471. Fletcher, G. L., et al., "Reduction of Blood Plasma Copper Concentrations in a Marine Fish Following a Six-Month Exposure to Crude Oil." Bull. Environ. Contam. Toxicol., 22, 548 (1979).
472. Armstrong, J. E., and Calder, J. A., "Inhibition of Light-Induced $\mathbf{p H}$ Increase and O_{2} Evolution of Marine Microalgae by WaterSoluble Components of Crude and Refined Oils." Appl. Environ. Microbiol., 35, 858 (1978).
473. Barrett, R. T., "Small Oil Spill Kills 10-20,000 Seabirds in North Norway." Mar. Poll. Bull. (G. B.), 10, 253 (1979).
474. Gochfield, M., "Prevalence of Oiled Plumage of Terns and Skimmers on Western Long Island, New York: Baseline Data Prior to Petroleum Exploration." Environ. Poll., 20, 123 (1979).
475. King, K. A., et al., "Resuspension of Oil; Probable Cause of Brown Pelican Fatality." Bull. Environ. Contam. Toxicol., 23, 800 (1979).
476. Hoffman, D. J., "Embryotoxic Effects of Crude Oil Containing Nickel and Vanadium in Mallards." Bull. Environ. Contam. Toxicol., 23, 203 (1979).
477. Hoffman, D. J., "Embryotoxic and Teratogenic Effects of Crude Oil on Mallard Ducks on Day One of Development." Bull. Environ. Contam. Toxicol., 22, 632 (1979).
478. Szaro, R. C., "Bunker C Fuel Oil Reduces Mallard Egg Hatchability." Bull. Environ. Contam. Toxicol., 22, 731 (1979).
479. White, D. H., et al., "Effects of No. 2 Fuel Oil on Hatchability of Marine and Estuarine Bird Eggs." Bull. Environ. Contam. Toxicol., 21, 7 (1979).
480. King, K. A., and Lefever, C. A., "Effects of Oil Transferred from Incubating Gull to Their Eggs." Mar. Poll. Bull. (G. B.), 10, 319 (1979).
481. Coon, N. C., et al., "No. 2 Fuel Oil Decreases Embryonic Survival of Great BlackBacked Gulls." Bull. Environ. Contam. Toxicol., 21, 152 (1979).
482. Holmes, W. N., "Effects of Mild Cold Stress on the Survival of Seawater-Adapted Mallard Ducks (Anas platyrhynchus) Maintained on Food Contaminated with Petroleum." Environ. Res., 20, 425 (1979).
483. Holmes, W. N., et al., "Some Effects of Ingested Petroleum on Seawater-Adapted Ducks (Anas platyrhynchus)." Environ. Res., 17, 177 (1978).
484. Szars, R. C., et al., "Effects of Chronic Ingestion of South Louisiana Crude Oil on Mallard Ducklings." Environ. Res., 17, 426 (1978).
485. Miller, D. S., et al., "Effects of Ingestion of a Weathered Crude Oil on Immature Black

Guillenots, Cepphys grylle, and Herring Gulls, Larus argentatus." Bull. Mt. Desert. Is. Biol. Lab., 17, 40 (1978).

Thermal effects

Sylvia S. Talmage

Ecological Sciences Information Center, Oak Ridge National Laboratory, Tenn.

Charles C. Coutant
Environmental Sciences Division, Oak Ridge National Laboratory, Tenn.

REVIEWS AND MODELS

The United Nations Educational, Scientific and Cultural Organization (UNESCO) published a book ${ }^{1}$ devoted to methods for predicting effects of power plant once-through cooling on aquatic systems. An international team reviewed effects and provided guides to environmental impact assessments. Different approaches for preoperational predictions and operational monitoring were distinguished, and beneficial uses for reject heat were identified.

Becker et al. ${ }^{2}$ undertook a literature review and assessment program to examine the effects of once-through cooling systems on cooling impoundments. Ecological information related to possible plant operational effects was collected and evaluated for 14 sites. The primary physical, chemical, and biological effects as well as data deficiencies were discussed. No major ecosystem effects were identified.

A three-volume report by Tetra Tech, Inc., ${ }^{3}$ described a methodology, including computational procedures, analytic relationships, and models, that can be used to assess the integrated effects of several power plants on a single water body. Volume 1 provides typical cooling system operational parameters, characteristics of different water body types, prescreening procedures, and an overview of detailed assessment methods. Volume 2 describes the technical basis for computations performed by various models. Volume 3 describes the data requirements for use of the methodology.

Thermally induced biological effects of power plant entrainment and plume entrainment were modeled and evaluated. Schubel et al. ${ }^{4}$ found that there was little increase in survival of striped bass larvae due to increasing ΔT (decreasing the cooling water flow
rate) for Hudson River temperatures $\leq 16^{\circ} \mathrm{C}$. This was because of the marked synergism between thermal and physical stresses. Carter et al. ${ }^{5}$ coupled a model of the excess temperature and velocity fields associated with the heated discharge from a large generating station sited on a tidal estuary with appropriate thermal resistance data to evaluate thermally induced mortality levels of striped bass larvae entrained in the thermal plume of the Indian Point Units 2 and 3 on the Hudson River. The model indicated that less than 10% of the larvae entrained in the plume would be killed. The thermal response model was applied to different water bodies using thermal resistance data for entrainable life stages of appropriate Representative Important Species. ${ }^{6}$ In each situation it appeared that the most sensitive organisms were the ichthyplankton and juvenile fish. Recommendations for future research were made.

Ontario Hydro Corp. of Canada undertook a program to improve its present pre- and post-operating aquatic biological studies at existing generating sites on the Great Lakes. ${ }^{7}$ The new studies include spatial biomass distribution and intake location, fish behavior at submerged intakes, fish viability in the forebay, fish by-pass modeling studies, effects of entrainment on plankton and fish, fish residency and spawning activity in thermal discharges, fish spawning studies, thermal discharge effects on the littoral zone, and thermal tolerances and preferences of fish. This program should allow for interstation comparisons.

Parkhurst and McLain ${ }^{8}$ compared the environmental impacts of cooling reservoirs to cooling towers. Construction, operational, maintenance, efficiency, and water consumption impacts were compared, with the conclusion that adverse impacts for reservoir ecosystems appeared to be minor.

The feasibility of using once-through cooling was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. ${ }^{9}$ Thermal standards for different types of water bodies were identified, and characteristics of various discharge modes were examined. Although choice of a discharge system must be site specific, the submerged multiport diffusers were found to provide the greatest probability of meeting thermal standards in all receiving water bodies.

Krenkel ${ }^{10}$ discussed problems in the establishment of water quality criteria. Knowledge
about effects of pollutants such as temperature is not yet adequate to support definitive standards. Koops, ${ }^{11}$ in discussing standards for cooling water, cited several studies showing that a decrease of the cooling water quantity with a resultant higher $\Delta \mathrm{T}$ may lead to a decrease in total damage to entrained organisms.

A series of biological investigations, particularly in the rivers Severn and Trent (England), have shown that only minor effects in populations of individual species can be attributed to discharge of cooling water. ${ }^{12}$ Downstream temperatures have occasinally reached more than $30^{\circ} \mathrm{C}$ in summer. The Central Electricity Generating Board is actively exploring potentially beneficial uses of the rejected heat.

Biesiadka et al. ${ }^{13}$ summarized investigations on the benthos of the heated Konin Lakes (Poland). Their results show a decrease in number or elimination of some species and an increase in species and abundance of thermophilic groups.

Lehmkuhl ${ }^{14}$ reviewed information on the effects of environmental disturbances on life histories of aquatic organisms. He noted that a wide variety of invertebrates have distinct temperature requirements, and minor alterations of temperature by thermal pollution can cause drastic effects on the animal community.

Thermal additions to aquatic systems may select for pathogenic species of organisms. Carter ${ }^{15}$ and Duma ${ }^{16}$ reviewed research on the incidence of primary amoebic meningoencephalitis. According to Carter, a considerable amount of research suggests that organic and thermal pollution of freshwater systems encourages the growth of bacteria, which, in turn, encourages the activity of the amoebae responsible for this disease.

Guthrie and Cherry ${ }^{17}$ summarized results of their studies on bacterial interactions in thermally influenced waters. They found that thermal addition to water causes an increase in the total bacterial populations, but a decrease in bacterial diversity.

The effects of increased temperature on phytoplankton and zooplankton seasonal dynamics were examined by Swartzman and Adams ${ }^{18}$ using a simulation model. Results indicated that those species with a lower phosphorus tolerance, a greater tolerance for nitrogen, and a lower optimal light intensity for growth would better survive the warmer temperatures. These characteristics are typical of blue-green algae that are usually found in warm waters.

The influences of temperature alterations on experimental predator-prey interactions were reviewed by Coutant et al. ${ }^{19}$ Thermal shocks (both heat and cold) that increased prey vulnerability were quantified in several studies. A simulation model was described that followed predation among fry of largemouth and smallmouth bass as they grew and that predicted exclusion of smallmouth at higher temperatures. A partial differential equation model was developed to express the growth dynamics of young-of-the-year fish populations at different temperatures with size distributions taken into account. ${ }^{20}$

Progress in implementation of a Unified Transport Approach for developing mathematical models for the assessment of power plant impact on aquatic environments was reported. ${ }^{21}$ The objective of the program is to develop fast-transient, one- and two-dimensional transport models and their associated general-usage computer codes that can be employed in estimating the thermal, radiological, chemical, and biological impact of power plant operation on rivers, estuaries, lakes, and coastal regions. Development and validation of these models are illustrated in applications at several sites where data were available.

In other modeling studies Ulanowicz ${ }^{22}$ suggested that because community variables respond in a coherent manner to stress, macroscopic analyses of stressed ecosystems offer possible alternatives to compartmental models. He discussed the success of various attempts at linear and nonlinear modeling of stressor effects on ecosystems. Matis and Wehrly ${ }^{23}$ reviewed a stochastic approach to compartmental modeling. The need for stochasticity in the model was motivated by two examples: vanadium depuration in marine organisms and thermal resistance of green sunfish. Fisher ${ }^{24}$ proposed a model that provides a physicochemical basis for the parameters and formulation of a specific type of thermal dose-response curve. The model was applied to thermal response data for a variety of species of fish.

A study by McKenzie et al. ${ }^{25}$ reviewed and evaluated fisheries management techniques for application to assessing impacts from power plants. Techniques in three categories were examined: catch removal, population dynamics, and nondestructive censuses.

A symposium edited by Thorp and Gibbons ${ }^{26}$ addressed the subject of energy and environmental stress in aquatic systems. Half of the volume was devoted to studies of the response of organisms and communities to ther-
mal effluents, including the effects of multiple and synergistic stresses. A symposium on the microbiology of power plant effluents reviewed the status of thermal microbiology in relation to power generation as well as operational and environmental implications and future research needs. ${ }^{27,} 28$ Papers from these symposia are discussed in appropriate sections of this review.

Liden and Burton ${ }^{29}$ reviewed literature on the acute effects of thermal increases upon several fish and invertebrate species indigenous to the Chesapeake Bay. These data, in addition to combined natural life history temperature data, were evaluated to ascertain what effects thermal discharge from the Calvert Cliffs nuclear plant would have upon populations of these species living in Chesapeake Bay.

A review of the 1978 thermal effects literature was coauthored by Talmage and Coutant. ${ }^{30}$ Hannon ${ }^{31}$ compiled a bibliography of electric utility documents on the subject of cooling system effects on aquatic systems.

SITE STUDIES

Cooling lakes and reservoirs. A cooling lake fishery (Lake Sangchris, Ill.) was systematically evaluated and modeled. ${ }^{32}$ Fish growth, reproduction, food habits, movements, primary production, and other factors were compared with data from a nearby ambient flood control reservoir. Power plant operation on Lake Sangchris was not a limiting factor in the development of a viable fishery, although plant effects were observed.

Primary production, aquatic invertebrates, and fish were studied during 1975-77 to determine responses of organisms to a $15^{\circ} \mathrm{C}$ temperature gradient in Lake Columbia (Wis.). ${ }^{33,34}$ Seasonal and spatial changes in species composition of periphyton were shown. Modified life history and temperature-directed movement were identified as two important mechanisms by which invertebrates change distribution in a heterothermal environment. Species diversity, distribution, growth, and reproductive responses of fish in this newly impounded cooling lake are described.

The effects of power plant operation on the ecology of Belews Lake (N. C.) were systematically evaluated by studies on phytoplankton, ${ }^{35}$ zooplankton, ${ }^{36}$ benthos, ${ }^{37}$ aquatic macrophytes, and fish. ${ }^{38}$ Although general successional changes in the phytoplankton community appeared to be accelerated after plant operation, there was no evidence of detrimental effects on the plankton communities. Rotifer
and cladoceran densities were greater than in other area lakes. Densities of several benthic populations either decreased or increased along the thermal gradient. The fishery yield was below that of similar lakes. Circulation of surface water by the power plant and ash basin discharge were implicated in some of the changes.

Primary productivity was significantly higher at the heated station in Lewis Creek Reservoir (Tex.) than at unheated stations. ${ }^{39}$ Regression analysis indicated that the temperature optimum for the natural population was $25^{\circ} \mathrm{C}$. The temperature tolerance range for the phytoplankton community subjected to higher temperatures was higher than for the community at ambient temperatures.

The freshwater littoral meiofauna along a temperature gradient in Par Pond (S. C.) was sampled over a 1 -year period. ${ }^{40}$ When compared with an ambient site, thermally affected sites demonstrated reduced faunal density. Although there was a reduction in number of species of rotifers, high "equitability" among the reduced species resulted in a high ShannonWeaver diversity index.

The effects of thermal effluent on physicochemical and biological parameters of the Konin Lakes (Poland) were studied during several summers. ${ }^{41}$ Changes attributed to heating and a decrease in retention time included a change in phytoplankton composition toward domination by diatoms; an increase in the biomass of filtering cladocerans; and a decrease in the abundance of rotifers, predatory copepods, and filtering calanoids.

Folsom and Clifford ${ }^{42}$ studied the population biology of the flatworm, Dugesia tigrina, in Lake Wabamun (Canada). The net effect of the thermal effluent was a numerical increase in the standing crop of Dugesia through increased prey populations, but a reduction in individual size.

Sigmon ${ }^{43}$ presented data on species composition, density, and size of benthos in Lake Keowee (S. C.). Diversity and density were lower in the discharge canal because of reduced organic content of the canal sediments. Because of the hypolimnetic intake design, temperatures in the discharge canal were elevated only slightly above those observed in the epilimnion of the remainder of the lake.

Because the thermal plume at the Johnsonville Steam Plant (Kentucky Lake) reached the bottom only during the fall and winter, benthic insects were subjected to above-ambient tem-
peratures only during the coldest part of the year. ${ }^{44}$ In early spring, mayfly (Hexagenia bilineata) nymphs collected from the area influenced by the thermal plume were larger than those collected from the ambient station. Growth at the ambient station accelerated during late spring, however, and adult emergence occurred almost simultaneously at both stations. Emergence of Hexagenia bilineata occurred 2-3 weeks earlier in the discharge cove of the Kingston Steam Plant (Watts Bar Reservoir, Tenn.) than in the reference cove and intake canal. 45

Life histories of yellow perch (Perca flavescens) in Keowee Reservoir and flat bullhead (Ictalurus platycephalus) in Lake Norman (N . C.) were studied. ${ }^{46,47}$ Prespawning water temperatures in Keowee and water temperatures in southern reservoirs in general were not conducive to yellow perch reproduction.

Annual variations in fecundity of white crappie (Pomoxis annularis) in Conowingo Pond (Pa.) were studied by Mathur et al. ${ }^{48}$ Random variations in egg number were greater among years than between pre- and post-operational periods with respect to startup of the Peach Bottom Station Units 2 and 3.

Survival of Florida largemouth bass (Micropterus salmoides) introduced into Boomer Lake (Okla.) was less than for northern bass and was relatively independent of season or winter severity. ${ }^{49}$ Although growth and food habits of the two populations were similar, Florida bass did not reproduce. Florida bass were more vulnerable than northern bass to experimental cold shocks.

Several species of fish inhabiting cooling ponds on the Savannah River Plant (S. C.) were studied for their response to thermal effluent. Largemouth bass had higher mean body temperatures than those from a nonheated area (36.2° and $31.4^{\circ} \mathrm{C}$, respectively)..50 Mosquitofish (Gambusia affinis) were found to be a eurythermal species that adapted to the conditions of severe thermal stress. ${ }^{51}$ Differences in amounts of asymmetry, hypothesized to be a measure of developmental homeostasis, were not demonstrated between populations of bluegill (Lepomis macrochirus), largemouth bass, and redbreast sunfish (Lepomis auritus) in heated and ambient temperature locations. ${ }^{52}$

Impingement data collected at two southeastern reservoirs, Watts Bar (Tenn.) and Lake Dardanelle (Ark.), related water temperature to impingement rates. ${ }^{53,54}$ Threadfin shad (Drosoma petenense) impingement at Watts Bar was highest following a 1 -day tempera-
ture decline from 8° to $3^{\circ} \mathrm{C}$. In the latter study the lower lethal temperature thresholds for threadfin and gizzard shad (D. cepedianum), were determined to be between 3.3° and $5.5^{\circ} \mathrm{C}$ and between 0° and $0.5^{\circ} \mathrm{C}$, respectively.

Water samples collected from heated and ambient temperature stations of Par Pond (Savannah River Plant, S. C.) and processed for the presence of Naegleria fowleri were positive 43 and 2% of the time, respectively, suggesting that thermally altered waters in the southeastern U. S. may provide habitats conducive to the proliferation of this amoeba. ${ }^{55}$ Dactylaria gallopava, a thermo-tolerant fungus that causes endemic encephalitis in poultry, was abundant in the microbial mats, in foam, and in soils at the edges of the cooling water effluents. ${ }^{56}$ It was directly associated with effluents that had temperatures of $44^{\circ} \mathrm{C}$ and higher. Populations of Escherichia coli that were initially lactose positive changed to lactose negative in Par Pond when cooling water was being discharged. ${ }^{57,58}$ Densities were also higher, particularly in the hypolimnion, during reactor operation than when the reactor was not in operation. ${ }^{59}$ The loss of the lactose characteristic prevents the recognition and identification of E.coli and may prevent the assessment of water quality based on coliform recognition.

Aermonas hydrophila is a pathogen for a wide range of freshwater fish, amphibians, and reptiles. Its cosmopolitan distribution is partly explained by its ability to live under a wide variety of environmental conditions in natural waters. ${ }^{60}$ Densities of this bacterium showed distinct thermal optima $\left(25^{\circ}-35^{\circ} \mathrm{C}\right)$ and an upper thermal limit $\left(45^{\circ} \mathrm{C}\right)$ when measured along thermal gradients created by geothermal and Savannah River Plant (SRP) nuclear reactor effluents. ${ }^{61}$ Survival never exceeded 48 hours at temperatures of $45^{\circ} \mathrm{C}$. Densities in the hypolimnetic waters were always greater than those from epilimnetic waters and were always greater when the SRP reactor was in full operation. ${ }^{62}$ Studies in Par Pond indicated that A. hydrophila and red-sore disease are related to temperature-induced stress within the largemouth bass population. ${ }^{63}$

Aeromonas hydrophila was also found to be ubiquitous with alligators in their natural habitats. ${ }^{64}$ However, mortality occurred only among alligators subjected to handling and when water temperatures were above $20^{\circ} \mathrm{C}$. Peripheral blood components and serum protein
electrophoretic patterns in normal and infected and/or thermally stressed alligators were described. ${ }^{65}$

Cattail (Typha latifolia) plants collected from both the hot and cold ends of Par Pond and maintained in the laboratory at 20° and $30^{\circ} \mathrm{C}$ showed no intersite differences in levels of malate dehydrogenase, amylase, protein content, growth, or survival. ${ }^{66}$ Regardless of origin, all plants showed significantly higher amounts of total growth under the $30^{\circ} \mathrm{C}$ regime.

Streams and rivers. Guthrie et al. ${ }^{67}$ and Cherry et al. ${ }^{68}$ studied the effects of coal ash basin drainage and thermal loading on bacterial populations and aquatic insects in streams at the Savannah River Plant (S. C.). Both thermal loading and large concentrations of chemical elements from the coal ash basin reduced diversity and percentage of chromagens, although increasing total culturable bacteria. Temperature appeared to have a greater effect on community stability characteristics than did increased elemental concentration. Invertebrate density was lowest where coal ash effluent and temperature extremes ($<10^{\circ}$ and $>38^{\circ} \mathrm{C}$) were greatest. The most tolerant invertebrate to both stresses was the dragonfly Libellula sp.

Determinations of populations of total and fecal coliform organisms in the intake and discharge of the Quad Cities Station (Mississippi River, Ill.) indicated that condenser passage had little effect on the concentration of these organisms. ${ }^{69}$ Populations exhibited considerable variability, but no consistent differences between intake and discharge were observed.

Paul et al. ${ }^{70}$ described leaf processing and the effect of thermal effluent on leaf degradation in the New River (Va.). Decay coefficients (microbial decompositional activity) were significantly higher at a station downstream from the Glen Lyn plant than at an upstream station.

The life cycle of the freshwater prawn Atyaephyra desmaresti in the vicinity of a power station on the Moselle River (France) was compared with that of individuals at a similar, unheated site. ${ }^{71}$ Life cycle stages were shorter and appeared earlier than at the control site.

The macroinvertebrate communities of the Great Miami River system (Ohio) were studied over a wide range of environmental conditions and stresses, including thermal discharges from power plants. ${ }^{72}$ Similarity indices and subsequent polar ordination showed that river passage through the city of Dayton did not
prohibit high biotic similarity between some sites below Dayton and undisturbed upstream locations. Pollution effects appeared to overwhelm the effect of normal environmental variables on faunal composition only during low-flow conditions.

Movement of ultrasonic-tagged largemouth bass and flathead and channel catfish passing the thermally influenced area of the Coosa River (Ala.) adjacent to the Gaston steam plant was studied during the warm season of the year. ${ }^{73}$ Movement patterns suggested that the fishes avoided passing directly through the area of maximum temperature influence by traveling under or around it.

The effect of a thermal effluent on the attached algae of the Provo River (Utah) was studied from 1975 to $1977 .{ }^{74}$ The algal flora in a section of the river $100-135 \mathrm{~m}$ long immediately below the discharge was significantly affected, with high diatom production but low diversity.

Changes in the vegetation of a South Carolina swamp 7.5 and 4.5 years following cessation of thermal pollution were compared. ${ }^{75}$ Biomass changes were minor, but major floristic changes had occurred, with only 21% of the species found in both studies. Thermal discharge for a period of 14 years had previously destroyed the original woody flora.

Great Lakes. Primary productivity rates were measured at the Kewaunee nuclear power plant on Lake Michigan. ${ }^{76}$ Lower rates of productivity occurred when there was a ΔT across the condenser. It was concluded that although individual phytoplankton may be killed by passage through the cooling system, populations suffer no permanent damage.

