FP
,

(3)Recall =
TP

TP + FN
,

(4)F1 − Score =
2 × Precision × Recall

(Precision + Recall)
.

TA B L E  1  Number of crocodiles and hippopotami counted via the 
different methodologies in Tembe Elephant

Tembe
Crocodiles 
counted

Hippos 
counted

Walking Counts

18/09/2019 0 19

Helicopter Counts

29/07/2019 4 29

Drone Counts

04/08/2019 7 17

11/08/2019 10 16

02/09/2019 7 15

Mean 8 16

Standard Deviation (SD) 1.414 0.816

Standard Error (SE) 0.816 0.408
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more accurate than ground and 50% more accurate than helicopter 
counts). In the case of counting crocodiles with drones under these 
conditions, it is clear that drones are the most effective method of 
obtaining population estimates. Drone counts produce the highest 
figure, and with little variance in repeated surveys. Hodgson et al. 
(2016) found that drone derived estimates of population size re-
sulted in smaller cumulative variances than drive counts. This was 
also found with this research at NGR. Helicopter and ground sur-
veys are dependent upon the ability of the observers. Highly trained 
observers will produce more accurate counts (Linchant et al., 2018). 
This increases the degree of bias to which these methodologies may 

be prone. Drones are less influenced by this bias and thereby have 
advantages over the other two methods. When counting crocodiles, 
it is, therefore, much more efficient and accurate than the other two 
methods.

Our study indicated that when counting hippos in TEP, the heli-
copter counts yielded more accurate population estimates than walk-
ing counts (34.5%) and drone counts (44.8%). In the case of TEP the 
encounter rate of hippos, and clearly their detectability recorded with 
the drone, was lower than that of the helicopter surveys, resulting 
lower density estimates. Many studies have highlighted the fact that 
manned aircraft can disturb wildlife (Mulero-Pázmány et al., 2017), 

F I G U R E  4  Comparative map of methodologies conducted in TEP and NGR. (a) Drive counts TEP; (b) Helicopter counts TEP; (c) Drone 
counts TEP on 30/8/2019; (d) Walking counts NGR; (e) Helicopter counts NGR; (f) Drone counts NGR on 4/8/2019. The drone counts 
give an image of both crocodiles and hippos, showing the resolution whilst flying at a height 100 m

(a) (d)

(b) (e)

(c) (f)
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resulting in altered and sometimes illusive behaviour that can make 
the study and enumeration of animals problematic (Chrétien et al., 
2016; Christie et al., 2016; Gentle et al., 2018; Jones et al., 2006). 

However, in this case, the opposite seems to be the case. During the 
survey, the helicopter caused enough disturbance to make the hip-
pos leave the reed beds and move into open water for safety where 
they were easily visible. This is also the case, albeit to a lesser degree, 
with the walking counts. When the observers were within 30m of 
the hippos within the reed beds, they exhibited the same behaviour 
as the helicopter counts (running from reeds into open water). A 
similar situation has been identified by Gentle et al. (2018). They re-
corded implausibly low densities of macropods from drone surveys, 
compared to helicopter surveys. This was attributed to a lack of 
‘flushing’, coupled with a suboptimal camera, which made detection 
challenging and thus leading to inaccurate population estimates. It is 
difficult to quantify the disturbance a particular method is causing 
an animal (Pomeroy et al., 2015; Tablado & Jenni, 2017), as often the 
animal does not exhibit any symptoms (Ditmer et al., 2015). However, 
Mulero-Pázmány et al. (2017) has found that noise is the most prom-
inent cause of disturbance. This theory is supported by our research.

