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A B S T R A C T   

Our understanding of folds and folding builds on detailed geometrical analysis. Proper description of folds and 
their relation to other structures such as fractures, cleavage and lineations form, together with physical and 
numerical modelling, the foundation for linking folds to stress, strain, kinematics, mechanics, and underlying 
tectonic processes. A large number of classification schemes and approaches have accumulated over the past 
century or so, and this overview critically considers a substantial portion of these schemes together with models 
for fold formation. We find folds and folding to be sensitive to many different factors, including material 
properties, layer thickness, mechanical anisotropy, boundary conditions, initial layer orientation, structural 
interaction between propagating folds or adjacent layers, inherited fracture and fault structures, deformation 
mechanisms, temperature, and confining pressure. However, there is no strong relationship between fold ge-
ometry and depth of formation, since microscale deformation mechanisms are of limited importance in this 
regard. For this reason, the geometric relations explored in clay/sandbox experiments are directly applicable to 
folds formed under metamorphic conditions by crystal-plastic mechanisms. The most fundamental distinction of 
folds is probably that of passive versus active folding. Passive folding, where viscosity contrasts are small or 
neglectable, is well understood and simple to model. Active folding, where fold nucleation and amplification is 
controlled by contrasts in viscosity or strength, is more complicated, and future work should focus on experi-
mental and numerical modelling of well-defined examples of active fold geometries observed in rocks. In 
addition, the concept of bending, which can include both passive and active elements, is useful to maintain. 
Active and passive folding reflect rheology and strain, but do not directly relate to tectonic regime. Information 
about tectonic regime must come from other sources of information, but when known, fold analysis can be 
applied to characterize and quantify the deformation in that regime. Future work should focus on integrating 
field-based observations, sub-surface data sets, and 3D numerical modelling of folds in different model config-
urations (number of layers, layer thicknesses, type of perturbation and its amplitude in the layer interface, type of 
contact between interacting layers such as free-slip and or no-slip interfaces), different geological and tectonic 
settings (i.e., the type of applied boundary conditions and also in the form of displacement-based and strain-rate- 
based boundaries), and different mechanical properties or stratigraphy.   

1. Introduction 

Folds are extremely common deformation structures (Fig. 1) in any 
tectonic regime, including: 1) orogens, fold-and-thrust belts, and 
accretionary prisms (Fig. 2a, b) (e.g., van der Pluijm and Marshak, 2004; 
Fossen, 2016); 2) strike-slip systems (Fig. 2c) (e.g., Wilcox et al., 1973; 
Sylvester, 1988), 3) transpression (Fig. 2d) and transtension zones 
(Fig. 2e) (e.g., Venkat-Raman and Tikoff, 2002; Fossen et al., 2013; 
Ghosh et al., 2014; Frehner, 2016; Nabavi et al., 2017a, 2018a,b, 2019); 
4) shear zones (Fig. 2f) (e.g., Ramsay, 1980; Carreras et al., 2005; Fossen 

and Cavalcante, 2017; Dutta and Mukherjee, 2019); 5) regional exten-
sion in the form of continental rifting or orogenic collapse (Fig. 2g) 
(Fossen and Holst, 1995; Harris et al., 2002; Coleman et al., 2019); 6) 
salt diapirs as drape of the sedimentary roof over rising or advancing salt 
(Fig. 2h) (e.g., Jackson and Hudec, 2017); 7) soft-sediment deformation 
related to gravity driven slumps and sediment mass transport (Fig. 2i) (e. 
g., Hudleston, 1977; Alsop et al., 2020); 8) sediments and rocks short-
ened in front of and under advancing glaciers (glaciotectonics) (Fig. 2j) 
(e.g., Phillips, 2018). Their geometric features and occurrence bear 
important information on strain, kinematics and rheology. Folds of 
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different size, shape, style and geometry form from an interplay between 
forces, boundary conditions and rheology. As for deformation in gen-
eral, they can be analysed with respect to geometry (e.g., structural 
orientation, attitude, size and morphology or shape), kinematics 
(involving position, displacement, velocity and acceleration of as many 
points as possible and thus progressive deformation) and dynamics (the 
relationship between forces or stress and kinematics). Analysis of fold 
structures as observed in the field or from remote sensing data forms the 
foundation for understanding and quantifying fold-related deformation 
at various scales (microscopic, mesoscopic and macroscopic), strongly 
supported by physical and numerical modelling. 