Growth of attached algae in the vicinity of the Nanticoke generating station (Lake Erie) was studied. ${ }^{77}$ The temperature required to initiate Cladophora growth $\left(11^{\circ} \mathrm{C}\right)$ was reached in February in the immediate discharge, April in the downstream discharge, and May in control areas. Ulothrix became dominant in the late fall when temperatures fell below $8^{\circ} \mathrm{C}$.

Body temperatures of rainbow trout (Salmo gairdneri) caught at the Point Beach nuclear plant (Lake Michigan) were used to determine selected temperatures and to estimate acclimation temperatures under field conditions. ${ }^{78}$ Body temperatures increased with increases in discharge temperature except at high temperatures. The modal body temperature of small
trout was $19^{\circ} \mathrm{C}$, while that of large trout was $15^{\circ} \mathrm{C}$.

Estuarine and marine systems. Hein and Koppen ${ }^{79}$ compared diatom assemblages in the intake and discharge canals of the Oyster Creek generating station (N. J.). The assemblages in the heated effluent had fewer species, lower diversity indices, and greater redundancy. Thermal discharges from this station did not affect mortality in natural populations of the clam Mercenaria mercenaria in Barnegat Bay. ${ }^{80}$ Mortality rate curves, survivorship curves, and life tables of clams at thermally elevated and control sites were nearly identical.

Natural populations of marine phytoplankton from the intake and discharge of the Cape Cod and Montaup plants (Mass.) all demonstrated the same degree of recovery when grown in continuous cultures. ${ }^{81}$ Neither populations exposed to elevated temperatures nor those subjected to chlorination and heat treatment showed any adverse permanent effects.

Respiratory rates of natural assemblages of plankton collected from the intake and discharge of the Indian River power plant (Del.) were measured to determine their effect on dissolved oxygen (Do) levels in the receiving estuary. ${ }^{82}$ Planktonic community respiration rates were consistently less than required to induce do levels detrimental to finfish and shellfish.

Phytoplanktonic nitrate reductase activity and primary productivity were severely reduced at the Millstone power station on Long Island Sound in summer. ${ }^{83}$ The decrease occurred during the 6 - to 9 -hour transit through the cooling pond following entrainment at temperature increases of 11° and $14^{\circ} \mathrm{C}$ over ambient temperatures of $19.5^{\circ}-20^{\circ} \mathrm{C}$. In spring, at ambient temperatures of $4.3^{\circ}-9.9^{\circ} \mathrm{C}$, nitrate reductase activity was stimulated.

Following relocation of a thermal discharge into Montsweag Bay (Maine), previously stressed populations of the intertidal alga Ascophyllum nodosum fully recovered. ${ }^{84}$ Three years after the relocation, the population of Spartina alterniflora had only partially recovered. ${ }^{85}$

Reproduction of several benthic organisms in the warm water outfall of the Morro Bay (Calif.) power plant was studied by two investigators. The sea anemone Anthopleura elegantissima spawned earlier in the outfall than at control sites. ${ }^{86}$ Although both Mytilus edulis and M. californianus were able to reproduce in the outfall, body component indexes
showed that control populations were in better nutritional condition. ${ }^{87}$ In summer, the outfall temperatures exceeded the extremely stressful level of $25^{\circ} \mathrm{C}$.

The distributional responses of fish to operation of a newly constructed power plant were assessed for indigenous populations of the Anclote Anchorage and River (Fla.). ${ }^{88}$ Increased abundance in winter and decreased abundance and diversity in summer in the vicinity of the plant were attributed to the thermal effluent.

Alden ${ }^{89}$ used experimental field treatments to examine the thermal mortalities of copepods exposed to the heated effluents of the Crystal River (Fla.) generating station. Significant lethal effects were observed for all seven species examined, with mass mortalities occurring during the warmest months of the year. Estuarine species had steeper mortality curves and higher upper lethal thermal limits than the more neritic forms.

The results of a 3 -year interdisciplinary study made in Card Sound (Fla.) were summarized by Thorhaug et al. ${ }^{90}$ In contrast to effects observed at Turkey Point, little damage to the benthic community was observed at Card Sound. Reasons for the reduced effect of the thermal effluent are discussed. Thorhaug ${ }^{91}$ also reported on the growth of the tropical marine seagrass Thalassia testudinum transplanted into an area of Turkey Point previously denuded by thermal effluents.

Environmental investigations performed at three locations of thermal effluents in Pearl Harbor, Hawaii, showed that cooling water systems produced only minor and localized impacts on the harbor system. ${ }^{92}$ Harbor biota demonstrated a high resiliency to various perturbations.

As part of a study on the physiological ecology of two populations of Mytilus edulis, the effect of power plant heated discharge on one population was noted. ${ }^{93}$ The "scope for growth" of the population adjacent to a power plant on the Plym Estuary (England) was negative for 4 or 5 months between January and May.

Attraction of eels and cod to the discharge of a power plant on Kiel Fjord (W. Ger.) was attributed to current and the resultant transport of planktonic food. ${ }^{94}$ The benthic population in front of the plant was sharply reduced several days after plant shutdown.

Warming of water in the area of the Mar-tigue-Poneau power plant (France) modified
seasonal phytplankton succession. ${ }^{95}$ Skeletonema costatum bloomed prematurely in late winter, and the bloom of Chaetoceros decipiens was more intense than in surrounding waters. Warm-water species of zooplankton were increased except in summer. ${ }^{96}$
Experimental ecosystems. Several experiments designed to simulate the effects of thermal additions on natural communities were reported. Three earthern channels constructed at the Greene County (Ala.) generating plant were used in a 2 -year study to evaluate the effects of heated effluents on macroinvertebrates. ${ }^{97}$ During most periods, oligochaetes and chironomid larvae were the dominant organisms sampled. The channel receiving heated effluent from the plant had the lowest species diversity with fewer mayflies than the channels receiving unheated and mixed unheated/heated water.
The effects of a $4^{\circ} \mathrm{C}$ temperature elevation were examined in two outdoor experimental stream communities with only steelhead trout (Salmo gairdneri) or both steelhead and coho salmo (Oncorhynchus kisutch) present (Utah). ${ }^{98}$ Lower production, biomass, and survival of the treatment salmonids resulted from the higher maintenance requirements of treatment fish coupled with lower biomass of salmonid prey (chironomids, ephemeropterans, and ostracods), especially during late summer.

Production and yield of juvenile walleye (Stizostedion vitreum) in outdoor channels receiving cooling water from the Browns Ferry mortality occurred in the $+6^{\circ} \mathrm{C}$ regimen channel when temperatures exceeded $34^{\circ} \mathrm{C}$ in Au gust. Prior to August, total production ranged from $5.5 \mathrm{~g} / \mathrm{m}^{2}$ at ambient temperatures to 2.8 $\mathrm{g} / \mathrm{m}^{2}$ in the $+6^{\circ} \mathrm{C}$ regimen.

The plankton community in a tank floated in the discharge of Harculo power station (Netherlands) was compared with that in a control tank. ${ }^{100}$ Phytoplankton and populations of rotifers and copepods showed no damage after temperature shocks in these 2 -week experiments. Cladocerans showed significant mortality after a shock of 13.5°, but recovered rapidly.

PRODUCERS

Effects on growth and production. Optimal growth conditions of temperature, light, and salinity were determined for the green alga Mychonastes ruminatus, isolated from Chesapeake Bay (Md.). ${ }^{101}$ The alga grew at temperatures between 5° and $30^{\circ} \mathrm{C}$ with a maxi-

TABLE I. Effect of temperature on reproduction.

Scientific Name	Common Name	Condition Observed and Temperature (${ }^{\circ} \mathbf{C}$)	Location	Reference Citation
Haliplanella luciae	Sea anemone	Fission at 25°, not at 15°	Laboratory	133
Centrostephanus rodgersii	Sea urchin	Onset of egg production at 20°; cessation at $24-26^{\circ}$	Australia	134
Tapes philippinarium	Manila clam	Spawned at $15^{\circ}, 18^{\circ}, 21^{\circ}$	Laboratory	135
Nassarius trivittatus	Snail	Egg capsules produced Oct. to Dec. (7)	Outdoor laboratory	136
Canthocamptus staphylinus	Copepod	High temperature $\left(12^{\circ}\right)$ or long days inhibited egg production	Laboratory	137
Idotea balthica	Isopod	Fecundity reduced at 30° and above	Laboratory	138
Porcello dilatatus	Isopod	Reproductive diapause initiated by low temperatures and short days	France	139
Penaeus esculentus	Prawn	Reproductive growth cued by 2° rise above mean annual 26.3°; spawning cued by 2° drop in Apr. and May	Australia	140
Carassius auratus	Goldfish	Constant high temperatures, 20° and 30°, inhibited gonad growth	Laboratory	141
Catostomus tahoensis	Tahoe sucker	Spawned Apr.-Aug. at 11.7-22.7 ${ }^{\circ}$	Pyramid Lake (Nev.)	142
Chondrostoma nasus	Nase carp	Spawned Apr.-May at 8°	Czechoslovakia	143
Cyprinodon nevadensis	Desert pupfish	Reproduction optimal at 28°	Laboratory	144
Dicentrarchus labrax	Sea bass	Spawned out of season under shortened seasonal temperature cycles	Laboratory	145
Engraulis mordax	Northern anchovy	Potential year-round breeding at $13-18^{\circ}$	San Pedro Bay (Calif.)	146
Esox lucius	Pike	Spawned in Mar. at 6-7 ${ }^{\circ}$	USSR	147
Esox masquinongy	Muskellunge	Spawned in Apr. at 10° or higher	Middle Island Creek (W.Va.)	148
Gila bicolor	Tui chub	Spawned June-August at $15.5-22.2^{\circ}$	Pyramid Lake (Nev.)	149
Ictalurus platycephalus	Flat bullhead	Spawned June-July at 21-24 ${ }^{\circ}$	Lake Norman (N.C.)	47
Lucioperca lucioperca	Pike-perch	Spawned in Apr. at 14-16 ${ }^{\circ}$	USSR	147
Lutjanus campechanus	Red snapper	Spawned at 23-25	Laboratory	150
Menidia menidia	Atlantic silversides	Spawned out of season at constant temperatures above 24°	Laboratory	151

TABLE I-(Continued)

Scientific Name	Common Name	Condition Observed and Temperature (${ }^{\circ} \mathbf{C}$)	Location	Reference Citation
Micropterus salmoides	Largemouth bass	Spawned out of season when temperature raised from 16° to 23°	Laboratory	152
Perca flavescens	Yellow perch	Spawned at 10°	Keowee Reservoir (S.C.)	46
		Spawned at 10°	Laboratory	153
Perca fuviatilis	Perch	Spawned in Mar.-Apr. at $8-10^{\circ}$	USSR	147
Percopsis transmontana	Sand roller	Spawned in summer at $14-16^{\circ}$	Columbia River (Wash.)	154
Rutilus rutilus	Azov roach	Spawned in Mar.-Apr. at 7° up to $17-18^{\circ}$	Azov Sea (USSR)	155
Salmo gairdneri	Steelhead trout	Precocious sexual development related to age, water temperature, and photoperiod	Laboratory	156
Scophthalmus maximus	Turbot	Spawned out of season under shortened seasonal temperature cycles	Laboratory	145
Silurus glanis	Catfish	Spawned in May above $20-22^{\circ}$	USSR	147
Sparus aurata	Sea bream	Spawned out of season under shortened seasonal temperature cycles	Laboratory	145
Stizostedion vitreum	Walleye	Spawned at 8-12 ${ }^{\circ}$	Clinch and Powell Rivers (Tenn.)	157

mal doubling rate of $1.67 /$ day at $25^{\circ} \mathrm{C}$. The influence of CO_{2} supply, light intensity, and temperature on the concentration of extracellular organic substances in synchronous cultures of Scenedesmus acutus was measured. ${ }^{102}$ Constant light and suboptimal temperature $\left(35^{\circ} \mathrm{C}\right.$ compared with $30^{\circ}-33^{\circ} \mathrm{C}$) reduced the accumulation of organic excreta in the medium.

Growth patterns of the green seaweed Codium fragile were determined in the field and laboratory. ${ }^{103,104}$ Maximal growth along the Rhode Island coast occurred during the summer and was significantly correlated with temperature. In the laboratory thalli grew best at $24^{\circ} \mathrm{C}, 24-30 \mathrm{~g} / \mathrm{l}$ salinity, a minimal irradiance of $28 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{sec}$ and 16 -hour day length. In the Mediterranean Sea the reproductive season of Caulerpa prolifera occurred between
the end of June and the beginning of October at seawater temperatures above $20^{\circ} \mathrm{C}$. ${ }^{105}$
The optimum temperature for photosynthesis of natural populations of blue-green algae from Lake Mendota (Wis.) was between 20° and $30^{\circ} \mathrm{C} .{ }^{106}$ Temperature optimum for growth and photosynthesis of the three dominant species, Aphanizomenon, Anabaena, and Microcystis, was $25^{\circ} \mathrm{C}$. Water temperature during the summer ranged from 12° to $24^{\circ} \mathrm{C}$. In another study the lower temperature limit for Microcystis varied between 10.5° and $13.5^{\circ} \mathrm{C}$, the thermal growth optimum between 28.8° and $30.5^{\circ} \mathrm{C}$, and the upper temperature limit between 35.0° and $40.0^{\circ} \mathrm{C} .{ }^{107}$ The corresponding values for Synechococcus were $10.3^{\circ}, 34.5^{\circ}$, and $44.3^{\circ} \mathrm{C}$.

Three strains of the blue-green alga Mastigocladus laminosus were investigated for their nitrogen fixation ability. ${ }^{108}$ One strain
grew well at temperatures from 35° to $50^{\circ} \mathrm{C}$ with optimum growth at $45^{\circ} \mathrm{C}$. Acetylene reduction activity was also greatest at this temperature.

Two studies measured the effects of temperatures on membrane structure of Anacystis nidulans. Cells grown at $25^{\circ} \mathrm{C}$ prior to chilling to $0^{\circ} \mathrm{C}$ appeared unchanged as judged by thin sectioning, whereas those grown at $39^{\circ} \mathrm{C}$ before chilling showed considerable morphological alteration. ${ }^{109}$ The lipid composition was affected by growth temperature in A. nidulans, but not in Anabaena viriabilis. ${ }^{110}$ Ono and Murata ${ }^{111}$ measured the temperature dependence of photosynthetic activities in thylakoid membranes of A. nidulans.

Mickelson et al..112 found that the diatoms Skeletonema costatum and Chaetoceros septentrionalis are closely related in their ability to utilize limiting ammonium at nutrient dilution rates of $0.01-0.03 / \mathrm{h}$. Thalassiosira gra-
vida could not compete with these two species for limiting ammonia nor under reduced temperature and light conditions. A brief temperature increase (base $18^{\circ}-27^{\circ} \mathrm{C}$) triggered changes in population densities of coexisting species, leading to an increase in the less abundant species.

Yoder ${ }^{113,114}$ compared the cell division rate of natural populations of Skeletonema costatum grown in dialysis culture $\left(0^{\circ}-22^{\circ} \mathrm{C}\right)$ with that predicted from a mathematical model. Regression analysis revealed that equations incorporating the effect of temperature $\left(0^{\circ}-10^{\circ} \mathrm{C}\right)$ and light intensity were sufficient to explain the observed cell division rate in many experiments, but the inclusion of silicate concentration improved the relationship.

The benthic diatom Nitzschia ovalis grew well at salinity levels of $8-53 \mathrm{~g} / \mathrm{l}$ and temperatures of $12^{\circ}-36^{\circ} \mathrm{C}$. ${ }^{115}$ Maximum growth rates

TABLE II. Effect of temperature on embryonic development.

Scientific Name	Common Name	Condition Observed and Temperature (${ }^{\circ} \mathrm{C}$)	Reference Citation
Opistomum pallidum	Turbellarian	Duration of development followed Hoff/ Arrhenius temperature rule	158
Hexarthra fennica	Rotifer	Egg development and life cycle shortened under fluctuating temperature regime	159
Neanthes japonica	Polychaete worm	Normal development between 10 and 30°, optimum at 20°	160
Cadlina luteomarginata	Sea slug	Hatched in 86,35 , and 25 d at $5^{\circ}, 10^{\circ}$, and 15° respectively; mortality at 20°	161
Nassarius trivittus	Snail	Development proportional to temperatures; 55 d at $3.3-7.4^{\circ}, 5-7 \mathrm{~d}$ at 21°	136
Diacyclops bicuspidus, Mesocyclops edax, Leptodiaptomus minutus, Aglaodiaptomus spatulocrenatus	Copepods	Development time decreased with increasing temperature, $4-27^{\circ}$; data fitted to Belehradek's equation	162
Eudiaptomus vulgaris	Copepod	Development/temperature relation expressed by given equation	163
Chydorus sphaericus	Cladoceran	Differences in duration of development under cyclic regimes explained by Kaufmann effect	164
Triops longicaudatus	Tadpole shrimp	Eggs developed and hatched at 14-29 ${ }^{\circ}$	165
Chaoborus crystallinus	Phantom midge	20° thermoperiods with low temperatures at night and 14° thermoperiods caused retardation of development and induced dormancy	166
Ecdyonurus pictetí	May fly	Development rate fitted to Belehradek function	167

TABLE II-(Continued)

Scientific Name	Common Name	Condition Observed and Temperature (${ }^{\circ} \mathrm{C}$)	Reference Citation
Hexagenia rigida	Mayfly	Hatching occurred after 7 d at 32° and 77 d at 12°, no hatching at 8° or 36°	168
Tricorythodes minutus	Mayfly	Life cycle multivoltine at constant 18°, bivoltine at seasonal range of $0-29^{\circ}$	169
Acipenser güldenstadti	Sturgeon	Highest survival at $12-18^{\circ}$	170
Acipenser nudiventris	Sheap sturgeon	Highest survival at $11-15^{\circ}$	170
Acipenser stellatus	Sevryuga	Highest survival at 16-22 ${ }^{\circ}$	170
Coregonus clupeaformis	Lake whitefish	Temperature-development time relations modeled; optimum survival at $4-6^{\circ}$	171
Huso huso	Beluga	Highest survival at 10-14*	170
Micromesistius poutassou	Blue whiting	Hatching occurred after 205 h at 6° and 70 h at 15°; relationship described by Belehradek's equation	172
Morone chrysops	White bass	Development ranged from 4.5 d at 14° to 1 d at 26°	173
Perca flavescens	Yellow perch	Incubation period inversely related to temperature; 228 temperature units over average daily 9.9° required	153
Perca fluviatilis	Perch	Highly significant inverse relationship between mortality and degree days above 14° in year of hatch	174
Prosopium williamsoni	Mountain whitefish	Optimum development temperature 6°	175
Salmo salar	Atlantic salmon	Optimum development temperature 10°	176

occurred at combinations of $28^{\circ}, 30^{\circ}$, and $32^{\circ} \mathrm{C}$ and salinities of 28 and $32 \mathrm{~g} / \mathrm{l}$. Increases of temperature ranging from 10° to $15^{\circ} \mathrm{C}$ had no effect on growth of the diatom Navicula ostrearia cultured at $12{ }^{\circ} \mathrm{C}$. ${ }^{116}$ Mortality occurred at $34^{\circ} \mathrm{C}$.

Motile unicells of the yellow-brown alga Olisthodiscus luteus aggregated to form encapsulated masses of nonmotile cells in a benthic stage throughout a temperature range of $15^{\circ}-30^{\circ} \mathrm{C}$ at salinities of $10-50 \mathrm{~g} / \mathrm{l}^{117}$ Motile cells were released from benthic masses at $10^{\circ}-30^{\circ} \mathrm{C}$, but at $5^{\circ} \mathrm{C}$ cells were not motile, and at 0° cells lysed.

The cryptomonad algae Cryptomonas ovata and Chroomonas sp. were grown in cultures to determine optimum conditions of pH , light intensity, temperature, and photoperiod. ${ }^{118}$ Both organisms showed the highest growth rate at $20^{\circ} \mathrm{C}$.

Laboratory studies were conducted to determine the chemical composition of the dino-
flagellate Ceratium furca and to evaluate the accuracy of growth rates determined from the maximum observed frequency of division. ${ }^{119}$ The initiation of cell division was independent of temperature over the experimental range $15^{\circ}-25^{\circ} \mathrm{C}$.
Anderson and Morel ${ }^{120}$ presented complementary laboratory and field data that demonstrated the seeding of a spring and a fall bloom of the toxic dinoflagellate Gonyaulax tamarensis by the temperature-induced germination of benthic hypnocysts. Germination of overwintering hypnocysts was initiated by a temperature increase; the fall bloom was seeded by hypnocyst germination and a temperature decrease from the summer level of $20^{\circ}-22^{\circ} \mathrm{C}$.
The seasonal growth and reproduction of the red alga Dumontia incrassata were described from two New Hampshire sites in relation to a variety of environmental factors. ${ }^{121}$ The plant's maximum abundance and repro-

Literature Review

TABLE III. Effect of temperature on larval development.

Scientific Name	$\begin{aligned} & \text { Common } \\ & \text { Name } \end{aligned}$	Condition Observed and Temperature (${ }^{\circ} \mathrm{C}$)	Reference Citation
Anonchus sp.	Nematode	No development at 5°; optimum between 15° and 20°	177
Crepidula fornicata	Snail	Shell growth rate increased over range $15-25^{\circ}$, growth rates intermediate with cyclic temperatures	178
Gammarus olivii	Amphipod	Growth curve equations at $5^{\circ}, 10^{\circ}$, and 20° given	179
Daphnia longispina, Ceriodaphnia quadrangula, Bosmina longirostris	Cladocerans	Development time varied inversely with temperatures, $7-20^{\circ}$	180
Calanus pacificus, Pseudocalanus sp.	Copepods	Interactions among body size, food concentration, temperature, and growth rate	181
Enhydrosoma propinqum, Microarthiridion littorale, Stenhelia bifidia	Copepods	Water temperature/size frequency distributions given	182
Neomysis americana	Mysid shrimp	Development time of marsupial larvae ranged from $23-25 \mathrm{~d}$ at 10° to $12-14 \mathrm{~d}$ at 16°	183
Leptomysis lingvura, Hemimysis speluncola	Mysid shrimp	Growth rate inversely related to temperature, $10-22^{\circ}$	184
Pandulus jordani	Shrimp	Optimal growth and survival at $8-11^{\circ}$	185
Sergestes similis	Shrimp	Optimum temperature range $10-15^{\circ}$	186
Pacifastacus leniusculus	Crayfish	Growth in weight, length maximum at $22^{\circ}, 20^{\circ}$	187
Cancer irroratus	Crab	Increased survival at 10° to 20° cyclic regime compared with constant 15°	188
Rhithropanopeus harrisii	Crab	Survival at $25-30^{\circ}$ cyclic temperature, $5-30 \mathrm{~g} / \mathrm{l}$ salinity; mortality at $30-35^{\circ}$, 5-30 g/l	189
Aedes dorsalis	Mosquito	Maximum survival and uniform growth at 25° compared with 20° and 30°	190
12 species of chironomids		Emergence related to light intensity and/or water temperature	191
45 species of stoneflies		Emergence related to water temperature, 8-15	192
103 species of insects		Emergence related to water temperature	193

duction occurred during the winter-spring period of low temperatures ($<10^{\circ} \mathrm{C}$) and high nutrients. Photosynthesis of Delesseria sanguinea from the western Baltic showed an optimum for marine conditions at about $30 \mathrm{~g} / \mathrm{l}$ salinity and $10^{\circ} \mathrm{C} .{ }^{122}$

Carbon fixation in several species of freshwater red algae was investigated by Kremer. ${ }^{123}$ Maximum rates of photosynthesis occurred at
$25^{\circ} \mathrm{C}$ for Lemanea annulata and at $35^{\circ} \mathrm{C}$ for Compsopogon hookeri.