During the three repeats of the drone surveys in TEP, only one 
pod of hippos was observed. The northern pod was not detected 
using drones (it was using helicopter surveys). We can, therefore, as-
sume that the drone flying at 100m did not pose a high enough level 
of disturbance to flush the hippos from the reed beds, where they 
could be observed and counted. This is contrary to many studies that 
have used drones, which have suggested that their low acoustic signa-
ture, is advantageous for reducing disturbance and evasive behaviour, 
in turn making population estimates more accurate (Chrétien et al., 

TA B L E  2  Number of crocodiles and hippopotami counted via the 
different methodologies in Ndumo Game Reserve

Ndumo Game Reserve
Crocodiles 
counted

Hippos 
counted

Drive Counts

30/07/2019 119 15

15/08/2019 140 21

10/09/2019 119 11

Mean 126 15.667

Standard Deviation (SD) 9.899 4.12

Standard Error (SE) 5.715 2.373

Helicopter Counts

30/07/2019 152 15

Drone Counts

22/08/2019 189 23

25/08/2019 195 25

30/08/2019 193 29

13/09/2019 194 29

Mean 192.75 26.5

Standard Deviation (SD) 2.278 2.598

Standard Error (SE) 1.139 1.299

F I G U R E  5  CNN detections of 
Crocodiles in NGR 13/09/2019

TA B L E  3  Statistical analysis of the Convolutional Neural Network, applied to the 13/09/2019 drone ortho-mosaic. Analysis outlines the 
different measures of accuracy of the model

Actual Number of crocodiles
True 
Positives

False 
Positives

False 
Negatives

Margin of error 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

194 166 31 28 −14.43 84.26 85.57 84.91
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2016; Christie et al., 2016; Gentle et al., 2018; Jones et al., 2006). In 
the case of hippo counting in TEP, it is evident that the methodology 
producing the highest levels of disturbance results in the more accu-
rate population estimates. This raises many questions surrounding the 
ethics of data collection. Should a method be chosen if it elicits a larger 
wildlife reaction, and therefore, a more accurate population estimate? 
Raoult et al. (2020) gives further guidelines on conducting research 
with drones on specific aquatic species. An alternative method could 
be to improve the drone sensor, for example by incorporating a ther-
mal imaging camera, which would drastically improve the detection 
of animals through vegetation without causing significant disturbance 
to the animal thereby inducing a behavioural change. This technique 
has already been successfully trialled on a number of species (Kays 
et al., 2019; Longmore et al., 2017; Witczuk et al., 2018), and could 
dramatically improve the detection of hippos located in dense veg-
etation, whilst posing little or no disturbance. However, in NGR the 
drone counted 43.4% more hippos than helicopter and 41.1% more 
than driving counts. This can be explained by the type of vegetation 
in the study area; as the Muzi Swamp is made up of dense reed beds 
where the detection of hippos can be an issue. Conversely Nyamathi, 
is made up of open water with the closest vegetation being <4 m from 
the edge of the water. This makes aquatic megafauna far easier to 
observe, allowing more accurate population estimates.

Given that the three survey methods were not carried out si-
multaneously, some temporal variability is possible in the densities 
found due to animal movements or behavioural differences. As NGR 
and TEP are open systems, limiting these variabilities brings forth 
its own set of challenges. Calverley and Downs (2015) observed an 
outflux of crocodiles leaving the NGR into the Rio Maputu; however, 
this took place from early November onwards. They concluded that 
large-scale seasonal movement or migration in reptiles is uncommon 
and, therefore, variability between the different methods would be 
negligible at the scale of Nyamathi and the Muzi Swamp. Scotcher 
et al. (1978) found that in NGR large-scale movement of hippos 
was attributed to insufficient grazing, which was due to high and 
extended periods of flooding. As this study was conducted during 
the dry season, there were no flooding events and extensive grazing 
was available surrounding the Nyamathi and Muzi Swamps. We can 
assume, therefore, that the movement of hippos was minimal and 
had little impact on our comparison of the methods.

Previous work has shown CNNs to be an accurate and time ef-
ficient analysis technique to enumerate animals in drone imagery 
(Barry, 2018; Corcoran et al., 2019; Kellenberger et al., 2018; Rivas 
et al., 2018). Gray et al. (2019) found that although promising, CNNs 
can be inherently complex to implement. Moreover, they are com-
putationally intensive and complex and may require more data than 
is practicable for most ecological studies. Similar conclusions were 
drawn from this study. To develop effective CNNs, large volumes of 
training data are required to learn suitable parameter values; some-
times over 1000 images (Moya et al., 2015; Sacchi et al., 2016; Willi 
et al., 2019; Yousif et al., 2019). As the drone imagery of hippos was 
limited, it was not possible to build up a significant enough train-
ing scheme to implement the identification of hippos using CNNs. 