More specifically, folds are curviplanar structures that form by 
transformation of any tectonic or primary foliation into curved geome-
tries through a non-linear transformation (for completion, we note that 
already existing folds may in rare cases unfold during folding). 
Furthermore, a fold is the result of a folding history dominated by 
growth dominated by permanent ductile deformation, during which 
material continuity and cohesion is largely maintained at the scale of 
observation. However, discontinuities can occur in the form of 

associated veins and fracture, typically seen in the outer arc of compe-
tent layers, and also along week layers or bedding planes during flexural 
slip. At the microscale, folding can be associated with both crystal- 
plastic and/or brittle deformation mechanisms. For example, a folding 
in medium- and high-grade metamorphic rocks typically involves 
dislocation creep and dynamic recrystallization, whereas soft-sediment 
folding occurs by frictional grain-boundary sliding, grain comminution 
and grain rotation. Folding of limestones, on the other hand, is typically 
accommodated by pressure solution and precipitation processes. The 
fundamental terminology used to describe the resulting folds is pre-
sented in many textbooks (e.g., Ramsay, 1967; Ramsay and Huber, 
1987; Price and Cosgrove, 1990; van der Pluijm and Marshak, 2004; 
Twiss and Moores, 2007; Fossen, 2016), and key terms used in this 
contribution are shown schematically in Fig. 1. 

Variations in fold shape, especially in multilayer examples, reflect 
differences in their mechanical response to stress and strain due to dif-
ferences in layer thickness, viscosity, matrix-layer viscosity (or compe-
tence) contrast, mechanical anisotropy and inherited fracture and fault 
structures. Fold shape also relates to the key factors controlling strain 

Fig. 1. a) Geometric parameters of cylindrical and non-cylindrical folds (based on Fossen, 2016). b) The relationship between cleavage plane, axial surface, and 
enveloping surface in folds with transected cleavage and transected fold. Note the obliquity of the bedding-cleavage intersection lineation to the hinge line. 
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localisation in ductile deformation, notably strain-dependent rheology, 
strain intensity, deformation path, and the influence of layer irregular-
ities (e.g., Ramberg, 1964; Lan and Hudleston, 1995; Schmalholz and 
Podladchikov, 2001; Toimil and Griera, 2007; Hudleston and Treagus, 
2010; Fitz-Díaz et al., 2012; Eckert et al., 2014, 2016; Schmalholz and 

Mancktelow, 2016). These parameters have been shown to correlate 
with geometrical parameters such as fold wavelength (twice the distance 
between inflection points), fold arc-length, amplitude (the distance be-
tween the line joining two inflection points and the line tangential to the 
hinge and or, more practically, half the height measured from crest to 

Fig. 2. Development of folds in various environments: a) Folds developed in the upper part show much tighter upright anticlines and synclines. NW Zagros belt 
(modified after Vergés et al., 2011). Fold orientation can be used to discriminate between pure contraction (b), pure strike-slip (c), transpression (d), and transtension 
zones (e). f) Asymmetrical folds in a shear zone, indicating sense of shear. g) Example of extensional fold developed in the hangingwall to a 10 km displacement fault 
in the North Sea rift basin. The fold is related to the non-planar fault geometry. Differential compaction above the hangingwall also produce a very gently fold seen at 
the base of the post-rift sequence. h) Sketch of Hormuz salt extrusion, Zagros, with the first-order recumbent anticline characteristic of a spreading salt sheet above 
rigid bedrock, and also second-order recumbent flow folds. The geometry is one of upward-facing parasitic folds in the upper limb, downward-facing parasitic folds in 
the inverted lower limb, and a recumbent tank-tread fold at the outer margin of the salt glacier (modified after Talbot et al., 2009). i) The main geometries and styles 
of folding during soft-sediment deformation of competent layers (brown) above a basal detachment (generalized sketch modified from Alsop et al., 2020). j) Folding 
and shearing sediments above a basal detachment below and ahead of advancing ice sheet (modified after Benediktsson et al., 2010). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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trough) (Fig. 1), hinge bluntness, and layer thickness. For instance, 
where viscosity contrast is low, folding is unlikely to develop during 
layer-parallel shortening. Multilayers of high viscosity contrasts favour 
concentric folding, while shorter wavelengths are developed in thinner 
layers. Where there are layers of different thickness, the geometry of the 
resultant fold train will be controlled by the thickest layer(s), for a 
constant viscosity contrast (e.g., Price and Cosgrove, 1990; Frehner and 
Schmalholz, 2006; Frehner and Schmid, 2016). The geometric param-
eters of folds are of primary importance, as they can be used to estimate 
finite strain and rheological properties during deformation (e.g., 
Hudleston and Lan, 1993; Lan and Hudleston, 1995). 