Maximum rates of $\mathrm{NO}_{3}{ }^{-}$uptake by the brown alga Laminaria longicruris, tested over the range $0^{\circ}-15^{\circ} \mathrm{C}$, were observed at $15^{\circ} \mathrm{C}$, the approximate seawater temperature prevailing during the late summer months in St. Margaret's Bay (Canada). ${ }^{124}$ Maximum net photosynthesis of the fucoid brown alga Asco-
phyllum nodosum, collected from the New Hampshire coast, was exhibited during summer at $18^{\circ}-21^{\circ} \mathrm{C} .{ }^{125}$ Druehl ${ }^{126}$ related the distribution of Macrocystis integrifolia in British Columbia (Canada) to seasonal seawater temperatures and salinities.

Community responses. Examination of 40 years of data from Lake Michigan water intakes at Chicago, Ill., revealed a change in the apparent temperature optima of phytoplankton. ${ }^{127}$ An optimum temperature of
$10^{\circ} \mathrm{C}$ for the plankton community was observed between 1936 and 1956, and for the past 20 years an optimum temperature range from 0° to $4^{\circ} \mathrm{C}$ was observed. Differences were attributed to the emergence of coldwater species such as Stephanodiscus, and decline in dominance of Asterionella and Fragilaria. More recently, however (197276) blue-green algae have also increased in abundance.

TABLE IV. Summary of recent distribution studies.

Scientific Name	Common Name	Temperature (${ }^{\circ} \mathrm{C}$) and Location	Reference Citation
Daphnia pulicaria	Water flea	$<22^{\circ}$, Wintergreen Lake, Mich.	199
Alosa pseudoharengus	Alewife	Young at 17-19 ${ }^{\circ}$, adults at $11-14^{\circ}$, Lake Michigan	200
Alosa sapidissima	American shad	13-15 ${ }^{\circ}$, Atlantic Coast	201
Atherinops affinis	Topsmelt	19-26 ${ }^{\circ}$, Redondo Beach, Calif.	202
Citharichthys stigmaeus	Speckled sanddab	$<15^{\circ}$, Redondo Beach, Calif.	203
Cottus cognatus	Slimy sculpin	$<6^{\circ}$ at night, Lake Michigan	200
Dorosoma cepedianum	Gizzard shad	$>12^{\circ}$ at $0-5 \mathrm{~m}$, Ottoville Quarry, Ohio	204
Esox lucius	Northern pike	14-19 ${ }^{\circ}$, Lakes, Ontario, Canada	205
Gambusia affinis	Western topminnow	31°, Mammoth Warm Spring, Ariz.	206
Gila bicolor	Tui chub	Up to 22° in summer, Pyramid Lake, Nev.	207
Leiostomus xanthurus	Spot	Inverse temperature/abundance relationship, Apalachicola Bay, Fla.	208
Myoxocephalus quadricornus	Fourhorn sculpin	$<5^{\circ}$, Lake Michigan	200
Notropis hudsonius	Spottail shiner	17-20 ${ }^{\circ}$, Lake Michigan	200
Notropis lutŕensis	Red shiner	5-27.2 ${ }^{\circ}$ seasonally, South Canadian River and Pond Creek, Ok.	209, 210
Osmerus mordax	Rainbow smelt	$7-8^{\circ}$ (day), 11-16 ${ }^{\circ}$ (night), Lake Michigan	200
Perca flavescens	Yellow perch	Juveniles at $>15^{\circ}$ (day),$>17^{\circ}$ (night), adults at $7-8^{\circ}, 11-17^{\circ}$, Lake Michigan	200
		14-19 ${ }^{\circ}$, Lakes, Ontario, Canada	205
Percopsis omiscomaycus	Trout perch	15-16 ${ }^{\circ}$ (day), 7-16 ${ }^{\circ}$ (night), Lake Michigan	200
Salmo gairdneri	Rainbow trout	$<20^{\circ}$ at $>4 \mathrm{~m}$, Ottoville Quarry, Ohio	204
		Young at 19°, adults at 15°, Lake Michigan	78
Salmo henshawi	Lahontan cutthroat trout	7-15 ${ }^{\circ}$ P Pramid Lake, Nev.	207
Stizostedion vitreum	Walleye	10.6-11.2 ${ }^{\circ}$ epilimnion of West Blue Lake Can.	211
		Avoided $>24^{\circ}$, Norris Reservoir, Tenn.	157

Temperature played an important role in regulating standing crop of phytoplankton in the Mississippi River through its effect on photosynthesis. ${ }^{128}$ The temperature optimum for photosynthetic capacity shifted from $16^{\circ} \mathrm{C}$ in spring to $28^{\circ} \mathrm{C}$ in summer. The primary production and general ecology of a periphyton community of a New England lowland stream were studied by Sumner and Fisher. ${ }^{129}$ A mathematical expression relating periphyton photosynthesis per unit chlorophyll a to temperature, light, and periphyton density was established with submersible light-dark chambers in situ. Low temperature was one of several factors responsible for restricting primary productivity in a hypersaline Antarctic lake. ${ }^{130}$

Higher plants. Effects of variable temperatures on the growth and vegetative reproduction of an aquatic plant were examined by exposing populations of Spirodela oligorrhiza
to cyclic, acyclic, and constant temperature regimes. ${ }^{131}$ Growth rates under the cyclic and acyclic regimes $\left(10^{\circ}-25^{\circ} \mathrm{C}\right)$ were not significantly different from those at a constant temperature equal to the mean of the range $\left(17.5^{\circ} \mathrm{C}\right)$. Population growth was directly related to temperature in both constant and variable thermal regimes. The photosynthetic rate of the submerged hydrophyte Utricularia purpurea was measured in the laboratory. ${ }^{132}$ Photosynthetic rate increased with temperature from 5° to $24^{\circ} \mathrm{C}$.

CONSUMERS

Reproduction. The processes of gonad development and spawning are highly temperature dependent, yet species specific. Newly published information is summarized in Table I.

Development. Embryonic and larval development occur within a limited tempera-

TABLE V. Thermal tolerance studies.

Scientific Name	Common Name	Type of Temperature Tolerance	Reference Citation
Ochromonas sociabilis	Flagellate	High	213
Dugesia japonica	Planarian	High, low	214
Pomatoceros triqueter	Polychaete	High, low	215
Tubifex tubifex	Oligochaete	High, thermal shock	216
Erpobdella octoculata	Leech	High, thermal shock	216
Crassostrea gigas	Oyster	High (F)	217
Ostrea edulis	Oyster	High (F)	217
Mytilus edulis	Mussel	High	218
Trichomya hirsuta	Bivalve	High	218
Mya arenaria	Clam	High	219
Littorina littorea	Snail	Low	220
Nassarius obsoletus	Snail	Low	220
Murex pomum	Snail	High, low	221
Physa fontinalis	Snail	High, thermal shock	216
Strongylocentrotus purpuratus, S. franciscanus	Sea urchins	High	222
Pisaster ochraceus, P. giganteus	Starfish	High	222
Gammarus fossarum	Amphipod	High, thermal shock	216
Asellus aquaticus	Isopod	High, thermal shock	216
Lirceus brachyurus	Isopod	High	223
Eurytemora affinis	Copepod	High, thermal shock	224, 225
Euphausia pacifica	Crustacean	High	226
Macrobrachium amazonicum	Shrimp	Low, coldshock	227
Macrobrachium ohione	Shrimp	High	228
Macrobrachium rosenbergii	Shrimp	Low	229
Palaemonetes spp.	Shrimp	High	228
Penaeus spp.	Shrimp	High	228
Callinectes sapidus	Crab	High	228
Cancer magister	Crab	High	230
Panopeus herbstii	Crab	High	228
Chironomus thummi	Midge	High, thermal shock	216
Geotria australis	Lamprey	High	231
Alosa pseudoharengus (eggs, larvae)	Alewife	High, thermal shock	232, 233
Alosa sapidissima (eggs, larvae)	American shad	High, thermal shock	233

1588 Journal WPCF, Vol. 52, No. 6

TABLE V—(Continued)

Scientific Name	Common Name	Type of Temperature Tolerance	Reference Citation
Brevoortia tyrannus	Atlantic menhaden	Thermal shock	234
Carassius auratus	Goldfish	High, low	235
Cynoscion regalis (eggs, larvae)	Weakfish	High, thermal shock	236, 237
Cyprinion macrostomus	Fish	High	238
Cyprinodon elegans	Pupfish	High	239
Dorosoma cepedianum	Gizzard shad	Low (F)	54
Dorosoma petenense	Threadfin shad	Low (F)	53, 54
Esox lucius	Northern pike	High	205
Esox masquinongy	Muskellunge	High	240
Gambusia nobilis	Pecos gambusia	High	239
Heteropneustes fossilis	Indian catfish	High, low	241
Ictalurus melas	Black bullhead	High	242
Leiostomus xanthurus	Spot	Thermal shock	243
Lepomis gibbosus	Pumpkinseed	High	244
Microgadus tomcod	Atlantic tomcod	High, thermal shock	232
Micropterus dolomieui	Smallmouth bass	Low	245
Morone chrysops (eggs)	White bass	High	173
Morone saxatilis	Striped bass	High	246
(eggs)		High, thermal shock	232
(eggs, larvae)		High, thermal shock	233
Oncorhynchus kisutch	Coho salmon	High	244
Paralichthys dentatus (eggs, larvae)	Summer flounder	High, thermal shock	237
Perca fluviatilis	Perch	High	247
Pomatoschistus microps	Sand goby	High	248
Prinotus evolans (eggs, larvae)	Striped searobin	High, thermal shock	237
Salmo clarki	Cutthroat trout	High	249
Salmo gairdneri	Rainbow trout	High	250
Stizostedion lucioperca	Pikeperch	High	247
Tautoga onitis (eggs, larvae)	Tautog	High, thermal shock	197, 237
45 species of estuarine fish		High	228
56 species of marine fish		Low (F)	251

(F) indicates field study.
ture range, and the rate of development is controlled by temperature. Table II summarizes new information on embryonic development prior to hatching. Table III includes larval and early juvenile development.

Morphology. Hydra (Hydra oligactis) size was inversely proportional to rearing temperature, ranging from greater than $100 \mu \mathrm{~g}$ at $10^{\circ} \mathrm{C}$ to $30 \mu \mathrm{~g}$ at $25^{\circ} \mathrm{C} .{ }^{194}$ The mean tentacle number of buds of Hydra viridis varied with several factors, among them temperature. ${ }^{195}$ Buds produced at higher temperatures had lower tentacle numbers.

Blastula formation of the starfish Asterina pectinifera was normal between 13° and $23^{\circ} \mathrm{C} .{ }^{196}$ At high temperatures $\left(25^{\circ}-26^{\circ} \mathrm{C}\right)$ most embryos became abnormal.

The effect of elevated temperature on early embryonic development of tautog Tautoga onitis was studied by Olla and Samet. ${ }^{197}$ When incubation temperature was gradually raised
from 20° to 24.2° to $26.3^{\circ} \mathrm{C}$, anatomical deformities, including stunted embryos and/or abnormal body curvatures, as well as increased mortality occurred. Anomalies were also observed in American shad (Alosa sapidissima) following incubation of eggs at higher than optimum temperatures. ${ }^{198}$

Distribution. Recent distribution studies are summarized in Table IV. Environmental requirements associated with 363 North American species of freshwater Plecoptera (stoneflies) were tabulated by Surdick and Gaufin. ${ }^{212}$ Eleven ecological parameters including temperature were considered. The report is designed to be applicable to water quality investigations and to provide a baseline from which further ecological and systematic research is encouraged.

Temperature tolerance. Studies concerning the tolerance of aquatic organisms to temperature extremes are referenced in Table V.

All studies are laboratory studies except those designated (F) for field studies.

Oxygen metabolism. Respiration is temperature dependent and serves as an indicator of thermal stress. Species investigated for thermal effects on respiration are listed in Table VI.

Growth. Growth of aquatic organisms occurs within a limited temperature range. Growth rates are usually controlled by temperature. New studies on effects of temperature on growth are summarized in Table VII.

Feeding. Feeding rate of the ctenophore Mnemiopsis leidyi on mixed natural zooplankton was independent of food concentration but was a function of both temperature and size of the ctenophore. ${ }^{306}$ The feeding rate ($1 / \mathrm{mg}$ dry wt/day) ranged from 0.01 for larger ctenophores at lower temperatures ($10^{\circ}-$ $15^{\circ} \mathrm{C}$) to about 0.1 for smaller ctenophores at higher temperatures.

In the laboratory, food consumption and assimilation of the pond snail Lymnaea stagnalis was positively related to temperature from 5° to $25^{\circ} \mathrm{C} . .^{307}$ It was suggested that feeding in the field starts in spring at a water temperature of $8^{\circ}-11^{\circ} \mathrm{C}$.

Filtering rate (ml/animal/day) of Daphnia ambigua followed a complex pattern with temperature. ${ }^{261}$ The rate increased with temperature from 6.5° to $11.3^{\circ} \mathrm{C}$, dropped at $13.3^{\circ} \mathrm{C}$, and increased at higher temperatures.

Different weight classes of the dragonfly nymph Mesogomphus lineatus were allowed to devour larvae of Culex fatigans over the temperature range $10^{\circ}-40^{\circ} \mathrm{C}$ to study the interaction of body weight and temperature on satiation time, maximum food intake, and return of appetite. ${ }^{308}$ Number of larvae eaten per hour by a 50 mg nymph increased linearly from one at $10^{\circ} \mathrm{C}$ to eight at $35^{\circ} \mathrm{C}$. Maximum food intake, but not satiation time, was dependent on temperature.

The capture of Daphnia pulex by the damselfly Ischnura elegans increased in a sigmoid manner with temperature, while the handling time declined logarithmically from 5° to $16^{\circ} \mathrm{C}$ after which it remained constant. ${ }^{309}$ Onset and termination of growth in the field correlated with the temperature at which the attack response begins to increase markedly. Rate of consumption of chironomid larvae by dobson flies (Corydalus cornutus) increased with temperature from 10° to $30^{\circ} \mathrm{C} .{ }^{271}$ Nymphs did not feed at $5^{\circ} \mathrm{C}$.

Fingerling largemouth bass (Micropterus salmoides) were trained to accept carp eggs readily as food at $27^{\circ} \mathrm{C} .{ }^{310}$ Success at 22° and $25^{\circ} \mathrm{C}$ was not as great. -Food consumption, food conversion, and growth of grass carp (Ctenopharyngodon idella) were similar in tanks maintained at $18.3^{\circ}, 23.9^{\circ}$, and $29.4^{\circ} \mathrm{C} .{ }^{311}$ The least growth and food consumption occurred in fish held at $12.8^{\circ} \mathrm{C}$.

The rate of food intake by Sarotherodon massambica, an introduced African cichlid fish, increased with temperature, reaching a maximum at $35^{\circ} \mathrm{C} .{ }^{312}$ Absolute growth peaked at $30^{\circ} \mathrm{C}$ regardless of salinity. The gross conversion efficiency was highest at $20^{\circ} \mathrm{C}$ in seawater and at $25^{\circ} \mathrm{C}$ in fresh and brackish waters.

The digestion rate of flounder (Platichthys flesus) fed with polychaete worms was faster at $15^{\circ} \mathrm{C}$ than at $10^{\circ} \mathrm{C} .{ }^{313}$ An exponential model was fitted to the results. Digestion of threadfin shad by sauger (Stizostedion canadense) was significantly reduced at 5° and $10^{\circ} \mathrm{C}$ compared with that at $15^{\circ} \mathrm{C} .{ }^{53}$ The digestive efficiency of temperature acclimated mummichogs (Fundulus heteroclitus) was determined using amphipods as prey. ${ }^{314}$ From 13° to $19^{\circ} \mathrm{C}$ efficiencies were temperature independent and were the maximum possible.

The effect of temperature on gastric evacuation of several fish species was studied. The gastric emptying time in turbot (Scophthalmus maximus) was found to decrease with temperature $\left(8^{\circ}-15^{\circ} \mathrm{C}\right) .{ }^{315}$ Times to complete gastric evacuation in plaice (Pleuronectes platessa) decreased from 67.3 hours at $5^{\circ} \mathrm{C}$ to 20.2 hours at $21^{\circ} \mathrm{C} .{ }^{316}$ Complete gastric evacuation in trout (Salmo gairdneri) acclimated at $7^{\circ}, 13^{\circ}$, and $19^{\circ} \mathrm{C}$ required 49,41 and 33 hours, respectively. ${ }^{317}$ Gastric evacuation in tilapia (Sarotherodon mossambicus) was not influenced by temperature and required 14 hours. Gastric evacuation rates in perch (Perca fluviatilis) over the temperature range $4.0^{\circ}-21.7^{\circ} \mathrm{C}$ were empirically described by an exponential function. ${ }^{318}$

Elliott and Persson ${ }^{319}$ reviewed and criticized studies on rates of gastric evacuation and food consumption of fish. Quantitative studies show that the evacuation rate is related to water temperature by an exponential or powerlaw function. Two new methods of calculating gastric evacuation rates are proposed. Both assume that the rate is exponential.

Temperature and other stresses. Temperature can control the rates and extent of ac-

TABLE VI. Effects of temperature on oxygen metabolism.

Scientific Name	Common Name	Reference Citation
Anonchus sp.	Nematode	177
Tubifex tubifex	Oligochaete	252
Nereis succinea, N. virens	Oligochaetes	253
Donax serra, D. sordidus	Bivalves	254
Corbicula fluminea	Clam	255
Mya arenaria	Clam	219
Noetia ponderosa	Clam	253
Polymesoda caroliniana	Clam	256
Spisula solidissima	Clam	253
Modiolus demissus	Mussel	256
Bullia digitalis	Snail	257
Busycon canaliculatum	Snail	253
Cassidula aurisfelis	Snail	258
Cerithidea obtusa	Snail	258
Goniobasis cahawbensis, G. cochliaris	Snails	259
Lymnaea stagnalis	Snail	260
Murex pomum	Snail	221
Nerita articulata	Snail	258
Xiphosura limulus	Horseshoe crab	253
Daphnia ambigua	Cladoceran	261
Daphnia pulex	Cladoceran	262
Lirceus brachyurus	Isopod	223
Acartia clausi	Copepod	263
Anomalocera patersoni	Copepod	263
Calanus spp.	Copepod	263
Centropages typicus	Copepod	263
Clausocalanus arcuicornis	Copepod	263
Mesocyclops brasilianus	Copepod	264
Pleuromamma gracilis	Copepod	263
Tachidius discipes	Copepod	265
Cambarus acuminatus	Crayfish	266
Callinectes sapidus	Crab	253
Cancer irroratus	Crab	188
Cancer maenas	Crab	267, 268
Cancer magister	Crab	230, 269
Emerita talpoida	Crab	270
Hemigrapsus nudus	Crab	253
Libinia emarginata	Crab	253, 270
Pachygrapsus crassipes	Crab	268
Panopeus herbsti	Crab	253
Corydalus cornutus	Dobson fly	271
Limnephilus rhombicus	Caddisfly	272
Mellita quinquiesperforata	Sand dollar	273
Gasterosteus aculeatus	Threespine stickleback	274
Heteropneustes fossilis	Indian catfish	275
Ictalurus melas	Black bullhead	242
Leiostomus xanthurus	Spot	276
Lepomis cyanellus	Green sunfish	277
Lepomis macrochirus	Bluegill	278
Lutjanus campechanus	Red snapper	279
Melanostigma pammelas	Eelpout	280
Micropterus salmoides	Largemouth bass	277, 281
Morone americana	White perch	276
Pimephales promelas	Fathead minnow	282
Salmo salar (eggs)	Atlantic salmon	283
Tilapia nilotica	Tilapia	284, 285
Trinectes maculatus	Hogchoker	276

tion of other stresses on aquatic organisms. Table VIII summarizes new data on tem-perature-stress interaction. In addition, Capuzzo ${ }^{322}$ reviewed the effect of temperature on the toxicity of free chlorine and chloramine to several species of marine animals. For all species tested, except the copepod Acartia tonsa, temperature had a synergistic effect on the toxicity of both halogen forms. It is suggested that the effect of temperature in enhancing the toxic effects of chlorinated cooling waters to marine animals is the result of an interaction of uptake rates and regulation of physiological rates. The greatest enhancement in sensitivity can be expected at the upper limit of a species' thermal tolerance.

Vernberg ${ }^{354}$ reviewed the effects of multiple environmental factors and their interactions on aquatic organisms. Although these studies are difficult to pursue because of the complexity of the natural environment, some advances have been made with the help of statistical and computer techniques.

Temperature selection and thermoregulation. When presented with a choice of ambient temperatures, as in a thermal gradient, motile organisms tend to congregate in a narrow range of temperatures. Such behavior is called temperature selection or behavioral thermoregulation.

Numerous authors have suggested that temperature is a major factor influencing the distribution and success of a species in nature and that laboratory-selected temperatures are relevant in explaining the field distribution of a species. Beitinger and Magnuson, ${ }^{304}$ among others, have suggested that maximum growth rates occur at a species' final temperature preferendum. Recent laboratory studies on temperature preference are summarized in Table IX.