This was more feasible with crocodiles due to the larger number 
of images. However, at the time of this study it was not possible to 
merge different training sets, created over different ortho-mosaics. 
Therefore, the size of the training scheme was limited by the number 
of crocodiles in a single ortho-mosaic (N = 180). A comprehensive 
training and validation data set was critical for developing accurate 
CNNs (Brodrick et al., 2019; Guirado et al., 2019; Li et al., 2019).

The performance of the CNN was limited (85% accuracy); 
however, when the restricted volume of training data is taken into 
account; these low levels of accuracy are not surprising. With a 
larger collection of training samples to compete with Chabot et al. 
(2018)—85,267 training images; Chew et al. (2018)—1500 training 
images; Gray et al. (2019)—467 training images; Mubin et al. (2019)—
260 training images; Cheang et al. (2017)—300 training images; 
Eikelboom et al. (2019)—516 training images; you would expect 
to see similar levels of accuracies as Chew et al. (2018) (96.4%). 
Gathering training sets as large as the aforementioned can be a time-
consuming and costly process. Papakonstantinou et al. (2021) has 
implemented citizen based imagery analysis to improve detection 
results, which may help to overcome the challenges with obtain-
ing large training schemes. The more inherently complex the data, 
the larger the training scheme needs to be (Wearn et al., 2019). As 
crocodile images vary considerably depending on their environment 
(basking on bank, partially submerged, partially obscured, etc.), they 
require a larger data set to account for this variation.

5  |  CONCLUSION

This research compared three survey and analysis methods to 
enumerate crocodiles and hippos in TEP and NGR. The results of 
this study should be considered in the context of the spatial lo-
cation and the survey methods chosen. Drones, with the excep-
tion of one instance, were the optimum method for enumerating 
hippos and crocodiles. However, they were limited when it came 
to surveying water that was surrounded by thick and obscuring 
vegetation. Drones did not pose enough disturbance to the hippos 
to force them into open water. This is both a positive and a nega-
tive. Drones offer a method of surveying these species without 
imposing significant stress and disturbance, which could act as a 
significant bias on the results and may lead to inaccurate findings. 
On the other hand, drones can underestimate animal populations 
due to the limited disturbance factor, making detections more 
challenging. The CNNs were successfully applied to the drone im-
agery and show great potential in identifying crocodiles. They do, 
however, have limitations when only a small batch of training data 
is used; reducing their effectiveness for studies such as this. This is 
the first research of its kind that compares the two most common 
methods alongside the new and innovative method of drone sur-
veys and CNNs. This will allow managers and ecologists to choose 
the most effective methods in the context of their reserve or to 
apply correctional factors where a range of methods have been 
incorporated.
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Technology is permeating almost all aspects of society. As this 
pace of innovation continues to accelerate, conservationists need to 
be aggressive in adopting, adapting and channelling these advances 
into positive outcomes for world biodiversity. This study succeeds 
in its examination of drones and CNNs to better understand com-
plex ecological patterns. Further research, however, is needed to 
increase accessibility and improve implementation.
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APPENDIX 

F I G U R E  A 1  Overview of Convolutional Neural Network 
analysis of crocodiles in Ndumo Game

F I G U R E  A 2  Overview of Convolutional Neural Network 
architecture. The input image is divided into 4 × 4 tensor. The 
convolutional layers perform the feature extraction for the CNN by 
scanning a few pixels at a time and creating a feature map. The max 
pooling layers reduce the amount of information, while maintaining 
the most important data. These layers were followed by fully 
connected layers which turns them into a single vector that can 
make the predictions for classification. The final layer employs a 
binary normalised exponential function which ingests the final fully 
connected layer and its learnt combinations of features, and returns 
a value between 1 and 0, with 1 signalling higher confidence of a 
present crocodile within that particular tile. This process is then 
replicated across the remaining tiles in the ortho-mosaic