In general, geometric interpretation of three-dimensional fold and 

fault structures is imperative for proper tectonic analysis. To discuss the 
geometry of fold structures, it is necessary to establish a frame of 
reference. Several questions about folds should be raised to identify, 
analyse and interpret of fold structure, including the following. What is 
the best approach for geometric analysis? What geometric classification 
scheme is appropriate? Which parameters exert the greatest control on 
the observed fold geometry and folding mechanism? Which parameters 
need to be analysed? What are the dominant fold geometries and folding 
mechanisms at different crustal depths and in different tectonic settings? 
How can fold analysis provide an estimate of strain? How did the fold 
evolve? What is needed to improve the mapping, analysis and under-
standing of folds and folding in the future? 

Fig. 2. (continued). 
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Answering such questions requires careful analysis and description 
of the fold structure. 

In the following sections, we will focus on geometric descriptions of 
fold structures and to a lesser extent on the kinematics of folding 
mechanisms, the patterns of strain distribution in folded single- and 
multilayers and how their structural complexities can be interpreted 
using suitable classification schemes. The literature on fold geometry is 
vast because these geological structures (i) can develop in any tectonic 
setting, (ii) occur at any scale from micro- to map-scale, (iii) can be 
analysed using a variety of geometric classification schemes, (iv) were 
studied for different bulk deformation geometries such as pure shear and 
simple shear, (v) can be studied for single- and multilayer configura-
tions, (vi) can be studied in two- and three-dimensions, (vii) can be 
studied for isotropic and anisotropic materials, and (viii) were studied 
using analytical, analogue and numerical models. A vast body of liter-
ature exists that focuses mainly on the kinematics (strain-oriented) and 
dynamics (stress-oriented) aspects of folding, whereas less work is 
published on numerical modelling. In this regard, Hudleston and Trea-
gus (2010) and Schmalholz and Mancktelow (2016) reviewed the 
progress in understanding the kinematics and mechanical dynamics of 
single and multilayer folding. Following kinematic and mechanical as-
pects, however, geometrical analyses of folds is an important tool to help 
understand deformation. 

The present review has two main aims. The first is to summarize and 
review existing geometrical classification schemes for folds, to discuss 
for which geometric problem each of these classification schemes might 
be justified, and to discuss their advantages, their applications to natural 
examples, and potential problems and limitations of the different 
schemes. For simplicity, we will focus on the geometry of fold structures 
generated by progressive shortening and their kinematic evolution. The 
second aim is to provide a discussion of and new insights into the 
geometrical interpretation of folds using modern and accurate classifi-
cation schemes as well as fundamental concepts. This paper will not 
repeat all of the basic concepts covered in structural geology textbooks, 
but rather focus on the link between fold geometry and kinematics. We 
acknowledge that it is still difficult to extract kinematic and mechanical 
information from geological structures, especially folds, since their ge-
ometries in rocks are highly variable and depend on several parameters. 
The many parameters influencing the occurrence and style of folds make 
prediction of such structures difficult in detail. However, geometry is of 
fundamental importance for fold classification and for understanding 
folding mechanisms. The most important distinction between the ways 
folds form probably lies in whether the layering responds actively or 
passively to the imposed strain field. 