A symposium on thermoregulation in ectotherms was organized by Reynolds. ${ }^{372}$ Among the topics presented were significance of skewness in ectotherm thermoregulation, ${ }^{373}$ behavioral thermoregulation and the final preferendum paradigm, ${ }^{374}$ ontogenetic and nonthermal effects on thermal preferenda of fish, ${ }^{375}$ mechanisms of fish distribution in heterothermal environments, ${ }^{376}$ physiological and ecological correlates of preferred temperature in fish, ${ }^{377}$ temperature as an ecological resource, ${ }^{378}$ and the role of behavior in temperature acclimation and tolerance in ectotherms. ${ }^{379}$

Activity. Sinking rates of fasting Hydra oligactis reared at $10^{\circ}, 15^{\circ}$, and $25^{\circ} \mathrm{C}$ were determined in a water column at $10^{\circ}, 21^{\circ}$,
and $26^{\circ} \mathrm{C} .{ }^{194}$ The sinking rate was directly correlated with water temperature and inversely correlated with fasting time and rearing temperature. The results are discussed with respect to seasonal distribution in lakes. Harbison and Campenot ${ }^{380}$ studied the effect of lowered temperatures on the swimming rate of salps. Type of response was related to oceanic and vertical and horizontal distribution patterns.
Philipson ${ }^{381}$ investigated the undulatory behavior of larvae of Hydropsyche sp. in relation to water temperature and dissolved oxygen concentration. A rise in temperature from 10° to $25^{\circ} \mathrm{C}$ resulted in decreased quiescent time and an increase in undulation rate. Undulation rate is probably related to oxygen uptake and thus energy expenditure.
Temperature had little effect on the movement and relocation of larvae of black flies in artificial streams. ${ }^{382}$ At lower temperatures, $2^{\circ}-18^{\circ} \mathrm{C}$, the number of larvae relocating remained fairly constant; as temperature increased further relocation rates dropped sharply.
Burrowing activity of the bivalve Macoma balthica was tested in the laboratory. ${ }^{383}$ Burrowing was more rapid at 16° than at $4^{\circ} \mathrm{C}$. Locomotor activity of the snail Melanoides tuberculata was crepuscular in nature and was relatively independent of temperature. ${ }^{384}$ The free-running period of the rhythm was slightly shorter at 20° compared with $18^{\circ} \mathrm{C}$.
Activity of perch (Perca fluviatilis), studied in the laboratory, increased with water temperature from 2° to $13^{\circ} \mathrm{C}$ and with day length. ${ }^{385}$ Temperatures used reflected seasonal ambient temperatures. Observations on salmon (Salmo salar) and sea trout (Salmo trutta) smolt migration in a chalkstream over a period of 4 years indicated a relationship between number of fish migrating during the day and maximum afternoon water temperatures. ${ }^{386,387}$ Both solar radiation and water temperature were correlated with intensity and timing of movement.

Migration of twaite shad (Alosa fallax) in the Severn estuary (England) reached a peak soon after the temperature dropped below $19^{\circ} \mathrm{C}$; migration ceased below $9^{\circ} \mathrm{C} .{ }^{388}$ The migratory route of American shad (Alosa sapidissima) in the Atlantic Ocean was studied using 14 years of catch data. ${ }^{201}$ All shad catches and peak entry of shad into home estuaries occurred at bottom temperatures of $3^{\circ}-15^{\circ} \mathrm{C}$, with most frequent catches at $7^{\circ}-$ $13^{\circ} \mathrm{C}$.

TABLE VII. Effects of temperature on growth.

Scientific Name	$\begin{aligned} & \text { Common } \\ & \text { Name } \end{aligned}$	Condition Observed and Temperature (${ }^{\circ} \mathbf{C}$)	Reference Citation
Corals		High density growth bands at $29-30^{\circ}$; low density bands at 26-27 ${ }^{\circ}$	286
10 species of flatworms		Survival and growth in laboratory related to field distribution temperatures	287
Perinereis nuntia	Polychaete	Optimum growth at 20°	288
Mytilis californianus	Mussel	Assimilation and scope for growth greater at 15° than at 9°	289
Tapes philippinarum	Manila clam	Growth (soft tissue) inversely proportional to temperature, $12-21^{\circ}$	135
Tapes japonica	Clam	Condition similar at $12^{\circ}, 15^{\circ}, 18^{\circ}$, and 21°	290
Crassostrea gigas	Oyster	Increase in weight with increase in temperature, $12-21^{\circ}$; condition similar at $12^{\circ}, 15^{\circ}, 18^{\circ}$, and $21^{\circ} ; 15^{\circ}$ optimum for growth	$\begin{gathered} 290,291 \\ 292 \end{gathered}$
Ostrea edulis	Oyster	Increase in weight proportional to temperature, $12-21^{\circ}$; condition similar at $12^{\circ}, 15^{\circ}, 18^{\circ}$, and 21°	290, 291
Dreissena polymorpha	Mussel	Growth optimum at $10-15^{\circ}$; highest rate at 8°, diminished with increasing temperature	293, 294
Neritina violacea	Snail	Greatest shell increase at 27.5°	295
Physa acuta	Snail	Growth more rapid at 26° than at 22°	296
Physa integra	Snail	Growth rate similar at 21° and 26°	297
Physa stagnalis	Snail	Growth rate greater at 26° than at 21°	297
Daphnia magna	Cladoceran	Growth at 6-22 ${ }^{\circ}$; optimum efficiency at 9°	298
Acartia clausii	Copepod	Increase in growth with temperature, $10-20^{\circ}$, in laboratory; constant rate in field	299
Cyclops spp.	Copepods	Growth rate increased with temperature, $10^{\circ}, 15^{\circ}, 20^{\circ}$	300
Panulirus homarus	Rock lobster	Little effect of temperature on growth $\left(24-28^{\circ}\right)$, decreased growth at 30°	301
Anguilla anguilla	Eel	Optimum growth at $20-22^{\circ}$	302
Abudefduf abdominalis (juveniles)	Maomao	Highest growth rate at 29.4° and 32.4° when tested at $23.4-32.4^{\circ}$	303
Esox lucius (yearlings)	Northern pike	Best growth at 19° for weight and 21° for length; growth low at 4° and 27.5°	205
Lepomis macrochirus (juveniles)	Bluegill	Optimum growth rate at 30-31 ${ }^{\circ}$	304
Micropterus dolomieui (fry)	Smallmouth bass	Model describes growth rates and size distributions; growth rate greater at 25.6° than at 20.1° and 31.1°	20
Perca fluviatilis	Perch	Growth optimum at 26°	247
Salmo trutta	Brown trout	Maximum growth rates computed from field temperatures using growth model	305
Stizostedion lucioperca	Pikeperch	Growth optimum at $28-30^{\circ}$	247
Stizostedion vitreum (juveniles)	Walleye	Maximum survival temperature with continued growth: $32-33^{\circ}$	99

Literature Review

TABLE VIII. Interaction of temperature and other stresses.

Scientific Name	Common Name	Stress	Observed Effect (${ }^{\circ} \mathbf{C}$)	Reference Citation
Paramecium tetraurelia	Protozoan	Cu	Copper tolerance decreased with increasing temperature (12-34 $)$	320
Laomedea loveni	Hydra	Cd	More toxic at high temperaturelow salinity combinations	321
Brachionus plicatilis	Rotifer	Cl (free, chloramine)	Synergistic effect of temperature ($20^{\circ}, 25^{\circ}, 27.5^{\circ}$) on toxicity	322
Mytilus edulis	Mussel	Salinity, Cd	Little effect of temperature on Cd toxicity (0-50 ppb)	323
Mytilus galloprovincialis	Mussel	As (arsenate)	Increased temperature (25° compared with 12°) enhanced uptake and loss	324
Crassostrea virginica	American oyster	$\begin{aligned} & \mathrm{Cl} \text { (free, } \\ & \text { chloramine) } \end{aligned}$	Synergistic effect of temperature $\left(20^{\circ}, 25^{\circ}\right)$ on toxicity	322
		Cl (chlorineproduced oxidants)	Toxicity varied with season, temperature, and physiological condition	325
(embryos, larvae)		Cu , salinity	High Cu level (20 pbb) altered salinity and temperature tolerance of embryos; larvae more tolerant	326
Bulinus truncatus	Snail	Molluscicides	More toxic at 30° than at 20°	327
Macrocyclops albidus	Copepod	Insecticides	Thermal tolerance lowered	328
Acartia tonsa	Copepod	Cl (free, chloramine)	No effect of temperature (10° to 28°) on toxicity	322
Gammarus sp.	Amphipod	Hg	Uptake increased with temperature increase and other variables	329
Daphnia pulex	Cladoceran	Cl, flow, Δ T	Combined stresses reduced the levels of adenosine triphosphate; mortality from mechanical stress	330
		$\begin{gathered} 2,4-\mathrm{D} ; 2,4,5-\mathrm{T} \\ \text { (herbicide) } \end{gathered}$	Respiration increased with temperature and $3 \mathrm{ppm} 2,4,5-\mathrm{T}$	262
Cambarus latimanus	Crayfish	Cd	Temperature tolerance not significantly related to Cd concentration in tissues	331
Eualus spp.	Shrimp	Oil	Toluene more toxic at 12° than at 40°	332
Pandalus goniurus	Shrimp	Oil	Naphthalene more toxic at 12° than at 40°	332

TABLE VIII-(Continued)

Scientific Name	Common Name	Stress	Observed Effect (${ }^{\circ} \mathbf{C}$)	Reference Citation
Palaemonetes pugio	Grass shrimp	Salinity, Zn	Development rates retarded at both high and low salinitytemperature conditions and in increasing zinc concentrations (0.25 to $1 \mathrm{mg} / \mathrm{l}$)	333
		Cl	Results analyzed by regression model techniques	$\begin{aligned} & 334, \\ & 335 \end{aligned}$
Callinectes sapidus	Blue crab	Cl	Interactions established by regression model techniques	335
Clibanarius vittatus	Hermit crab	Salinity	Temperature (15° and 25°) did not affect osmoregulation	336
Pagurus longicarpus, P. pollicaris	Hermit crabs	Salinity	Temperature (15° and 25°) did not affect osmoregulation	336
Rhithropanopeus harrisii	Mud crab	Salinity, hydrocarbons	Low salinity reduced tolerance to phenanthrene; temperature effect marginal	337
Aplodinotus grunniens	Freshwater drum	Cl (monochloramine)	48-h LC_{50} values decreased from 2.45 to $1.75 \mathrm{mg} / \mathrm{l}$ TRC with temperature (10° and 20°)	338
Brevoortia tyrannus	Menhaden	Gas supersaturation	No effect of temperature ($15-30^{\circ}$) on mortality	339
Carassius auratus	Goldfish	$\mathrm{Cu}, \mathrm{Cr}, \mathrm{Zn}$, cyanide	24-h LC_{50} values decreased with temperature ($5^{\circ}, 15^{\circ}, 30^{\circ}$)	340
Catostomus commersoni	White sucker	Cl (monochloramine	48-h LC_{50} values decreased from $1.09 \mathrm{mg} / \mathrm{l}$ TRC at 10° to 0.36 at 27°	338
Cyprinus carpio	Carp	Cl (monochloramine)	48-h LC_{50} values decreased from $2.37 \mathrm{mg} / \mathrm{l}$ TRC at 10° to 1.50 at 30°	338
		Pressure, flow Cl	Complicated survival pattern	341
Fundulus heteroclitus	Killifish	Salinity, oil	Oil more toxic at high and low temperature conditions $\left(20^{\circ}, 25^{\circ}, 30^{\circ}\right)$	342
Gambusia affinis	Mosquitofish	$\begin{gathered} \mathrm{Hg}\left(\mathrm{HgCl}_{2},\right. \\ \left.\mathrm{CH}_{3} \mathrm{HgCl}\right) \end{gathered}$	Synergistic effect of temperature ($10^{\circ}, 18^{\circ}, 26^{\circ}$) on bioaccumulation and mortality	343
		Ionizing radiation	Lethal temperature significantly reduced at 1500 rads and above	344
		Insecticides	Thermal tolerance significantly lowered at 5 and $10 \mu \mathrm{~g} / \mathrm{l}$	345
Ictalurus punctatus	Channel catfish	Cl (monochloramine)	48-h LC_{50} values decreased from $0.78 \mathrm{mg} / \mathrm{l}$ TRC at 10° to 0.67 at 30°	338
		Cu, Cr, cyanide	Little effect of temperature (5°, $15^{\circ}, 30^{\circ}$) on toxicity; some effect with Cu	340

Literature Review

TABLE VIII-(Continued)

Scientific Name	Common Name	Stress	Observed Effect (${ }^{\circ} \mathrm{C}$)	Reference Citation
Lepomis macrochirus	Bluegill	Cl (monochloramine)	48-h LC_{50} values decreased from $3.00 \mathrm{mg} / \mathrm{l}$ TRC at 10° to 1.23 at 30°	338
		$\mathrm{Cu}, \mathrm{Cr}, \mathrm{Zn}$ eyanide	No temperature effect on toxicity of Cr , cyanide; higher sensitivity at lower temperatures for Cu and at higher temperature for $\mathrm{Zn}\left(5^{\circ}, 15^{\circ}\right.$, 30°)	340
		HCN	Juvenile fish more sensitive at lower temperatures ($4-30^{\circ}$)	346
		$\mathrm{Hg}\left(\mathrm{CH}_{3} \mathrm{HgCl}\right)$	Bioaccumulation increased exponentially with temperature $\left(9^{\circ}, 21^{\circ}, 33^{\circ}\right)$	347
		Glyphosates (herbicides)	```Toxicity increased with increasing temperature (}1\mp@subsup{7}{}{\circ}\mathrm{ , 22}\mp@subsup{2}{}{\circ},2\mp@subsup{7}{}{\circ}```	348
Morone chrysops	White bass	Cl (monochloramine)	48-h LC_{50} values decreased from $2.87 \mathrm{mg} / \mathrm{l}$ TRC at 10° to 1.15 at 30°	338
Morone saxatilis	Striped bass	Pressure, flow, Cl	Complicated survival pattern	341
		Cl (total residual)	Percent mortality increased as TRC concentration and ΔT increased	349
Notemigonius crysoleucus	Golden shiner	$\mathrm{Cu}, \mathrm{Cr}, \mathrm{Zn}$, cyanide	No temperature effect on toxicity of Cu, Zn; slight decrease in 24-h LC_{50} with increase in temperature $\left(5^{\circ}, 15^{\circ}, 30^{\circ}\right)$ for Cr , cyanide	340
Notropis atherinoides	Emerald shiner	Cl (total residual)	96-h LC_{50} values decreased with temperature increase $\left(10^{\circ}, 25^{\circ}\right)$	350
		Cl (monochloramine)	48-h LC_{50} values decreased from $0.63 \mathrm{mg} / \mathrm{l}$ TRC at 10° to 0.35 at 30°	338
Notropis cornutus	Common shiner	Cl (monochloramine)	48-h LC_{50} values decreased from $0.78 \mathrm{mg} / 1 \mathrm{TRC}$ at 10° to 0.45 at 30°	338
		Cl (total residual, combined residual, hypochlorous acid, chloramine)	Avoidance response varied with chlorine fraction and temperature; threshold avoidance to TRC at 0.10 to $0.20 \mathrm{mg} / \mathrm{l}$	351
Notropis spilopterus	Spotfin shiner	$\begin{aligned} & \mathrm{Cl} \text { (mono- } \\ & \text { chloramine) } \end{aligned}$	48-h LC_{50} decreased from 0.65 mg / l TRC at 10° to 0.41 at 30°	338
Oncorhynchus gorbuscha	Pink salmon	Oil	96-h TL_{m} for toluene and water soluble fraction lower at 4° than at 12°	332

TABLE VIII-(Continued)

Scientific Name	Common Name	Stress	Observed Effect (${ }^{\circ} \mathbf{C}$)	Reference Citation
Oncorhynchus kisutch	Coho salmon	Gas supersaturation	No effect of temperature ($8-20^{\circ}$) on gas bubble disease mortality	352
Oncorhynchus nerka	Sockeye salmon	Gas supersaturation	No effect of temperature (8-20 ${ }^{\circ}$ on gas bubble disease mortality	352
Oncorhynchus tshawytscha	Chinook salmon	Gas supersaturation	Mortality increased with increasing temperature (8-20 ${ }^{\circ}$)	352
Perca flavescens	Yellow perch	HCN	Juvenile fish more sensitive at lower temperatures $\left(4-30^{\circ}\right)$	346
Pimephales promelas	Fathead minnow	Low dissolved oxygen	DO at which surface film used for O_{2} increased with temperature (6° to 30°)	353
		HCN	Juvenile fish more sensitive at lower temperatures $\left(4-30^{\circ}\right)$	346
Salmo gairdneri	Rainbow trout	$\mathrm{Cu}, \mathrm{Cr}, \mathrm{Zn}$, cyanide	$24-\mathrm{h} \mathrm{LC}_{50}$ values for Cr, Zn, cyanide unaffected by temperature, Cu more toxic at 30° than at 5°	340
		HCN	Juvenile fish more sensitive at lower temperatures ($4-30^{\circ}$)	346
		Glyphosates (herbicides)	Toxicity increased with increasing temperature $\left(7^{\circ}, 12^{\circ}, 17^{\circ}\right)$	348
		Gas supersaturation	Mortality increased with increasing temperature ($8-20^{\circ}$)	352
Salvelinus fontinális	Brook trout	HCN	Juvenile fish more sensitive at lower temperatures ($4-30^{\circ}$)	346
Stizostedion canadense	Sauger	Cl (monochloramine)	48-h LC_{50} values decreased from $1.14 \mathrm{mg} / \mathrm{l} \mathrm{TRC}$ at 10° to 0.71 at 30°	338

Activity levels of adult and iuvenile alewives (Alosa pseudoharengus), recorded in the laboratory, were diurnal with little influence of temperature $\left(1.8^{\circ}-25^{\circ} \mathrm{C}\right) . .^{389} \mathrm{Tem}-$ perature influenced activity only at a lower stress level of $3^{\circ} \mathrm{C}$. Spontaneous swimming activity of northern pike (Esox lucius) fed ad libitum in the laboratory was maximal at $19^{\circ}-$ $20^{\circ} \mathrm{C}$, close to the optimum for growth..205

Home range and seasonal movements of muskellunge in two Canadian lakes were determined by radiotelemetry. ${ }^{390}$ All fish established and used home ranges when water tem-
peratures were less than $5^{\circ} \mathrm{C}$. Males, but not all females, again established home ranges when water temperatures exceeded $15^{\circ} \mathrm{C}$. Distances traveled outside home ranges were maximum for both sexes at temperatures of $10^{\circ}-15^{\circ} \mathrm{C}$.
Temperature-swimming performance relations of several Great Lakes fish were reviewed by Griffiths. ${ }^{391}$ Rainbow smelt were extremely stenothermal fish which are particularly susceptible to abrupt temperature declines. Littoral species (goldfish, centrarchids) maintained high performance over a wide tem-

TABLE IX. Temperature preference studies.

Species	Age or Size	Acclimation Temperature (${ }^{\circ} \mathbf{C}$)	Preference Temperature (${ }^{\circ} \mathrm{C}$)	Reference Citation
Limulus polyphemus (Horshoe crab)			$15-40^{\circ}, 29.4^{\circ}$	355
Orconectes obscurus (Crayfish)		$6-33^{\circ}$	30°	356
Homarus americanus (American lobster)	400-500 g		$15-21^{\circ}$ first 6 days $10-29^{\circ}$ second 6 days	357
Panulirus argus (Spiny lobster)	Juveniles		$25-35^{\circ}, 30^{\circ}$	358
Palaemonetes vulgaris (Grass shrimp)			27°	359
Typhlocaris galilea (Prawn)		23-26.5 ${ }^{\circ}$	26-27 ${ }^{\circ}$	360
Abudefduf abdominalis (Damselfish)	Adults Juveniles	$\begin{aligned} & 22.3-26.3^{\circ} \\ & 22.3-26.3^{\circ} \end{aligned}$	$\begin{aligned} & 25.9^{\circ} \\ & 30.2^{\circ} \end{aligned}$	361
Acanthurus triostegus (Surgeonfish)	Adults Juveniles	$\begin{aligned} & 22.3-26.3^{\circ} \\ & 22.3-26.3^{\circ} \end{aligned}$	$\begin{aligned} & 29.2^{\circ} \\ & 29.3^{\circ} \end{aligned}$	361
Atherinops affinis (Topsmelt)	$\begin{aligned} & 3-198 \text { days } \\ & 14.5 \mathrm{~mm} \\ & 60 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 10-21^{\circ} \\ & 21.5^{\circ} \\ & 15^{\circ} \end{aligned}$	$\begin{aligned} & 19-23^{\circ}, 26^{\circ} \\ & 27^{\circ} \\ & 26^{\circ} \end{aligned}$	202, 362
Carassius auratus (Goldfish)	$80-100 \mathrm{~mm}$	$15^{\circ}, 25^{\circ}$	$19.2^{\circ}, 26^{\circ}$	363
Chaetodon multicinctus (Butterflyfish)	Adults Juveniles	$\begin{aligned} & 22.3-26.3^{\circ} \\ & 22.3-26.3^{\circ} \end{aligned}$	$\begin{aligned} & 24.0^{\circ} \\ & 27.0^{\circ} \end{aligned}$	361
Cheilotrema saturnum (Black croaker)	42 mm	$17.0{ }^{\circ}$	28°	362
Citharichthys stigmaeus (Speckled sanddab)	Adults 90 mm	$\begin{aligned} & 10-19.7^{\circ} \\ & 18.9^{\circ} \end{aligned}$	$\begin{aligned} & 8-13^{\circ}, 9^{\circ} \\ & 10^{\circ} \end{aligned}$	203, 362
Cymatogaster aggregata (Shiner surfperch)	109 mm	18.2°	21°	362
Cyprinodon elegans (Pupfish)	Adults		20-30 ${ }^{\circ}$	239
Damalichthys vacca (Pile surfperch)	69 mm	18.1°	11°	362
Embiotoca jacksoni (Black surfperch)	118 mm	16.7°	18°	362
Enneacanthus gloriosus (Bluespotted sunfish)	$10-60 \mathrm{~mm}$	22°	$28.5{ }^{\circ}$	364
Esox masquinongy (Muskellunge)	$20-25 \mathrm{~cm}$		21.9° (dawn) 27.3° (afternoon)	365
Gambusia affinis (Western topminnow)	Adults		31°	206
Gambusia nobilis (Pecos gambusia)	Adults		$20-30^{\circ}$	239
Gasterosteus aculeatus (Three-spined stickleback)		20°	10°	366

1598 Journal WPCF, Vol. 52, No. 6

TABLE IX—(Continued)

Species	Age or Size	Acclimation Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Preference Temperature (${ }^{\circ} \mathrm{C}$)	Reference Citation
Heteropneustes fossilis (Indian catfish)		$28^{\circ}, 16^{\circ}$	$30^{\circ}, 28.6^{\circ}$	241
Hypsoblennius gilberti (Rockpool blenny)	4.4 mm	$19.4{ }^{\circ}$	26°	362
Lepomis cyanellus (Green sunfish)	80-100 mm	25°	28.2°	363
Leuresthes tenuis (California grunion)	8.1 mm	16.5°	27°	362
Morone americana (White perch)	$51-65 \mathrm{~mm}$	6-33 ${ }^{\circ}$	28.9-30.6 ${ }^{\circ}$	367
Notropis lutrensis (Red shiner)		Seasonal ambient	12.8-25.1 ${ }^{\circ}$	209
Oxyjulis californica (Senorita)	120 mm	17.2°	16°	362
Oxylebius pictus (Painted greenling)	3.4 mm	16.0°	29°	362
Paralabrax clathratus (Kelp bass)	196 mm	21.0°	15°	362
Paralabrax maculatofasciatus (Spotted sand bass)	179 mm	$20.6{ }^{\circ}$	25°	362
Paralichthys californicus (California halibut)	94 mm	20.5°	22°	362
Perca flavescens (Yellow perch)	60 g	20°	20.2°	368
Pleuronichthys coenosus (C-O sole)	134 mm	10.0°	7°	362
Salmo gairdneri (Rainbow trout)	Fry, fingerlings	10.6-12.7 ${ }^{\circ}$	13-15	369
Salmo salar (Atlantic salmon)	Early alevins Advanced alevins	$\begin{aligned} & 4-12^{\circ} \\ & 4-12^{\circ} \end{aligned}$	$\begin{aligned} & <6^{\circ} \\ & 12-16^{\circ} \end{aligned}$	370
	Fry	10.6-12.7 ${ }^{\circ}$	13-15	369
Salmo trutta (Brown trout)	Adults	$0-5^{\circ}$	$12.2{ }^{\circ}$	371
Salmo x Salvelinus (hybrids)	Fry, fingerlings	10.6-12.7 ${ }^{\circ}$	13-15	369
Salvelinus fontinalis (Brook trout)	Fry Fingerlings	$\begin{aligned} & 10.6-12.7^{\circ} \\ & 12.1^{\circ} \end{aligned}$	$\begin{aligned} & 9-11.5^{\circ} \\ & 17.5^{\circ} \end{aligned}$	369
Salvelinus namaycush (Lake trout)	Fry, fingerlings	10.6-12.7 ${ }^{\circ}$	9-11.5 ${ }^{\circ}$	369
Salvelinus hybrids	Fry	10.6-12.7 ${ }^{\circ}$	9-11.5 ${ }^{\circ}$	369
Sarotherdon mossambica (Mozambique mouthbrooder)	40 mm	15-35	$31-32^{\circ}$	312
Scorpaena guttata (Sculpin)	64 mm	17.6°	17°	362
Sebastes serranoides (Olive rockfish)	82 mm	17.0°	17°	362

perature range when allowed time for acclimation. Salmonids displayed the greatest capacity to maintain performance in thermally unstable regimes.

Reynods and Casterlin ${ }^{392}$ monitored locomotor activity of goldfish (Carassius auratus) and bluegill (Lepomis macrochirus) in the laboratory. Both fish exhibited a significant "activity well" or decrease in spontaneous locomotor activity in the region of their final preferendum $\left(28^{\circ} \mathrm{C}\right.$ for goldfish, $31^{\circ} \mathrm{C}$ for bluegills). These results are discussed in relation to a thermokinetic interpretation of thermoregulatory behavior and to the correspondence between thermal preferenda and thermal optima.

DECOMPOSERS

Three strains of psychrotrophic and one mesophilic bacteria were tested for their reactions to sudden temperature increases at low temperatures. ${ }^{393}$ Following $5^{\circ} \mathrm{C}$ temperature increases over the base range $5^{\circ}-$ $25^{\circ} \mathrm{C}$, the three psychrotrophic strains, Cytophaga johnsonae, Cytophaga sp. and Pseudomonas fluorescens, adapted to the new temperature, showed a lower growth rate, and showed a higher growth rate respectively at the new temperatures. The mesophilic Enterobacter cloacae adjusted immediately to the new growth rate of temperature-adapted cultures. When different sources of carbon and phosphorus were added to cultures of C. johnsonae at 5° and $20^{\circ} \mathrm{C}$, a complex tempera-ture-dependent substrate-accelerated elimination of this species took place. ${ }^{394}$

The effects of cooling systems on river bacteria were simulated in the laboratory by heating samples of Rhine River water to $30^{\circ}-$ $60^{\circ} \mathrm{C}$, then incubating at lower temperatures. ${ }^{395}$ Enzyme activity of psychrophilic and mesophilic bacteria was inhibited above $30^{\circ} \mathrm{C}$ and above $40^{\circ} \mathrm{C}$, respectively. Carpenter and Adams ${ }^{396}$ investigated the effects of selected environmental factors on the decay of shoots of Myriophyllum spicatum in Lake Wingra, Wis. Decay coefficients increased with increasing temperature to $28^{\circ} \mathrm{C}$ and then declined. Both water temperature and initial tissues nitrogen content were useful factors for predicting M. spicatum decay rates.

DISEASES AND PARASITES

To better quantitate the effects of temperature on disease processes, several major infectious diseases of Pacific salmonids were studied in the laboratory. ${ }^{397}$ Diseases studied
included those caused by the bacteria Flexibacter columnaris, Aeromonas salmonicida, and A. hydrophilia and the Bacterial Kidney Disease bacterium; the protozoan Ceratomyxa shasta; and the Oregon sockeye salmon virus (IHN). Although mortality rates depended on fish species and pathogen, in general, progress of all the diseases was a logarithmic function of temperature $\left(3.9^{\circ}-23.3^{\circ} \mathrm{C}\right)$.
A new bacterial disease affecting primarily pond-reared fingerling channel catfish (Ictalurus punctatus) was described. ${ }^{398}$ Optimum growth temperature of the causative organism, a previously unidentified species of Edwardsiella, was between 25° and $30^{\circ} \mathrm{C}$.
Atlantic menhaden and Atlantic croaker (Micropogon undulatus) captured in the lower Cape Fear River (N. C.) were examined for incidence of the parasite Lernaeenicus radiatus in relation to water temperature and salinity variations. ${ }^{399}$ Highest incidence increases on each species occurred in April ($16^{\circ}-23^{\circ} \mathrm{C}$). Parasite abundance increased inversely to water temperature and salinity with highest incidences occurring in fish from lower saline and colder waters.

BENEFICIAL USES

A state-of-the-art assessment of research, demonstration, and commercial projects that involve the use of power plant condenser cooling water for agricultural and aquacultural purposes was conducted by the Tennessee Valley Authority. ${ }^{400}$ Although a large number of research and feasibility studies have been conducted, few commercial enterprises are presently utilizing thermal effluent.

Malouf and Breeze ${ }^{292}$ assessed the feasibility of culturing the Pacific oyster Crassostrea gigas in heated effluents. Based on maintenance requirements and energy assimilation, $15^{\circ} \mathrm{C}$ was determined to be the optimum temperature for growth of juvenile oysters.

ACKNOWLEDGMENT

This work was sponsored jointly by the Electric Power Research Institute under agreement RTS-76-37 and the Division of Environmental Impacts, U. S. Department of Energy, under contract W-7509-eng-26 with the Union Carbide Corporation.

REFERENCES

1. "Predicting Effects of Power Plant Once-" Through Cooling on Aquatic Systems." Tech. Pap. in Hydrology 20, UNESCO, Paris (1979).
2. Becker, C. D., et al., "Synthesis and Analysis of Ecological Information from Cooling Impoundments," Vols. 1 and 2, EPRI EA1054, Electric Power Research Institute, Palo Alto, Calif. (1979).
3. Tetra Tech, Inc., "Methodology for Evaluation of Multiple Power Plant Cooling System Effects." Vols. 1, 2, and 3, EPRI EA-1111, Electric Power Research Institute, Palo Alto, Calif. (1979).
4. Schubel, R. R., et al., "Effects of Increasing ΔT on Power Plant Entrainment Mortality at Indian Point, New York." Special Report 19, Marine Sciences Research Center, State Univ. of N. Y., Stony Brook (1979).
5. Carter, H. H., et al., "An Assessment of the Thermal Effects on Striped Bass Larvae Entrained in the Heated Discharge of the Indian Point Generating Facilities Units 2 \& 3." Special Report 24, Marine Sciences Research Center, State Univ. of N. Y., Stony Brook (1979).
6. Carter, H. H., et al., "Thermally Induced Biological Effects Caused by OnceThrough Cooling Systems: A Rationale for Evaluation." Environ. Management, 3, 353 (1979).
7. Christie, A. E., "Aquatic Biological Studies of Ontario Hydro's Improved OnceThrough Cooling Program." Verh. Intl. Ver. Limnol. (Ger.), 20, 1734 (1978).
8. Parkhurst, B. R., and McLain, H. A., "An Environmental Assessment of Cooling Reservoirs." NUREG/CR-0514, ORNL/ NUREG/TM-226, Oak Ridge Natl. Lab., Oak Ridge, Tenn. (1978).
9. Paddock, R. A., and Ditmars, J. D., "An Assessment of the Once-Through Cooling Alternative for Central Steam-Electric Generating Stations." ANL/WR-78-5, Argonne Natl. Lab., Argonne, Ill. (1978).
10. Krenkel, P. A., "Problems in the Establishment of Water Quality Criteria." Jour. Water Poll. Control Fed., 51, 2168 (1979).
11. Koops, F. B., "Some Problems in Finding Good Standards for Cooling Water." Verh. Intl. Ver. Limnol. (Ger.), 20, 1833 (1978).
12. MacQueen, J. F., and Howells, G., "WasteHeat Disposal-A Cool Look at Warm Water." Energy Digest, 7, 34 (1978).
13. Biesiadka, E., et al., "Effects of Artificial Rise of Temperature on Stagnant Waters and Their Biocenoses." Intl. Rev. Gesamten Hydrobiol. (Ger.), 63, 41 (1978).
14. Lehmkuhl, D. M., "Environmental Disturbance and Life Histories: Principles and Examples." Jour. Fish. Res. Bd. Can., 36, 329 (1979).
15. Carter, S. A., "Primary Amoebic Meningoencephalitis: (A 'New' Disease Associated with Water Pollution)." Intl. Jour. Environ. Studies, 12, 199 (1978).
16. Duma, R. J., "The Epidemiology of Naturally Acquired Human, Waterborne Meningoencephalitis Due to Thermophilic, Pathogenic Naegleria." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
17. Guthrie, R. K., and Cherry, D. S., "Microbial Interactions in Thermally Influenced Waters." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
18. Swartzman, G. L., and Adams, V. D., "Simulating the Effects of Increased Temperature in a Plankton Ecosystem." NUREG/ CR-0974, Center for Quantitative Science, Univ. Wash., NTIS, Springfield, Va. (1979).
19. Coutant, C. C., et al., "Influences of Physical and Chemical Alterations on Predator-Prey Interactions." In "Predator-Prey Systems in Fisheries Management," R. H. Stroud and H. Clepper (Eds.), Sport Fishing Institute, Washington, D. C. (1979).
20. DeAngelis, D. L., and Coutant, C. C., "Growth Rates and Size Distributions of First-Year Smallmouth Bass Populations: Some Conclusions from Experiments and a Model." Trans. Amer. Fish. Soc., 108, 137 (1979).
21. Eraslan, A. H., "Development of a Unified Transport Approach for the Assessment of Power-Plant Impact." ORNL/NUREG/ TM-89, Oak Ridge Natl. Lab., Oak Ridge, Tenn. (1977).
22. Ulanowicz, R. E., "Modeling Environmental Stress." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
23. Matis, J. H., and Wehrly, T. E., "Stochastic Models of Compartmental Systems." Biometrics, 35, 199 (1979).
24. Fisher, J. L., "An Entropy-Enthalpy Compensation Law Model Analysis of the Thermal Shock Bioassay Procedure for Certain Species of Fish." In "Cell-Associated Water," W. Drost-Hansen and J. S. Clegg (Eds.), Academic Press, New York (1979).
25. McKenzie, D. H., et al., "The Application of Fisheries Management Techniques to Assessing Impacts." PNL-2811, Battelle Pacific Northwest Labs., Richland, Wash. (1979).
26. "Energy and Environmental Stress in Aquatic Systems." J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
27. "Microbiology of Power Plant Thermal Effluents." R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
28. Jensen, L. D., "Microbiological and Ecological Issues Associated with Condenser

Cooling Entrainment." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
29. Liden, L. H., and Burton, D. T., "Responses of Selected Chesapeake Bay Fish and Invertebrate Species to Natural and Artificial Thermal Increases-A Review of the Literature." PB-290 596, National Technical Information Service, Springfield, Va. (1978).
30. Talmage, S. S., and Coutant, C. C., "Thermal Effects." Jour. Water Poll. Control Fed., 51, 1517 (1979).
31. Hannon, E. H., "Document Collection of Electric Utility Studies Related to Steam Electric Power Station Cooling System Effects on Water Quality and Aquatic Biota." EPRI EA-872, Electric Power Research Institute, Palo Alto, Calif. (1978).
32. Larimore, R. W., et al., "Evaluation of a Cooling Lake Fishery." vols. 1, 2, 3, 4, EPRI EA-1148, Electric Power Research Institute, Palo Alto, Calif. (1979).
33. Lozano, S. J., et al., "Assessment of a Cooling Lake Ecosystem." Technical Report WIS WRC 78-08, Water Resources Center, Univ. Wisconsin, Madison (1978).
34. Lozano, S. J., and Kitchell, J. F., "Response of a Mobile Invertebrate to Heterothermal Conditions." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
35. Campbell, P. H., "Effects of Power-Plant Operation on the Phytoplankton Community of Belews Lake, North Carolina." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
36. Anderson, T. P., and Lenat, D. R., "Effects of Power-Plant Operation on the Zooplankton Community of Belews Lake, North Carolina." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
37. Lenat, D. R., "Effects of Power-Plant Operation on the Littoral Benthos of Belews Lake, North Carolina." In "Energy and, Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
38. Weiss, C. M., and Anderson, T. P., "Belews Lake: A Summary of a Seven Year Study (August 1970-June 1977) to Assess Environmental Effects of a Coal-Fired Power Plant on a Cooling Pond." ESE Publication No. 475, Univ. North Carolina, Chapel Hill (1978).
39. Welch, M. O., and Ward, C. H., "Primary Productivity: Analysis of Variance in a Thermally Enriched Aquatic System." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
40. Oden, B. J., "The Freshwater Littoral Meiofauna in a South Carolina Reservoir Receiving Thermal Effluents." Freshwater Biol., 9, 291 (1979).
41. Hillbricht-Ilkowska, A., and Zdanowski, B., "Effect of Thermal Effluents and Retention Time on Lake Functioning and Ecological Efficiencies in Plankton Communities." Intl. Rev. Gesam. Hydrobiol. (Ger.), 63, 609 (1978).
42. Folsom, T. C., and Clifford, H. F., "The Population Biology of Dugesia tigrina (Platyhelminthes: Turbellaria) in a Thermally Enriched Alberta, Canada Lake." Ecology, 59, 966 (1978).
43. Sigmon, C. F., "Effects of Thermal Loading on Bottom Invertebrates in a South Carolina Reservoir." WRRI Report No. 76, Clemson University, S. C. (1979).
44. Tennessen, K. J., and Miller, J. L., "Effects of Thermal Discharges on Aquatic Insects in the Tennessee Valley." EPA-600/7-78128, TVA/EP-78/09, U. S. Environmental Protection Agency, Washington, D. C. (1978).
45. Mattice, J. S., and Dye, L. L., "Effect of a Steam Electric Generating Station on the Emergence Timing of the Mayfly, Hexagenia bilineata (Say)." Verh. Intl. Ver. Limnol. (Ger.), 20, 1752 (1978).
46. Clugston, J. P., et al., "Reproduction, Growth, and Standing Crops of Yellow Perch in Southern Reservoirs." Amer. Fish. Soc. Spec. Publ., 11, 89, Washington, D. C. (1978).
47. Olmsted, L. L., and Cloutman, D. G., "Life History of the Flat Bullhead, Ictalurus platycephalus, in Lake Norman, North Carolina." Trans. Amer. Fish. Soc., 108, 38 (1979).
48. Mathur, D., et al., "Variations in Fecundity of White Crappie in Conowingo Pond, Pennsylvania." Trans. Amer. Fish. Soc., 108, 548 (1979).
49. Nieman, D. A., and Clady, M. D., "Boomer Lake Investigation." Report, Oklahoma State Univ., Stillwater (1978).
50. Bennett, D. H., "Behavioral Thermoregulation of Largemouth Bass (Micropterus salmoides) in a Reservoir Receiving Thermal Effluent." Arch. Hydrobiol. (W. Ger.), 86, 193 (1979).
51. Bennett, D. H., and Goodyear, C. P., "Response of Mosquitofish to Thermal Effluent." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp
and J. W. Gibbons (Eds.), Technical Information Service, Springfield, Va. (1978).
52. Ames, L. J., et al., "Amounts of Asymmetry in Centrarchid Fish Inhabiting Heated and Nonheated Reservoirs." Trans. Amer. Fish. Soc., 108, 489 (1979).
53. McLean, R. B., et al., "Threadfin Shad Impingement: Effect of Cold Stress on a Reservoir Community." NUREG/CR-0637, ORNL/NUREG/TM-231, Oak Ridge Natl. Lab., Oak Ridge, Tenn. (1979).
54. Logan, B. E., and Masnik, M. T., "Impingement Dynamics and Age and Growth of Selected Species at Lake Dardanelle, A Southcentral Reservoir." NUREG-0601, U. S. Nuclear Regulatory Commission, Washington, D. C. (1979).
55. Fliermans, C. B., et al., "Isolation of Naegleria fowleri from Artificially Heated Water." Jour. Thermal Biol., 4, 303 (1979).
56. Tansey, M. R., and Fliermans, C. B., "Pathogenic Species of Thermophilic and Thermotolerant Fungi in Reactor Efluents of the Savannah River Plant." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
57. Kasweck, K. L., and Fliermans, C. B., "Lactose Variability of Escherichia coli in Thermally Stressed Reactor Effluent Waters." App. Environ. Microbiol., 36, 739 (1978).
58. Kasweck, K. L., "Genetic Variability of Escherichia coli in Thermally Stressed Reactor Effluent Waters." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
59. Gorden, R. W., and Fliermans, C. B., '"Survival and Viability of Escherichia coli in a Thermally Altered Reservoir." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
60. Hazen, T. C., et al., "Prevalence and Distribution of Aeromonas hydrophila in the United States." Appl. Environ. Microbiol., 36, 731 (1978).
61. Hazen, T. C., and Fliermans, C. B., "Distribution of Aeromonas hydrophila in Natural and Man-made Thermal Effluents." Appl. Environ. Microbiol., 38, 166 (1979).
62. Fliermans, C. B., et al., "Aeromonas Distribution and Survival in a Thermally Altered Lake." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
63. Esch, G. W., and Hazen, T. C., "Thermal Ecology and Stress: A Case History for Red-Sore Disease in Largemouth Bass." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W.

Gibbons (Eds.), Technical Information Center, Springfield, Va. (1979).
64. Gorden, R. W., et al., "Isolation of Aeromonas hydrophila from the American Alligator, Alligator mississippiensis." Jour. Wildlife Diseases, 45, 239 (1979).
65. Glassman, A. B., and Bennett, C. E., "Responses of the Alligator to Infection and Thermal Stress." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
66. Jones, J. C., et al., "Biochemical and Morphological Effects of Temperature on Typha latifolia L. (Typhaceae) Originating from Different Ends of a Thermal Gradient. I. Controlled Environmental Studies." Amer. Jour. Bot., 66, 902 (1979).
67. Guthrie, R. K., et al., "The Effects of Coal Ash Basin Effluent and Thermal Loading on Bacterial Populations of Flowing Streams." Environ. Poll., 17, 297 (1978).
68. Cherry, D. S., et al., "The Influence of Coal Ash and Thermal Discharges upon the Distribution and Bioaccumulation of Aquatic Invertebrates." Hydrobiologia (Den.), 62, 257 (1979).
69. McDonald, D. B., and Bernhard, H. F., "Effects of Open and Closed Cycle Condenser Cooling Modes on Bacterial Indicator Organisms." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.). Univ. Iowa Press, Iowa City (1978).
70. Paul, R. W., Jr., et al., "Effects of Thermal Discharge on Leaf Decomposition in a River Ecosystem." Verh. Intl. Ver. Limnol. (Ger.), 20, 1759 (1978).
71. Nourisson, M., and Packa-Tchissambou, B., "The Influence of Temperature on the Evolution of the Population of Freshwater Prawn (Atyaephyra desmaresti Millet) at the Site of la Maxe." Cah. Lab. Hydrobiol. Montereau (Fr.), No. 7, 47 (1978).
72. Beckett, D. C., "Ordination of Macroinvertebrate Communities in a Multistressed River System." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
73. Moss, J. L., et al., "Movement of Three Species of Fishes Past a Thermally Influenced Area in the Coosa River, Alabama." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
74. Squires, L. E., et al., "Algal Response to Thermal Effluent: Study of a Power Station on the Provo River, Utah, USA." Hydrobiologia (Den.), 63, 17 (1979).
75. Martin, C. E., et al., "Changes in the Vegetation of a South Carolina Swamp Following Cessation of Thermal Pollution." Jour. Elisha Mitchell Sci. Soc., 93, 173 (1977).
76. Zeeman, S. I., and Grunewald, R., "SizeFractionated Primary Productivity in Lake Michigan near the Kewaunee Nuclear Power Plant." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
77. Moore, L. F., "Attached Algae at Thermal Generating Stations-The Effect of Temperature on Cladophora." Verh. Intl. Ver. Limnol. (Ger.), 20, 1727 (1978).
78. Spigarelli, S. A., and Thomas, M. M., "Temperature Selection and Estimated Thermal Acclimation by Rainbow Trout (Salmo gairdneri) in a Thermal Plume." Jour. Fish. Res. Bd., Can., 36, 366 (1979).
79. Hein, M. K., and Koppen, J. D., "Effects of Thermally Elevated Discharges on the Structure and Composition of Estuarine Periphyton Diatom Assemblages." Estuarine Coastal Marine Sci., 9, 385 (1979).
80. Kennish, M. J., "Effects of Thermal Discharges on Mortality of Mercenaria mercenaria in Barnegat Bay, New Jersey." Environ. Geology, 2, 223 (1978).
81. Goldman, J. C., and Quinby, H. L., "Phytoplankton Recovery after Power Plant Entrainment." Jour. Water Poll. Control Fed., 51, 1816 (1979).
82. Loftus, M. E., "Respiratory Oxygen Demand of Estuarine Cooling Waters in Indian River, Delaware." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.), Univ. Iowa Press, Iowa City (1978).
83. Peck, B. B., and Warren, R. S., "Nitrate Reductase Activity and Primary Productivity of Phytoplankton Entrained Through a Nuclear Power Station on Northeastern Long Island Sound." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
84. Vadas, R. L., et al., "Effects of Reduced Temperatures on Previously Stressed Populations of an Intertidal Alga." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
85. Keser, M., et al., "Growth and Ecology of Spartina alterniflora in Maine after a Reduction in Thermal Stress." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
86. Jennison, B. L., "Effects of Thermal Effluents on Reproduction in a Sea Anemone." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
87. Hines, A. H., "Effects of a Thermal Discharge on Reproductive Cycles in Mytilus edulis and Mytilus californianus (Mollusca, Bivalvia)." Fishery Bull., 77, 498 (1979).
88. Shapot, R. M., "Initial Power Plant Effects on Fish Distribution in a Small Florida Estuary." TAMU-SG-79-101, In "Proc. Third Ann. Tropical \& Subtropical Fish. Tech. Conf. Americas," Texas A\&M Univ., College Station (1978).
89. Alden, R. W., "Effects of a Thermal Discharge on the Mortality of Copepods in a Subtropical Estuary." Environ. Poll., 20, 3 (1979).
90. Thorhaug, A., et al., "Biological Effects of Power-Plant Thermal Eflluents in Card Sound, Florida." Environ. Conservation, 6, 127 (1979).
91. Thorhaug, A., "The Flowering and Fruiting of Restored Thalassia Beds: A Preliminary Note." Aquatic Botany, 6, 189 (1979).
92. Grovhoug, J. G., "Marine Environmental Assessment at Three Sites in Pearl Harbor, Oahu, August-October 1978." NOSC TR 441, Naval Ocean Systems Center, San Diego, Calif. (1979).
93. Bayne, B. L., and Widdows, J., "The Physiological Ecology of Two Populations of Mytilus edulis L." Oecologia (Ger.), 37, 137 (1978).
94. Möller, H., "Ecological Effects of Cooling Water of a Power Plant at Kiel Fjord." Meeresforsch. (Ger.), 26, 117 (1977/78).
95. Bourgade, B., "Impact of Thermal Eflluents on the Phytoplankton Populations near the E.D.F. Martigues-Ponteau Electric Power Plant." Tethys (Fr.), 8, 47, 1976 (1977).
96. Benon, P., "Effects of Warm Water Effluents from the E.D.F. Martigues-Ponteau Power Plant on Zooplankton Populations." Tethys (Fr.), 8, 63, 1976 (1977).
97. Alston, D. E., et al., "Effects of Thermal Alteration on Macroinvertebrate Fauna in Three Artificial Channels." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
98. Hughes, R. M., "Temperature, Interspecific Competition, and the Production of Juvenile Salmonids in Experimental Stream Communities." Ph. D. Thesis, Oregon State Univ., Corvallis (1979).
99. Wrenn, W. B., and Forsythe, T. D., "Effects of Temperature on Production and Yield of Juvenile Walleyes in Experimental Eco-
systems." Amer. Fish. Soc. Spec. Publ. 11, 66, Washington, D. C. (1978).
100. Donze, M., "Measurements of the Effect of Heating on Survival and Growth of Natural Plankton Populations." Verh. Intl. Ver. Limnol. (Ger.), 20, 1822 (1978).
101. Simpson, P. D., "The Growth Rate of Mychonastes ruminatus Simpson et Van Valkenburg under Various Light, Temperature and Salinity Regimes." Brit. Phycol. Jour., 13, 291 (1978).
102. Bolze, A., "On the Influence of CO_{2} Supply, Light Intensity, and Temperature on the Concentration of Extracellular Organic Substance in Synchronous Cultures of Scenedesmus acutus." Arch. Hydrobiol. (Ger.)/Suppl. 51, 441 (1978).
103. Hanisak, M. D., "Growth Patterns of Codium fragile ssp. tomentosoides in Response to Temperature, Irradiance, Salinity, and Nitrogen Source." Marine Biol. (W. Ger.), 50, 319 (1979).
104. Hanisak, M. D., and Harlin, M. M., "Uptake of Inorganic Nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta)." Jour. Phycol., 14, 450 (1978).
105. Meinesz, A., "Contribution to the Study of Caulerpa prolifera (Forsskal) Lamouroux (Chlorophyceae, Caulerpales). II. Sexual Reproduction Along the Western Mediterranean Coast." Botanica Marina, 22, 117 (1979).
106. Konopka, A., and Brock, T. D., "Effect of Temperature on Blue-Green Algae (Cyanobacteria) in Lake Mendota." Appl. Environ. Microbiol., 36, 572 (1978).
107. Krüger, G. H., and Eloff, J. N., "The Effect of Temperature on Specific Growth Rate and Activation Energy of Microcystis and Synechococcus Isolates Relevant to the Onset of Natural Blooms." Jour. Limnol. Soc. South Africa, 4, 9 (1978).
108. Miyamoto, K., et al., "Nitrogen Fixation by Thermophilic Blue-Green Algae (Cyanobacteria) : Temperature Characteristics and Potential Use in Biophotolysis." Appl. Environ. Microbiol., 37, 454 (1979).
109. Brand, J. J., et al., "Chill-Induced Morphological Alterations in Anacystis nidulans as a Function of Growth Temperature." Planta (W. Ger.), 145, 63 (1979).
110. Sato, N., et al., "Effect of Growth Temperature on Lipid and Fatty Acid Compositions in the Blue-Green Algae, Anabaena variabilis and Anacystis nidulans." Biochim. Biophy. Acta, 572, 19 (1979).
111. Ono, T., and Murata, N., "Temperature Dependence of the Photosynthetic Activities in the Thylakoid Membranes from the Blue-Green Alga Anacystis nidulans." Biochim. Biophy. Acta, 545, 69 (1979).
112. Mickelson, M. J., et al., "Nutrient-Determined Dominance in Multispecies Chemo-
stat Cultures of Diatoms." Limnol. d Oceanog., 24, 298 (1979).
113. Yoder, J. A., "A Comparison Between the Cell Division Rate of Natural Populations of the Marine Diatom Skeletonema costatum (Grevelle) Cleve Grown in Dialysis Culture and That Predicted from a Mathematical Model." Limnol. \& Oceanog., 24, 97 (1979).
114. Yoder, J. A., "Modeling the Effect of Light Intensity and Temperature on the Growth Rate and Biomass of Skeletonema costatum (Bacillariophyceae) and Other Diatoms." Ph. D. Thesis, Univ. Rhode Island, Kingston (1979).
115. Medlin, L. K., and Wilson, W. B., "Effects of Temperature and Salinity on the Growth of the Benthic Diatom Nitzschia ovalis Arnott (Bacillariophyceae)." Contrib. Marine Sci., 22, 127 (1979).
116. Daste, P., et al., "Effects of Thermal and Chemical Factors Caused by Condenser Water and Nuclear Power Stations on Four Phytoplankters Cultured in Vitro." C.R. Acad. Sci., Series D (Fr.), 286, 1911 (1978).
117. Tomas, C. R., "Olisthodiscus luteus (Chrysophyceae) II. Formation and Survival of a Benthic Stage." Jour. Phycol., 14, 314 (1978).
118. Bowen, M. S., and Ward, H. B., "Laboratory Culture of Cryptomonas ovata and Chroomonas sp. (Cryptophyceae)." Microbios Letters, 6, 77 (1978).
119. Weiler, C. S., and Eppley, R. W., "Temporal Pattern of Division in the Dinoflagellate Genus Ceratium and Its Application to the Determination of Growth Rate." Jour. Exp. Mar. Biol. Ecol. (Neth.), 39, 1 (1979).
120. Anderson, D. M., and Morel, F. M., "The Seeding of Two Red Tide Blooms by the Germination of Benthic Gonyaulax tamarensis Hypnocysts." Estuarine Coastal Marine Sci., 8, 279 (1979).
121. Kilar, J. A., and Mathieson, A. C., "Ecological Studies of the Annual Red Alga Dumontia incrassata (O. F. Müller) Lamouroux." Botanica Marina, 21, 423 (1978).
122. Lehnberg, W., "The Effect of a Temperature-Salinity-Light Complex on the Oxygen Exchange of Delesseria sanguinea (Rhodophyta) from the Western Baltic." Botanica Marina, 21, 485 (1978).
123. Kremer, B. P., "Aspects of CO_{2} Fixation in Some Freshwater Rhodophyceae." Phycologia 17, 430 (1978).
124. Harlin, M. M., and Craigie, J. S., "Nitrate Uptake by Laminaria longicruris (Phaeophyceae)." Jour. Phycol., 14, 464 (1978).
125. Chock, J. S., and Mathieson, A. C., "Physiological Ecology of Ascophyllum nodosum (L.) LeJolis and Its Detached Ecad scor-
pioides (Hornemann) Hauck (Fucales, Phaeophyta)." Botanica Marine, 22, 21 (1979).
126. Druehl, L. D., "The Distribution of Macrocystis integrifolia in British Columbia as Related to Environmental Parameters." Can. Jour. Bot., 56, 69 (1978).
127. Makarewicz, J. C., et al., "Changes in the Apparent Temperature Optima of the Plankton of Lake Michigan at Chicago, Illinois." Jour. Fish. Res. Bd. Can., 36, 1169 (1979).
128. Baker, A. L., and Baker, K. K., "Effects of Temperature and Current Discharge on the Concentration and Photosynthetic Activity of the Phytoplankton in the Upper Mississippi River." Freshwater Biol., 9, 191 (1979).
129. Sumner, W. T., and Fisher, S. G., "Periphyton Production in Fort River, Massachusetts." Freshwater Biol., 9, 205 (1979).
130. Campbell, P. J., "Primary Productivity of a Hypersaline Antarctic Lake." Aust. Jour. Mar. Freshwater Res., 29, 717 (1978).
131. Sharitz, R. R., and Luvall, J. C., "Growth of Duckweed Under Constant and Variable Temperatures." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
132. Moeller, R. E., "Carbon-Uptake by the Submerged Hydrophyte Utricularia purpurea." Aquatic Botany, 5, 209 (1978).
133. Minasian, L. L., "The Effect of Exogenous Factors on Morphology and Asexual Reproduction in Laboratory Cultures of the Intertidal Sea Anemone, Haliplanella luciae (Verrill) (Anthozoa: Actiniaria) from Delaware." Jour. Exp. Mar. Biol. Ecol. (Neth.), 40, 235 (1979).
134. O'Connor, C., et al., "Environmental Influences on Histological Changes in the Reproductive Cycle of Four New South Wales Sea Urchins." Aquaculture, 15, 1 (1978).
135. Mann, R., "The Effect of Temperature on Growth, Physiology, and Gametogenesis in the Manila Clam Tapes philippinarum (Adams \& Reeve, 1850)." Jour. Exp. Mar. Biol. Ecol. (Neth.), 38, 121 (1979).
136. Pechenik, J. A., "Winter Reproduction in the Gastropod Nassarius trivittatus." Veliger, 21, 297 (1978).
137. Sarvala, J., "A Parthenogenetic Life Cycle in a Population of Canthocamptus staphylinus (Copepoda, Harpacticoida)." Hydrobiologia (Den.), 62, 113 (1979).
138. Mocquard, J. P., et al., "Influence of Salinity and Temperature on the Fecundity of Fe males and the Intersexuality of Idotea balthica stagnea Tinturier-Hamelin (Valvi-
fera Isopoda)." Soc. Zool. France, 103, 47 (1978).
139. Mocquard, J. P., et al., "Action of Temperature and Photoperiod on the Induction of Particular Molts in the Females of Porcello dilatatus Brandt (Crustacea Isopoda Oniscoidea)." Arch. Zool. Exp. Gen. (Fr.), 119, 409 (1978).
140. O'Connor, C., "Reproductive Periodicity of a Penaeus esculentus Population near Low Islets, Queensland, Australia." Aquaculture, 16, 153 (1979).
141. Gillet, C., et al., "Seasonal Effects of Exposure to Temperature and Photoperiod Regimes on Gonad Growth and Plasma Gonadotropin in Goldfish (Carassius auratus)." Ann. Biol. Anim. Biochim. Biophys., 18, 1045 (1978).
142. Kennedy, J. L., and Kucera, P. A., "The Reproductive Ecology of the Tahoe Sucker, Catostomus tahoensis, in Pyramid Lake, Nevada." Great Basin Naturalist, 38, 181 (1978).
143. Prokes, M., and Penaz, M., "The Course of Spawning, Early Development and Longitudinal Growth of the Nase Carp, Chondrostoma nasus, in the Rokytna and Jihlava Rivers." Folia Zool., 27, 269 (1978).
144. Gerking, S. D., et al., "Effects of GenerationLong Temperature Acclimation on Reproductive Performance of the Desert Pupfish, Cyprinodon n. nevadensis." Physiol. Zool., 52, 113 (1979).
145. Girin, M., and Devauchelle, N., "Shift in the Reproductive Period of Saltwater Fish Using Shortened Photoperiod and Temperature Cycles." Ann. Biol. Anim. Biochim. Biophys., 18, 1059 (1978).
146. Brewer, G. B., "Reproduction and Spawning of the Northern Anchovy, Engraulis mordax, in San Pedro Bay, California." Calif. Fish \& Game, 64, 175 (1978).
147. Shikhshabekov, M. M., "The Sexual Cycles of the Catfish, Silurus glanis, the Pike, Esox lucius, the Perch, Perca fluviatilis, and the Pike-Perch, Lucioperca lucioperca." Jour. Ichthyol., 18, 457 (1978).
148. Miles, R. L., "A Life History Study of the Muskellunge in West Virginia." Amer. Fish. Soc. Spec. Publ. 11, 140, Washington, D. C. (1978).
149. Kucera, P. A., "Reproductive Biology of the Tui Chub, Gila bicolor, in Pyramid Lake, Nevada." Great Basin Naturalist, 38, 203 (1978).
150. Arnold, C. R., et al., "Spawning of Red Snapper (Lutianus campechanus) in Captivity." Aquaculture, 15, 301 (1978).
151. Poole, B. M., "Off-Season Spawning of At'lantic Silversides." Progressive Fish Culturist, 40, 72 (1978).
152. Jackson, U. T., "Controlled Spawning of Largemouth Bass." Progressive Fish Culturist, 41, 90 (1979).
153. West, G., and Leonard, J., "Culture of Yellow Perch with Emphasis on Development of Eggs and Fry." Amer. Fish. Soc. Spec. Publ. 11, 172, Washington, D. C. (1978).
154. Gray, R. H., and Dauble, D. D., "Biology of the Sand Roller in the Central Columbia River." Trans. Amer. Fish. Soc., 108, 646 (1979).
155. Tsunikova, E. P., "Ecological Characteristics of the Liman Period of Life of the Taran, Rutilus rutilus heckeli." Ekologiya, Soviet Jour. Ecol., 9, 84 (1978).
156. Schmidt, S. P., and House, E. W., "Precocious Sexual Development in HatcheryReared and Laboratory-Maintained Male Steelhead Trout (Salmo gairdneri)." Jour. Fish. Res. Bd. Can., 36, 90 (1979).
157. Fitz, R. B., and Holbrook, J. A., "Sauger and Walleye in Norris Reservoir, Tennessee." Amer. Fish Soc. Spec. Publ. 11, 82, Washington, D. C. (1978).
158. Heitkamp, U., "Autecology of Opistomum pallidum O. Schmidt, 1848, a Turbellarian Species of Astatic Freshwater Biota." Intl. Rev. Gesamten Hydrobiol. (Ger.), 63, 247 (1978).
159. Ruttner-Kolisko, A., "Influence of Fluctuating Temperature on Plankton Rotifers. II. Laboratory Experiments." Verh. Intl. Ver. Limnol. (Ger.), 20, 2400 (1978).
160. Inamori, Y., and Kurihara, Y., "Analysis of the Environmental Factors Affecting the Life of the Brackish Polychaete, Neanthes japonica (Izuka). II. Thermal and Salty Conditions Required for Development and Growth." Bull. Mar. Biol. St. Asamushi, Tohoku Univ. (Jap.), 16, 101 (1979).
161. Dehnel, P. A., and Kong, D. C., "The Effect of Temperature on Developmental Rates in the Nudibranch Cadlina luteomarginata." Can. Jour. Zool., 57, 1835 (1979).
162. Cooley, J. M., "The Effect of Temperature on the Development of Diapausing and Subitaneous Eggs in Several Freshwater Copepods." Crustaceana, 35, 27 (1978).
163. Jacobs, R. P., and Bouwhuis, A. M., "The Year Cycle of Eudiaptomus vulgaris (Schmeil, 1896) (Copepoda, Calanoida) in a Small, Acid Water Body during 1973. Development in the Natural Habitat and Relationships Between Temperature and Duration of Development Stages." Hydrobiologia (Den.), 64, 17 (1979).
164. Keen, R., "Effects of Fluctuating Temperature on Duration of Egg Development of Chydorus sphaericus (Cladocera, Crustacea)." Jour. Thermal Biol., 4, 5 (1979).
165. Scott, S. R., and Grigarick, A. A., "Laboratory Studies of Factors Affecting Egg Hatch of Triops longicaudatus (Leconte)
(Notostracea: Triopsidae)." Hydrobiologia (Den.), 63, 145 (1979).
166. Ratte, H. T., "Diurnal Vertical Migration: Effects of Thermo- and Photoperiods on Chaoborus crystallinus de Greer (Diptera, Chaoboridae)." Arch. Hydrobiol. (Ger.)/ Suppl. 57, 1 (1979).
167. Humpesch, U., "Preliminary Notes on the Effect of Temperature and Light-Condition on the Time of Hatching in Some Heptageniidae (Ephemeroptera)." Verh. Intl. Ver. Limnol. (Ger.), 20, 2605 (1978).
168. Friesin, M. K., et al., "Effects of Temperature and Cold Storage on the Development Time and Viability of Eggs of the Burrowing Mayfly Hexagenia rigida (Ephemeroptera: Ephemeridae)." Can. Entomol., 111, 665 (1979).
169. Newell, R. L., and Minshall, G. W., "Life History of a Multivoltine Mayfly, Tricorythodes minutus: An Example of the Effect of Temperature on the Life Cycle." Ann. Entomol. Soc. Amer., 71, 876 (1978).
170. Nikol'skaya, N. G., and Sytina, L. A., "A Comparative Analysis of the Action of Constant Temperatures on the Embryonic Development of Four Species of Sturgeons." Jour. Ichthyol., 18, 86 (1978).
171. Griffiths, J. S., "Potential Effects of Unstable Thermal Discharges on Incubation of Lake Whitefish Eggs." Report No. 79-521-K, Ontario Hydro, Canada (1979).
172. Coombs, S. H., and Hiby, A. R., "The Development of the Eggs and Early Larvae of Blue Whiting, Micromesistius poutassou and the Effect of Temperature on Development." Jour. Fish. Biol., 14, 111 (1979).
173. McCormick, J. H., "Effects of Temperature on Hatching Success and Survival of Larvae in the White Bass." Progressive Fish Culturist, 40, 133 (1978).
174. Craig, J. F., et al., "Estimates of the Numbers, Biomass and Year-Class Strengths of Perch (Perca fluviatilis L.) in Windermere from 1967 to 1977 and Some Comparisons with Earlier Years." Jour. Animal Ecol., 48, 315 (1979).
175. Rajagopal, P. K., "The Embryonic Development and the Thermal Effects on the Development of the Mountain Whitefish, Prosopium williamsoni (Girard)." Jour. Fish Biol., 15, 153 (1979).
176. Gunnes, K., "Survival and Development of Atlantic Salmon Eggs and Fry at Three Different Temperatures." Aquaculture, 16, 211 (1979).
177. Laybourn, J., "The Effects of Temperature on the Respiration and Production of the Freshwater Nematode Anonchus sp." Oecologia (Ger.), 41, 329 (1979).
178. Lucas, J. S., and Costlow, J. D., Jr., "Effects of Various Temperature Cycles on the

Larval Development of the Gastropod Mollusc Crepidula fornicata." Marine Biol. (W. Ger.), 51, 111 (1978).
179. Abolmasova, G. I., "Growth and Production in Gammarus olivii at Different Temperatures." Biol. Moria (USSR), 3, 26 (1978).
180. Wattiez, C., "Development, Growth and Fecundity of Cladocerans as a Function of Temperature and Trophic Level. Experiments in Situ in Two Ponds." Hydrobiologia (Den.), 63, 263 (1979).
181. Vidal, J., "Effects of Phytoplankton Concentration, Temperature, and Body Size on Rates of Physiological Processes and Production Efficiency of the Marine Planktonic Copepods, Calanus pacificus Brodsky and Pseudocalanus sp." Ph.D. Thesis, Univ. Wash., Seattle (1978).
182. Fleeger, J. W., "Population Dynamics of Three Estuarine Meiobenthic Harpacticoids (Copepoda) in South Carolina." Marine Biol. (W. Ger.), 52, 147 (1979).
183. Pezzack, D. S., and Corey, S., "The Life History and Distribution of Neomysis americana (Smith) (Crustacea, Mysidacea) in Passamaquoddy Bay." Can. Jour. Zool., 57, 785 (1979).
184. Gaudy, R., and Guerin, J. P., "Comparative Ecophysiology of the Mysidaceans Hemimysis speluncola Ladoyer (Cavernicole) and Leptomysis lingvura G. O. Sars (Non Cavernicole). Effects of Temperature on Growth During Breeding." Jour. Exp. Mar. Biol. Ecol. (Neth.), 38, 101 (1979).
185. Rothlisberg, P. C., "Combined Effects of Temperature and Salinity on the Survival and Growth of the Larvae of Pandalus jordani (Decapoda: Pandalidae)." Marine Biol. (W. Ger.), 54, 125 (1979).
186. Omori, M., "Growth, Feeding, and Mortality of Larval and Early Postlarval Stages of the Oceanic Shrimp Sergestes similis Hansen." Limnol. \& Oceanog., 24, 273 (1979).
187. Cornacchia, J. W., "The Effects of Temperature on the Growth and Survival of Larval and Juvenile Crayfish (Pacifastacus leniusculus)." Master's thesis, Univ. Calif., Davis; PB-288 434 NTIS, Springfield, Va. (1978).
188. Sastry, A. N., "Metabolic Adaptation of Cancer irroratus Developmental Stages to Cyclic Temperatures." Marine Biol. (W. Ger.), 51, 243 (1979).
189. Rosenberg, R., and Costlow, J. D., Jr., "Delayed Response to Irreversible Non-genetic Adaptation to Salinity in Early Development of the Brachyuran Crab (Rhithropanopeus harrisii, and Some Notes on Adaptation to Temperature." Ophelia, 18, 97 (1979).
190. Parker, B. M., "Development of the Mosquito Aedes dorsalis (Diptera: Culicidae) in Relation to Temperature and Salinity." Ann. Entomol. Soc. Amer., 72, 105 (1979).
191. Wartinbee, D. C., "Diel Emergence Patterns of Lotic Chironomidae." Freshwater Biol., 9, 147 (1979).
192. Neves, R. J., "Seasonal Succession and Diversity of Stoneflies (Plecoptera) in Factory Brook, Massachusetts." New York Entomol. Soc., 86, 144 (1978).
193. Sandrock, F., "A Comparison of the Insects Emerging from Two Brooks in the Region of Schlitz (Breitenbach and Rohrwiesenbach 1970-1971)." Arch. Hydrobiol. (Ger.)/Suppl. 54, 3, 328 (1978).
194. Schroeder, L. A., and Reeder, P. S., "Effects of Temperature and Fasting on the Rate of Sinking of Hydra oligactis." Limnol. d Oceanog., 24, 1092 (1979).
195. Shostak, S., et al., "Tentacle Number in Cultured Hydra viridis." Biol. Bull., 155, 220 (1978).
196. Kobayakawa, Y., and Satoh, N., "Induction of the Wrinkled Blastula Formation in the Starfish, Asterina pectinifera, by Modified Developmental Conditions." Biol. Bull., 155, 150 (1978).
197. Olla, B. L., and Samet, C., "Effects of Elevated Temperature on Early Embryonic Development of the Tautog, Tautoga onitis." Trans. Amer. Fish. Soc., 107, 820 (1978).
198. Phillips, J. W., "The Embryological Effects of Elevated Thermal Time-Excess Histories on the American Shad, Alosa sapidissima (Wilson)." Ph.D. thesis, Univ. Mass., Amherst (1978).
199. Threlkeld, S. T., "The Midsummer Dynamics of Two Daphnia "Species in Wintergreen Lake, Michigan." Ecology, 60, 165 (1979).
200. Brandt, S. B., "Thermal Ecology and Abundance of Alewife (Alosa pseudoharengus) in Lake Michigan." Ph.D. thesis, Univ. Wisconsin, Madison (1978).
201. Neves, R. J., and Depres, L., "The Oceanic Migration of American Shad, Alosa sapidissima, Along the Atlantic Coast." Fishery Bull., 77, 199 (1979).
202. Ehrlich, K. F., et al., "Temperature Selection by Young Topsmelt: Laboratory and Field Investigations." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
203. Ehrlich, K. F., "Thermal Behavioral Responses of the Speckled Sanddab, Citharichthys stigmaeus: Laboratory and Field Investigations." Fishery Bull., 76, 867 (1979).
204. Overholtz, W. J., et al., "Hypolimnion Oxygenation and Its Effects on the Depth Distribution of Rainbow Trout (Salmo gairdneri) and Gizzard Shad (Dorosoma cepedianum)." Trans. Amer. Fish. Soc., 106, 371 (1978).
205. Casselman, J. M., "Effects of Environmental Factors on Growth, Survival, Activity, and Exploitation of Northern Pike." Amer. Fish. Soc. Spec. Publ. 11, 114, Washington, D. C. (1978).
206. Winkler, P., "Thermal Preference of Gambusia affinis affinis as Determined Under Field and Laboratory Conditions." Copeia, No. 1, 60 (1979).
207. Vigg, S., "Vertical Distribution of Adult Fish in Pyramid Lake, Nevada." Great Basin Naturalist, 38, 417 (1978).
208. Kobylinski, G. J., and Sheridan, P. F., "Distribution, Abundance, Feeding and Longterm Fluctuations of Spot, Leiostomus xanthurus, and Croaker, Micropogonias undulatus, in Apalachicola Bay, Florida, 1972-1977." Contrib. Marine Sci., 22, 149 (1979).
209. Matthews, W. J., and Hill, L. G., "Influence of Physico-Chemical Factors on Habitat Selection by Red Shiners, Notropis lutrensis (Pisces: Cyprinidae)." Copeia, No. 1, 70 (1979).
210. Matthews, W. J., and Hill, L. G., "AgeSpecific Differences in the Distribution of Red Shiners, Notropis lutrensis, Over Physiological Ranges." Amer. Midland Naturalist, 101, 366 (1979).
211. Kelso, J. R., "Diel Rhythm in Activity of Walleye, Stizostedion vitreum vitreum." Jour. Fish Biol., 12, 593 (1978).
212. Surdick, R. F., and Gaufin, A. R., "Environmental Requirements and Pollution Tolerance of Plecoptera." EPA-600/4-78-062, U. S. Environmental Protection Agency, Cincinnati, Ohio. National Technical Information Service, Springfield, Va. (1978).
213. Bretthauer, R., "Some Ecological Limits of Tolerance of Ochromonas sociabilis." Verh. Intl. Ver. Limnol. (Ger.), 20, 1850 (1978).
214. Tsukuda, H., and Ogoshi, K., "Heat and Cold Tolerance of the Planarian, Dugesia japonica, in Relation to Acclimation Temperature." Ann. Zool. Jap., 51, 70 (1978).
215. Klöckner, K., "On the Ecology of Pomatoceros triqueter (Serpulidae, Polychaeta). II. Influence of Temperature on Tolerance, Regeneration of the Tube, Oxygen Consumption and Filtration Activity." Helgolander Wiss. Meeresunters (Ger.), 31, 257 (1978).
216. Mestrov, M., et al., "Effects of Temperature on Dominant Macrozoobenthos Species of the River Sava under Laboratory Condi-
tions." Verh. Intl. Ver Limnol. (Ger.), 20, 1910 (1978).
217. Agius, C., et al., "Growth Trials of Crassostrea gigas and Ostrea edulis in Inshore Waters of Malta (Central Mediterranean)." Aquaculture, 15, 195 (1978).
218. Wallis, R. L., "Thermal Tolerance of Estuarine Bivalves: Inter-Relationships of Laiooratory and Field Studies at Thermal Power Stations in Australia." Ph. D. thesis, Univ. New South Wales, Austl.; Dissertation Abs., 40, 1083-B (1979).
219. Anderson, G., "Metabolic Rate, Temperature Acclimation and Resistance to High Temperature of Soft-Shell Clams, Mya arenaria, as Affected by Shore Level." Comp. Biochem. Physiol., 61A, 433 (1978).
220. Murphy, D. J., "A Comparative Study of the Freezing Tolerances of the Marine Snails Littorina littorea (L.) and Nassarius obsoletus (Say)." Physiol. Zool., 52, 219 (1979).
221. Sander, F., and Moore, E., "Temperature and Salinity Tolerance Limits of the Marine Gastropod Murex pomum." Comp. Biochem. Physiol., 64A, 285 (1979).
222. Ford, R. F., et al., "Effects of Thermal Effluent on Benthic Marine Invertebrates Determined from Long-Term Simulation Studies." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
223. Cheper, N. J., "The Effect of Temperature on Lirceus brachyurus (Crustacea: Isopoda)." Ph. D. thesis, Univ. of Tenn., Knoxville (1979).
224. Bradley, B. P., "Genetic and Physiological Flexibility of a Calanoid Copepod in Thermal Stress." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
225. Bradley, B. P., "Genetic and Physiological Adaptation of the Copepod Eurytemora affinis to Seasonal Temperatures." Genetics, 90, 193 (1978).
226. Craddock, D. R., "Effect of Thermal Increases of Short Duration on Survival of Euphausia pacifica." Fishery Bull., 76, 895 (1979).
227. Guest, W. C., and Durocher, P. P. "Palaemonid Shrimp, Macrobrachium amazonicum: Effects of Salinity and Temperature on Survival." Progressive Fish Culturist, 41, 14 (1979).
228. Chung, K. S., and Strawn, K., "Stochastic Approach to Predict Survival of Estuarine Animals Exposed to Hot Discharge Eflluent." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
229. Silverthorn, S. U., and Reese, A. M., "Cold Tolerance at Three Salinities in Post-larval Prawns, Macrobrachium rosenbergii (De Man)." Aquaculture, 249, (1978).
230. Prentice, E. F., and Schneider, D. E., "Respiration and Thermal Tolerance of the Dungeness Crab, Cancer magister Dana." Comp. Biochem. Physiol., 63A, 591 (1979).
231. Macey, D. J., and Potter, I. C., "Lethal Temperatures of Ammocoetes of the Southern Hemisphere Lamprey, Geotria australis Gray." Environ. Biol. Fish., 3, 241 (1978).
232. Kellogg, R. L., et al., "Effects of Acute and Chronic Thermal Exposures on the Eggs of Three Hudson River Anadromous Fishes." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
233. Koo, T. S., "Effects of Time-Temperature Treatments on Fish Eggs and Larvae." PPRP-34, Power Plant Siting Program, Univ. of Maryland (1979).
234. Hettler, W. F., and Colby, D. R., "Alteration of Heat Resistance of Atlantic Menhaden, Brevoortia tyrannus, by Photoperiod." Comp. Biochem. Physiol., 63A, 141 (1979).
235. Hoyland, J., et al., "Thermal Limits for Behavioral Function and Resistance Adaptation of Goldfish, Carassius auratus L." Jour. Comp. Physiol., 129, 241 (1979).
236. Greges, M. P., and Schubel, J. R., "Thermal Resistance of Weakfish Eggs and Larvae." Spec. Rep. 22, Marine Sciences Research Center, State Univ. of N. Y., Stony Brook (1979).
237. Smith, C. F., et al., "Thermal Resistance Characteristics of Early Life History Stages of Finfish from Long Island Waters." Spec. Rep. 26, Marine Sciences Research Center, State Univ. of N. Y., Stony Brook (1979).
238. Al-Habbib, O. A., and Al-Habbib, W. M., "Acclimation to Temperature and Death at High Changing Lethal Temperatures in Cyprinion macrostomus (Heckel)." Jour. Thermal Biol., 4, 75 (1979).
239. Gehlbach, F. R., et al., "Thermal Ecological Features of Cyprinodon elegans and Gambusia nobilis, Endangered Texas Fishes." Texas Jour. Sci., 30, 99 (1978).
240. Bonin, J. D., "Temperature Tolerance of Juvenile Muskellunge Reared under Hatchery Conditions." N. Y. Fish \& Game Jour., 26, 95 (1979).
241. Vasal, S., and Sundararaj, B. I., "Thermal Tolerance and Preference of the Indian Catfish Heteropneustes fossilis." Environ. Biol. Fish., 3, 309 (1978).
242. Campbell, R. D., and Branson, B. A., "Ecology and Population Dynamics of the Black Bullhead, Ictalurus melas (Rafinesque),
in Central Kentucky." Tulane Studies Zool. Bot., 20, 99 (1978).
243. Hartwell, S. I., and Hoss, D. E., "Thermal Shock Resistance of Spot (Leiostomus xanthurus) after Acclimation to Constant or Cycling Temperature." Trans. Amer. Fish. Soc., 108, 397 (1979).
244. Becker, C. D., and Genoway, R. G., "Evaluation of the Critical Thermal Maximum for Determining Thermal Tolerance of Freshwater Fish." Environ. Biol. Fish., 4, 245 (1979).
245. Oliver, J. D., et al., "Overwinter Mortality of Fingerling Smallmouth Bass in Relation to Size, Relative Energy Stores, and Environmental Temperature." Trans. Amer, Fish. Soc., 108, 130 (1979).
246. Cox, D. K., "Acclimation States of Juvenile Striped Bass Held in Constant and Fluctuating Temperature Regimes." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
247. Willemsen, J., "Influence of Temperature on Feeding, Growth and Mortality of Pikeperch and Perch." Verh. Intl. Ver. Limnol. (Ger.), 20, 2127 (1978).
248. Tolksdorf, W., "The Influence of Salinity and Temperature on Growth, Metabolism and Lethal Temperature of the Sandy Goby Pomatoschistus microps K." Meeresforsch. (Ger.), 26, 15, (1977/78).
249. Golden, J. T., "The Effects of Fluctuating Temperatures on the Lethal Tolerance Limits of Coastal Cutthroat Trout (Salmo clarki)." AFS-58-7, Oregon Department of Fish and Wildlife, Portland (1978).
250. Kaya, C. M., "Thermal Resistance of Rainbow Trout from a Permanently Heated Stream, and of Two Hatchery Strains." Progressive Fish Culturist, 40, 138 (1978).
251. Gilmore, R. G., et al., "Hypothermal Mortality in Marine Fishes of South-Central Florida January, 1977." Northeast Gulf Sci., 2, 77 (1978).
252. Brandt, E., "Adaptations of Tubifex tubifex Müller (Annelida, Oligochaeta) to Temperature, Oxygen Tension and Nutritional Conditions." Arch. Hydrobiol. (Ger.), 84, 302 (1978).
253. DeFur, P. L., and Mangum, C. P., "The Effects of Environmental Variables on the Heart Rates of Invertebrates." Comp. Biochem. Physiol., 62A, 283 (1979).
254. Dye, A. H., "The Effect of Acute and Long Term Temperature Changes on the Respiration of Two Sand-Dwelling Bivalves." Comp. Biochem. Physiol., 63A, 405 (1979).
255. McMahon, R. F., "Response to Temperature and Hypoxia in the Oxygen Consumption of the Introduced Asiatic Freshwater Clam Corbicula fluminea (Müller)." Comp. Biochem. Physiol., 63A, 383 (1979).
256. Pamatmat, M. M., "Anaerobic Heat Production of Bivalves (Polymesoda caroliniana and Modiolus demissus) in Relation to Temperature, Body Size, and Duration of Anoxia." Marine Biol. (W. Ger.), 53, 223 (1979).
257. Brown, A. C., and Da Silva, F. M., "The Effects of Temperature on Oxygen Consumption in Bullia digitalis Meuschen (Gastropoda, Nassaridae)." Comp. Biochem. Physiol., 62A, 573 (1979).
258. Houlihan, D. F., "Respiration in Air and Water of Three Mangrove Snails." Jour. Exp. Mar. Biol. Ecol. (Neth.), 41, 143 (1979).
259. Hawkins, M. J., and Ultsch, G. R., "Oxygen Consumption in Two Species of Freshwater Snails (Goniobasis): Effects of Temperature and Ambient Oxygen Tension." Comp. Biochem. Physiol., 63A, 369 (1979).
260. Harrison, P. T., "Some Seasonal and Labora-tory-Induced Changes in the Oxygen Consumption of the Freshwater Pulmonate Lymnaea stagnalis (L.)." Jour. Thermal. Biol., 4, 137 (1979).
261. Armitage, K. B., and Lei, C. H., "Temperature Acclimatization in the Filtering Rates and Oxygen Consumption of Daphnia ambigua Scourfield." Comp. Biochem. Physiol., 62A, 807 (1979).
262. Sigmon, C., "Oxygen Consumption in Daphnia pulex Exposed to 2,4-D or 2,4,5,-T." Bull. Environ. Contam. Toxicol., 21, 822 (1979).
263. Fernandez, F., "Metabolism and Feeding in Planktonic Copepods from the Mediterranean: The Effects of Temperature." Invest. Pesq. (Sp.), 42, 97 (1978).
264. Epp, R. W., and Lewis, W. M., Jr., "Metabolic Responses to Temperature Change in a Tropical Freshwater Copepod (Mesocyclops brasilianus) and Their Adaptive Significance." Oecologia (Ger.), 42, 123 (1979).
265. Teare, M., and Price, R., "Respiration of the Meiobenthic Harpacticoid Copepod, Tachidius discipes Giesbrecht, from an Estuarine Mudflat." Jour. Exp. Mar. Biol. Ecol. (Neth.), 41, 1 (1979).
266. Pruitt, N. L., and Dimock, R. V., Jr., "The Effects of Temperature and Eyestalk Extracts on Oxygen Consumption of the Crayfish Cambarus acuminatus (Faxon)." Comp. Biochem. Physiol., 62A, 631 (1979).
267. Taylor, E. W., and Wheatly, M. G., "The Behaviour and Respiratory Physiology of the Shore Crab, Carcinus maenas (L.) at Moderately High Temperatures." Jour. Comp. Physiol., 130, 309 (1979).
268. Burke, E. M., "Aerobic and Anaerobic Metabolism During Activity and Hypoxia in Two Species of Intertidal Crabs." Biol. Bull., 156, 157 (1979).
269. McMahon, B., et al., "Ventilation and Control of Acid-Base Status during Temperature Acclimation in the Crab, Cancer magister." Jour. Comp. Physiol., 128, 109 (1978).
270. Schatzlein, F. C., and Costlow, J. D., Jr., "Oxygen Consumption of the Larvae of the Decapod Crustaceans, Emerita talpoida (Say) and Libinia emarginata Leach," Comp. Biochem. Physiol., 61A, 441 (1978).
271. Brown, A. V., and Fitzpatrick, L. C., "Life History and Population Energetics of the Dobson Fly, Corydalus cornutus." Ecology, 59, 1091 (1978).
272. Roux, C., "The Influence of Some Ecological Factors on the Metabolism-Temperature Curve of the Larvae of Limnephilus rhombicus (Trichoptera, Limnephilidae)." Freshwater Biol., 9, 111 (1979).
273. Lane, J. M., and Lawrence, J. M., "The Effect of Size, Temperature, Oxygen Level and Nutritional Condition on Oxygen Uptake in the Sand Dollar, Mellita quinquiesperforata (Leske)." Biol. Bull., 157, 275 (1979).
274. Elshoud, G. C., "Respiration in the ThreeSpined Stickleback, Gasterosteus aculeatus L.; An Electromyographic Approach." Neth. Jour. Zool., 28, 524 (1978).
275. Pandey, B. N., "Seasonal Variations in Oxygen Consumption of Heteropneustes fosilis (Bloch)." Zeitschrift Tierzuch. Zuchtung. (Ger.), 40, 165 (1978).
276. Burton, D. T., "Ventilation Frequency Compensation Responses of Three Eurythermal Estuarine Fish Exposed to Moderate Temperature Increases." Jour. Fish Biol., 15, 589 (1979).
277. Sorensen, E. M., and Burkett, R. D., "Respiratory Responses to Instant Thermal Stress Under Oxygen-Enriched Conditions in Centrarchids." Texas Jour. Sci., 30, 337 (1978).
278. Sigmon, C., "Oxygen Consumption in Lepomis macrochirus Exposed to 2,4-D or 2,4,5-T." Bull. Environ. Contam. Toxicol., 21, 826 (1979).
279. Wakeman, J. M., et al., "Oxygen Consumption, Energy Expenditure, and Growth of the Red Snapper (Lutianus campechanus)." Trans. Amer. Fish. Soc., 108, 288 (1979).
280. Belman, B. W., and Gordon, M. S., "Comparative Studies on the Metabolism of Shallow-Water and Deep-Sea Marine Fishes. V. Effects of Temperature and Hydrostatic Pressure on Oxygen Consumption in the Mesopelagic Zoarcid Melanostigma pammelas." Marine Biol. (W . Ger.), 50, 275 (1979).
281. Cech, J. J., Jr., et al., "Respiratory Responses of Largemouth Bass (Micropterus salmoides) to Environmental Changes in Temperature and Dissolved Oxygen." Trans. Amer. Fish. Soc., 108, 166 (1979).
282. Wares, W. D., and Igram, R., "Oxygen Consumption in the Fathead Minnow (Pimephales promelas Rafinesque). I. Effects of Weight, Temperature, Group Size, Oxygen Level and Opercular Movement Rate as a Function of Temperature." Comp. Biochem. Physiol., 62A, 351 (1979).
283. Hamor, T., and Garside, E. T., "Hourly and Total Oxygen Consumption by Ova of Atlantic Salmon, Salmo salar L., During Embryogenesis, at Two Temperatures and Three Levels of Dissolved Oxygen." Can. Jour. Zool., 57, 1196 (1979).
284. Mishrigi, S. Y., and Kubo, T., "The Energy Metabolism in Tilapia nilotica. I. Oxygen Consumption at 20° and $26^{\circ} \mathrm{C}$." Bull. Fac. Fish. Hokkaido Univ. (Jap.), 29, 100 (1978).
285. Mishrigi, S. Y., and Kubo, T., "The Energy Metabolism in Tilapia nilotica. II. Active Metabolism at 20° and $26^{\circ} \mathrm{C}$." Bull. Fac. Fish. Hokkaido Univ. (Jap.), 29, 313 (1978).
286. Highsmith, R. C., "Coral Growth Rates and Environmental Control of Density Banding." Jour. Exp. Mar. Biol. Ecol. (Neth.), 37, 105 (1979).
287. Hay, D. A., and Ball, I. R., "Contributions to the Biology of Freshwater Planarians (Turbellaria) from the Victorian Alps, Australia." Hydrobiologia (Den.), 62, 137 (1979).
288. Inamori, Y., et al., "Studies on the Effects of Some Environmental Factors on Survival and Growth of the Polychaete, Perinereis nuntia var. vallata." Bull. Mar. Biol. St. Asamushi, Tohoku Univ. (Jap)., 16, 133 (1979).
289. Elvin, D. W., and Gonor, J. J., "The Thermal Regime of an Intertidal Mytilus californianus Conrad Population on the Central Oregon Coast." Jour. Exp. Mar. Biol. Ecol. (Neth.), 39, 265 (1979).
290. Mann, R., "A Comparison of Morphometric, Biochemical, and Physiological Indexes of Condition in Marine Bivalve Molluscs." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
291. Mann, R., "Some Biochemical and Physiological Aspects of Growth and Gametogenesis in Crassostrea gigas and Ostrea edulis Grown at Sustained Elevated Temperatures." Jour. Mar. Biol. Assn. U. K., 59, 95 (1979).
292. Malouf, R. E., and Breeze, W. P., "Intensive Culture of the Pacific Oyster Crassostrea gigas (Thunberg), in Heated Effluents." Agricultural Exper. Station Bull. 627, ORESU-T-78-003, Oregon State Univ., Corvallis (1978).
293. Walz, N., "The Energy Balance of the Freshwater Mussel Dreissena polymorpha Pallas
in Laboratory Experiments and in Lake Constance. III. Growth Under Standard Conditions." Arch. Hydrobiol. (Ger.)/ Suppl. 55, 121 (1978).
294. Walz, N., "Growth Rates of Dreissena polymorpha Pallas Under Laboratory and Field Conditions." Verh. Intl. Ver. Limnol. (Ger.), 20, 2427 (1978).
295. Balaparameswara Rao, M., and Murty, A. S., "A Preliminary Study on the Growth Rate of a Tropical Estuarine Snail Neritina violacea (Gmelin) (Gastropoda: Neritacea), Under Laboratory Conditions." Hydrobiologia (Den.), 62, 59 (1979).
296. Kamler, E., and Mandecki, W., "Ecological Bioenergetics of Physa acuta (Gastropoda) in Heated Waters." Pol. Arch. Hydrobiol., 25, 833 (1978).
297. Brown, K. M., "The Adaptive Demography, of Four Freshwater Pulmonate Snails." Evolution, 33, 417 (1979).
298. Kersting, K., "The Growth Efficiency of Daphnia magna. II. The Effect of Temperature." Hydrobiol. Bull. (Neth.), 12, 99 (1978).
299. Landry, M. R., "Population Dynamics and Production of a Planktonic Marine Copepod, Acartia clausii, in a Small Temperate Lagoon on San Juan Island, Washington." Intl. Rev. Gesamten Hydrobiol. (Ger.), 63, 77 (1978).
300. Borgmann, U., et al., "A Rapid Method for the Estimation of, and Some Factors Affecting, Copepod Production Rates in the Burlington Canal." Jour. Fish. Res. Bd. Can., 36, 1256 (1979).
301. Smale, M. J., "Migration, Growth and Feeding in the Natal Rock Lobster Panulirus homarus (Linnaeus)." Invest. Rep. No. 47, Ocean. Res. Inst., Durban, South Africa (1978).
302. Bieniarz, K., et al., "The Influence of Temperature on Growth of Eel." Rocz. Nauk Rolniczych (Pol.), 98, 69 (1978).
303. Medvick, P. A., "Growth Rates of Juvenile Maomao, Abudefduf abdominalis, at Constant and Cyclic Temperatures." Trans. Amer. Fish. Soc., 108, 293 (1979).
304. Beitinger, T. L., and Magnuson, J. J., "Growth Rates and Temperature Selection of Bluegill, Lepomis macrochirus." Trans. Amer. Fish. Soc., 108, 378 (1979).
305. Edwards, R. W., et al., "An Assessment of the Importance of Temperature as a Factor Controlling the Growth Rate of Brown Trout in Streams." Jour. Animal Ecol., 48, 501 (1979).
306. Kremer, P., "Predation by the Ctenophore Mnemiopsis leidyi in Narragansett Bay, Rhode Island." Estuaries, 2, 97 (1979).
307. Scheerboom, J. E., and Van Elk, R., "Field Observations on the Seasonal Variations in the Natural Diet and the HaemolymphGlucose Concentration of the Pond Snail

Lymnaea stagnalis (L.)." Proc. Konin. Neder. Akad. Wetensch. (Neth.), 81C, 365 (1978).
308. Pandian, T. J., et al., "Influence of Temperature and Body Weight on Mosquito Predation by the Dragonfly Nymph Mesogomphus lineatus." Hydrobiologia (Den.), 62, 99 (1979).
309. Thompson, D. J., "Towards a Realistic Pred-ator-Prey Model: The Effect of Temperature on the Functional Response and Life History of Larvae of the Damselfly, Ischnura elegans." Jour. Animal Ecol., 47, 757 (1978).
310. Brandenburg, A. M., et al., "Use of Carp Eggs as a Feed for Fingerling Largemouth Bass." Progressive Fish Culturist, 41, 97 (1979).
311. Kilambi, R. V., and Robison, W. R., "Effects of Temperature and Stocking Density on Food Consumption and Growth of Grass Carp Ctenopharyngodon idella, Val." Jour. Fish Biol., 15, 337 (1979).
312. Young, R. U., "Effects of Temperature and Salinity on the Thermal Preference and Feeding Efficiency of the Cichlid Fish Sarotherodon mossambica." M.A. thesis, Calif. State Univ., Fullerton (1978).
313. Kiørboe, T., "Laboratory Measurements of Digestion Rate in O-Group Flounder (Platichthys flesus L.) at Two Temperatures." Ophelia, 17, 155 (1978).
314. Targett, T. E., "The Effect of Temperature and Body Size on Digestive Efficiency in Fundulus heteroclitus (L.)." Jour. Exp. Mar. Biol. Ecol. (Neth.), 38, 179 (1979).
315. Flowerdew, M. W., and Grove, D. J. "Some Observations of the Effects of Body Weight, Temperature, Meal Size and Quality on Gastric Emptying Time in the Turbot, Scophthalmus maximus (L.) Using Radiography." Jour. Fish. Biol., 14, 229 (1979).
316. Jobling, M., and Davies, P. S., "Gastric Evacuation in Plaice, Pleuronectes platessa L.: Effects of Temperature and Meal Size." Jour. Fish. Biol., 14, 539 (1979).
317. Foltz, J. W., "The Effects of Meal Size and Temperature on Gastro-Intestinal Motility and Absorption in Rainbow Trout (Salmo gairdneri) and Tilapia (Sarotherodon mossambicus)." Ph. D. thesis, Univ. Colorado, Boulder (1978).
318. Persson, L., "The Effects of Temperature and Different Food Organisms on the Rate of Gastric Evacuation in Perch (Perca fluviatilis)." Freshwater Biol., 9, 99 (1979).
319. Elliott, J. M., and Persson, L., "The Estimation of Daily Rates of Food Consumption for Fish." Jour. Animal. Ecol., 47, 977 (1978).
320. Szeto, C., and Nyberg, D., "The Effect of Temperature on Copper Tolerance of Paramecium." Bull. Environ. Contam. Toxicol., 21, 131 (1979).
321. Theede, H., et al., "Temperature and Salinity Effects on the Acute Toxicity of Cadmium to Laomedea loveni (Hydrozoa)." Marine Ecol., 1, 13 (1979).
322. Capuzzo, J. M., "The Effect of Temperature on the Toxicity of Chlorinated Cooling Waters to Marine Animals-A Preliminary Review." Marine Poll. Bull., 10, 45 (1979).
323. Lehnberg, W., and Theede, H., "Combined Effects of Temperature, Salinity and Cadmium on Development, Growth and Mortality of Mytilus edulis Larvae from the Western Baltic Sea." Helgo. Wiss. Meeresunters, 32, 179 (1979).
324. Unlü, M. Y., and Fowler, S. W., "Factors Affecting the Flux of Arsenic Through the Mussel Mytilus galloprovincialis." Marine Biol. (W. Ger.), 51, 209 (1979).
325. Scott, G. I., "The Effects of Seasonal Chronic Chlorination on the Growth, Survival, and Physiology of the American Oyster, Crassostrea virginica (Gmelin)." Ph. D. thesis, Univ. S. C., Columbia (1979)
326. MacInnes, J. R., and Calabrese, A., "Combined Effects of Salinity, Temperature and Copper on Embryos and Early Larvae of the American Oyster, Crassostrea virginica." Arch. Environ. Contam. Toxicol., 8, 553 (1979).
327. Abdel-Raheem, K., et al., "Susceptibility of Different Body-Sized Bulinus truncatus to Molluscicidal Action at Two Different Temperatures." Hydrobiologia (Den.), 65, 129 (1979).
328. Johnson, C. R., "The Effect of Five Organophosphorus Insecticides on Survival and Temperature Tolerance in the Copepod, Macrocyclops albidus (Copepoda: Cyclopidae)." Zool. Jour. Linnean Soc., 64, 59 (1978).
329. Zubarik, L. S., and O'Connor, J. M., "A Radioisotopic Study of Mercury Uptake by Hudson River Biota." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
330. Buikema, A. L., Jr., et al., "Effects of Simulated Entrainment on the Biology of a Freshwater Cladoceran." In "Energy and Environmental Stress in Aquatic Systems," by J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
331. Thorp, J. H., et al., "Effects of Chronic Cadmium Exposure on Crayfish Survival, Growth, and Tolerance to Elevated Temperatures." Arch. Environ. Contam. Toxicol., 8, 449 (1979).
332. Korn, S., et al., "Effects of Temperature on the Median Tolerance Limit of Pink Salmon and Shrimp Exposed to Toulene, Naphthalene, and Cook Inlet Crude Oil." Bull. Environ. Contam. Toxicol., 21, 521 (1979).
333. McKenney, C. L., Jr., and Neff, J. M., "Individual Effects and Interactions of Salinity, Temperature, and Zinc on Larval Development of the Grass Shrimp Palaemonetes pugio. I. Survival and Developmental Duration through Metamorphosis." Marine Biol. (W. Ger.), 52, 177 (1979).
334. Hall, L. W., Jr., et al., "The Influence of Acclimation Temperature on the Interactions of Chlorine, Elevated Temperature, and Exposure Duration for Grass Shrimp, Palaemonetes pugio." Trans. Amer. Fish. Soc., 108, 626 (1979).
335. Hall, L. W., Jr., et al., "Chlorine, Temperature, and Exposure Duration Effects of Power Plant Effluents on Juvenile Blue Crabs Callinectes sapidus and Grass Shrimp Palaemonetes pugio." Jour. Toxicol. Environ. Health, 5, 749 (1979).
336. Young, A. M., "Osmoregulation in Three Hermit Crab Species, Clibanarius vittatus (Bosc), Pagurus longicarpus Say and P. pollicaris Say (Crustacea: Decapoda: Anomura)." Comp. Biochem. Physiol., 63A, 377 (1979).
337. Laughlin, R. B., Jr., and Neff, J. M., "Interactive Effects of Salinity, Temperature and Polycyclic Aromatic Hydrocarbons on the Survival and Development Rate of Larvae of the Mud Crab Rhithropanopeus harrisii." Marine Biol. (W. Ger.), 53, 281 (1979).
338. Seegert, G. L., et al., "The Effects of Monochloramine on Selected Riverine Fishes." Trans. Amer. Fish. Soc., 108, 88 (1979).
339. McLeod, G. C., "The Gas Bubble Disease of Fish." In "The Behavior of Fish and Other Aquatic Animals," D. I. Mostofsky (Ed.), Academic Press, New York (1978).
340. Smith, M. J., and Heath, A. G., "Acute Toxicity of Copper, Chromate, Zinc, and Cyanide to Freshwater Fish: Effect of Different Temperatures." Bull. Environ. Contam. Toxicol., 22, 113 (1979).
341. Poje, G. V., et al., "Responses of Ichthyoplankton to Stresses Simulating Passage Through a Power-Plant Condenser Tube." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
342. Linden, O., et al., "Interactive Effects of Salinity, Temperature and Chronic Exposure to Oil on the Survival and Developmental Rate of Embryos of the Estuarine Killifish Fundulus heteroclitus." Marine Biol. (W. Ger.), 51, 101 (1979).
343. Boudou, A., et al., "Bioaccumulation and Bioamplification of Mercury Compounds in a Second Level Consumer, Gambusia affinis -Temperature Effects." Bull. Environ. Contam. Toxicol., 22, 813 (1979).
344. Blaylock, B. G., and Frank, M. L., "The Effects of Ionizing Radiation on the Thermal Tolerance of Mosquitofish." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
345. Johnson, C. R., "The Effects of Sublethal Concentrations of Five Organophosphorus Insecticides on Temperature Tolerance, Reflexes, and Orientation in Gambusia affinis affinis (Pisces: Poeciliidae)." Zool. Jour. Linnean Soc., 64, 63 (1978).
346. Smith, L. L., Jr., et al., "Acute Toxicity of Hydrogen Cyanide to Freshwater Fishes." Arch. Environ. Contam. Toxicol., 7, 325 (1978).
347. Cember, H., et al., "Mercury Bioconcentration in Fish; Temperature and Concentration Effects." Environ. Poll., 17, 311 (1978).
348. Folmar, L. C., et al., "Toxicity of the Herbicide Glyphosate and Several of Its Formulations to Fish and Aquatic Invertebrates." Arch. Environ. Contam. Toxicol., 8, 269 (1979).
349. Burton, D. T., et al., "Interactions of Chlorine, Temperature Change ($\Delta \mathrm{T}$), and Exposure Time on Survival of Striped Bass (Morone saxatilis) Eggs and Prolarvae." Jour. Fish. Res. Bd. Can., 36, 1108 (1979).
350. Fandrei, G., and Collins, H. L., "Total Residual Chlorine: The Effect of Short-Term Exposure on the Emerald Shiner Notropis atherinoides (Rafinesque)." Bull. Environ. Contam. Toxicol., 23, 262 (1979).
351. Cherry, D. S., et al., "The Avoidance Response of the Common Shiner to Total and Combined Residual Chlorine in Thermally Influenced Discharges." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
352. Nebeker, A. V., et al., "Temperature and Oxy-gen-Nitrogen Gas Ratios Affect Fish Survival in Air-Supersaturated Water." Water Res., 13, 299 (1979).
353. Gee, J. H., "Reactions of Some Great Lakes Fishes to Progressive Hypoxia." Can. Jour. Zool., 56, 1962 (1978).
354. Vernberg, F. J., "Multiple-Factor and Synergistic Stresses in Aquatic Systems." In "Energy and Environmental Stress in Aquatic Systems," J. H. Thorp and J. W. Gibbons (Eds.), Technical Information Center, Springfield, Va. (1978).
355. Reynolds, W. W., and Casterlin, M. E., "Thermoregulatory Behavior of the Primitive Arthropod Limulus polyphemus in an

Electronic Shuttlebox." Jour. Thermal Biol., 4, 165 (1979).
356. Hall, L. W., Jr., et al., "Temperature Preference of the Crayfish Orconectes obscurus." Arch. Environ. Contam. Toxicol., 7, 379 (1978).
357. Reynolds, W. W., and Casterlin, M. E., "Behavioral Thermoregulation and Activity in Homarus americanus." Comp. Biochem. Physiol., 64A, 25 (1979).
358. Reynolds, W. W., and Casterlin, M. E., "Behavioral Thermoregulation in the Spiny Lobster Panulirus argus (Latreille)." Hydrobiologia (Den.), 66, 141 (1979).
359. Reynolds, W. W., and Casterlin, M. E., "Behavioral Thermoregulation in the Grass Shrimp, Palaemonetes vulgaris (Say)." Rev. Can. Biol., 38, 45 (1979).
360. Tsurnamal, M., "Temperature Preference of the Blind Prawn, Typhlocaris galilea Calman (Decapoda, Caridea)." Crustaceana, 34, 15 (1978).
361. Medvick, P. A., and Miller, J. M., "Behavioral Thermoregulation in Three Hawaiian Reef Fishes." Environ. Biol. Fish., 4, 23 (1979).
362. Ehrlich, K. F., et al., "Thermal Behavioral Responses of Selected California Littoral Fishes." Fishery Bull., 76, 837 (1979).
363. Nelson, D. O., and Prosser, C. L., "Effect of Preoptic Lesions on Behavioral Thermoregulation of Green Sunfish, Lepomis cyanellus, and of Goldfish, Carassius auratus." Jour. Comp. Physiol., 129, 193 (1979).
364. Casterlin, M. E., and Reynolds, W. W., "Thermoregulatory Behavior of the Bluespotted Sunfish, Enneacanthus gloriosus." Hydrobiologia (Den.), 64, 3 (1979).
365. Reynolds, W. W., and Casterlin, M. E., "Thermoregulatory Rhythm in Juvenile Muskellunge (Esox masquinongy): Evidence of a Diel Shift in the Lower SetPoint." Comp. Biochem. Physiol., 63A, 523 (1979).
366. Nilsen, G. B., and Røed, J. H., "A New Aquarium for the Study of Temperature Behavior of Fish." Sarsia, 63, 199 (1978).
367. Hall, L. W., Jr., et al., "Temperature Preference of the White Perch, Morone americana, Collected in the Wicomico River, Maryland." Estuaries, 2, 129 (1979).
368. Reynolds, W. W., and Casterlin, M. E., "Behavioral Thermoregulation and Locomotor Activity of Perca flavescens." Can. Jour. Zool., 57, 2239 (1979).
369. Peterson, R. H., et al., "Temperature Preference of Several Species of Salmo and Salvelinus and Some of Their Hybrids." Jour. Fish. Res. Bd. Can., 36, 1137 (1979).
370. Peterson, R. H., and Metcalfe, J. L., "Responses of Atlantic Salmon Alevins to Temperature Gradients." Can. Jour. Zool., 57, 1424 (1979).
371. Reynolds, W. W., and Casterlin, M. E., "Thermoregulatory Behavior of Brown Trout, Salmo trutta." Hydrobiologia (Den.), 62, 79 (1979).
372. Reynolds, W. W., "Perspective and Introduction to the Symposium: Thermoregulation in Ectotherms." Amer. Zool., 19, 193 (1979).
373. DeWitt, C. B., and Friedman, R. M., "Significance of Skewness in Ectotherm Thermoregulation." Amer. Zool., 19, 195 (1979).
374. Reynolds, W. W., and Casterlin, M. E., "Behavioral Thermoregulation and the 'Final Preferendum' Paradigm." Amer. Zool., 19, 211 (1979).
375. McCauley, R. W., and Huggins, N. W., "Ontogenetic and Non-thermal Seasonal Effects on Thermal Preferenda of Fish." Amer. Zool., 19, 267 (1979).
376. Neill, W. H., "Mechanisms of Fish Distribution in Heterothermal Environments." Amer. Zool., 19, 305 (1979).
377. Beitinger, T. L., and Fitzpatrick, L. C., "Physiological and Ecological Correlates of Preferred Temperature in Fish." Amer. Zool., 19, 319 (1979).
378. Magnuson, J. J., et al.," "Temperature as an Ecological Resource." Amer. Zool., 19, 331 (1979).
379. Hutchison, V. H., and Maness, J. D., "The Role of Behavior in Temperature Acclimation and Tolerance in Ectotherms." Amer. Zool., 19, 367 (1979).
380. Harbison, G. R., and Campenot, R. B., "Effects of Temperature on the Swimming of Salps (Tunicata Thaliaceae): Implications for Vertical Migration." Limnol. d Oceanog., 24, 1081 (1979).
381. Philipson, G. N., "The Undulatory Behavior of Larvae of Hydropsyche pellucidula Curtis and Hydropsyche siltalai Döhler." Proc. 2nd Intl. Symp. Trichoptera, M. I. Crichton (Ed.), W. Junk, The Hague (1978).
382. Gersabeck, E. F., Jr., and Merritt, R. W., "The Effect of Physical Factors on the Colonization and Relocation Behavior of Immature Black Flies (Diptera: Simuliidae)." Environ. Entomol., 8, 34 (1979).
383. Eldon, J., and Kristoffersson, R., "Factors Affecting the Burrowing Activity of Macoma balthica (L.)." Ann. Zool. Fenn., 15, 127 (1978).
384. Beeston, D. C., and Morgan, E., "A Crepuscular Rhythm of Locomotor Activity in the Freshwater Prosobranch, Melanoides tuberculata (Müller)." Animal Behavior, 27, 284 (1979).
385. Eriksson, L. O., "A Laboratory Study of Diel and Annual Activity Rhythms and Vertical Distribution in the Perch, Perca fluviatilis, at the Arctic Circle." Environ. Biol. Fish., 3, 301 (1978).
386. Solomon, D. J., "Migration of Smolts of Atlantic Salmon (Salmo salar L.) and Sea

[^0]400. Tennessee Valley Authority, "State-of-the-Art Waste Heat Utilization for Agriculture and Aquaculture." EPRI EA-922, TPS 77-700 and 77-734, Electric Power Research Institute, Palo Alto, Calif. (1978).

Entrainment and impingement at cooling water intakes

Mary S. Uziel

Ecological Sciences Information Center, Oak Ridge National Laboratory, Oak Ridge, Tenn.

REVIEWS AND MODELING STUDIES

General reviews. Literature on the effects of power plant entrainment on phytoplankton and zooplankton was reviewed to determine whether ecosystem effects of entrainment could be definitely documented. ${ }^{1}$ While these studies did not provide a definitive assessment at the ecosystem level, they did provide a large, consistent data base indicating that the effects of entrainment were generally small and unlikely to cause ecosystem-wide impacts.

A variety of quantitative techniques for assessing population and ecosystem effects of impingement and entrainment on major fish and invertebrate species were presented along with guidance for the interpretation of calculated or measured effects. ${ }^{2}$ Simpler, less costly approaches were followed by increasingly complex methods so that the investigator could select those appropriate for the situation.

Available information on natural mortality of fish eggs and larvae was compiled by Dahlberg. ${ }^{3}$ Problems such as interpretation and use of survival data, major factors influencing mortality rates, relationship of survival rates to reproductive strategies, and possibility of critical periods were discussed. Development of survival data lags far behind modeling in impact assessment, and, as a result, important decisions are being made from incomplete data.

The environmental impacts, both adverse and beneficial, of cooling reservoirs were compared to cooling towers as an alternative closed cycle cooling system. ${ }^{4}$ A review of pertinent literature on cooling reservoir ecosystems revealed that entrainment, thermal,

[^0]: Trout (Salmo trutta L.) in a Chalkstream." Environ. Biol. Fish., 3, 223 (1978).
 387. Solomon, D. J., "Some Observations on Salmon Smolt Migration in a Chalkstream." Jour. Fish Biol., 12, 571 (1978).
 388. Claridge, P. N., and Gardner, D. C., "Growth and Movements of the Twaite Shad, Alosa fallax (Lacepede), in the Severn Estuary." Jour. Fish Biol., 12, 203 (1978).
 389. Richkus, W. A., and Winn, H. E., "Activity Cycles of Adult and Juvenile Alewives, Alosa pseudoharengus, Recorded by Two Methods." Trans. Amer. Fish. Soc., 108, 358 (1979).
 390. Minor, J. D., and Crossman, E. J., "Home Range and Seasonal Movements of Muskellunge as Determined by Radiotelemetry." Amer. Fish. Soc. Spec. Publ. 11, 146. Washington, D. C. (1978).
 391. Griffiths, J. S., "Performance Response of Great Lakes Fishes to Unstable Thermal Regimes-A Review and Synthesis." Report No. 79-367-K, Ontario Hydro, Canada (1979).
 392. Reynolds, W. W., and Casterlin, M. E., "Effect of Temperature on Locomotor Activity in the Goldfish (Carassius auratus) and the Bluegill (Lepomis macrochirus): Presence of an 'Activity Well' in the Region of the Final Preferendum." Hydrobiologia (Den.), 65, 3 (1979).
 393. Höfle, M. G., "Effects of Sudden Temperature Shifts on Pure Cultures of Four Strains of Freshwater Bacteria." Microbial Ecol., 5, 17 (1979).
 394. Reichardt, W., "Responses of Phosphorus Remobilizing Cytophaga Species to Nutritional and Thermal Stress." Verh. Intl. Ver. Limnol. (Ger.), 20, 2227 (1978).
 395. Wunderlich, M., "Introduction of Waste Heat and Effects on Microorganisms." Verh. Intl. Ver. Limnol. (Ger.), 20, 1855 (1978).
 396. Carpenter, S. R., and Adams, M. S., "Effects of Nutrients and Temperature on Decomposition of Myriophyllum spicatus L. in a Hard-water Eutrophic Lake." Limnol. \& Oceanog., 24, 520 (1979).
 397. Udey, L. R., "Effects of Temperature on the Infectious Process in Pacific Salmonids." In "Microbiology of Power Plant Thermal Effluents," R. M. Gerhold (Ed.). Univ. Iowa Press, Iowa City (1978).
 398. Hawke, J. P., "A Bacterium Associated with Disease of Pond Cultured Channel Catfish, Ictalurus punctatus." Jour. Fish. Res. Bd. Can., 36, 1508 (1979).
 399. Voorhees, J. T., and Schwartz, F. J., "Attachment Site, Seasonality, and Effects of the Parasitic Copepod Lernaeenicus radiatus on Two Estuarine Fishes in the Cape Fear River, North Carolina." Trans. Amer. Fish. Soc., 108, 191 (1979).