In this review we will, after a note on the importance of folds and a 
historical review, discuss the geometry and geometric description of 
folds. This section applies to all kinds of folds, unless otherwise noted. 
Kinematic and mechanical aspects of folding will then be covered by 
considering buckle (active) folding, where the competence or viscosity 
contrast between the folding layer and its host rock is important. We will 
then deal with passive folding, where layers are simply passive markers 
with no rheological influence, followed by a treatment of bending, 
where forces are applied across the layering. Finally, following the ad-
vantages, limitations, and modifications of the current schemes, we 
conclude with a section discussing applied aspects of folds geometry and 
folding, and how interpretation depends on the geometry of the 
geological structure with an outlook on future research on fold 
geometry. 

2. Why are folds and folding important? 

The fact that folds are extremely common structures in many 
different geological settings makes them one of the most important 
structures in rocks and sediments. Large folds can influence landscape 
evolution during erosion, typically with ridges along steep limbs and 
valleys along synforms (e.g., the Valley and Ridge region or the flatirons 

of Laramide monoclines of the Colorado Plateau), or with resistant cores 
creating positive topographic landforms (e.g., Sheep Mountains, Mon-
tana and San Rafael Swell, Utah). Folds and folding furthermore influ-
ence the evolution of the Earth's surface as they form, controlling 
patterns of erosion, sediment routing and depocenters. These processes 
cause rapid stratigraphic thickness variations that relate to the growth 
history of the folds (e.g., Darnault et al., 2016; Jackson and Hudec, 
2017). 

These points are particularly relevant to petroleum geology, as 
folding can generate hydrocarbon traps and influence sedimentary 
depositional patterns and variations in sedimentary facies and reservoir 
properties. Classical hydrocarbon and CO2 traps are formed by domes or 
uprights folds in both extensional, transcurrent and contractional set-
tings (e.g., Morley et al., 2013). Folding is often associated with small- 
scale structures such as fractures, stylolites and deformation bands 
that are unevenly distributed within folded layers. Such structures tend 
to affect fluid flow, and as they are impossible to detect from geophysical 
data, their prediction must be based on fold geometry and a good un-
derstanding of the folding mechanisms (e.g., Zuluaga et al., 2016). 
Folding also makes mining operations and the prediction of ore bodies at 
depth more complicated. Complexly folded ore bodies in orogenic belts, 
including banded iron formations, are examples of this. Furthermore, 
fold structures may also affect the distribution of stress in rock masses 
and ore bodies, causing stability problems and influencing the size, 
orientation and location of seismic events generated by mining 
operations. 

Fold systems also reflect local strain and kinematics, although any 
rotation of fold structures during or after their evolution must be 
accounted for. The relative or absolute ages of folds, for example from 
stratigraphy, intrusions or overprinting relations, are also important for 
understanding the evolution of orogenic belts. Folds are particularly 
useful when conducting tectonic investigations in orogens, to: (i) 
determine tectonic shortening directions, (ii) calculate the amount of 
tectonic shortening, (iii) interpret the geometry of larger-scale struc-
tures, and (iv) investigate the rheological properties of the folded rocks. 
They are also important for interpreting deeper structures, for example 
the prediction of deep faults from fault-propagation folds or salt struc-
tures from dome-shaped folds. 

Fold structures can also control the stability and behaviour of natural 
and engineered rock slopes depending on their orientations, geometry 
and structural complexity with respect to a given slope face (e.g., Stead 
and Wolter, 2015). This summary shows that folds are not only relevant 
to the academic field of structural geology, but are also highly pertinent 
to a wide range of practical and economic geoscience topics. 

3. Historical background 

Folds in rocks are eye-catching structures that have been explored 
and discussed for centuries, for instance by Leonardo da Vinci 
(1452–1519) and Nicholas Steno (1669) (Vai et al., 1986; Vai, 2003). 
Folds were recognized and described in more detail in Wales and the 
European Alps around Lake Uri in Switzerland by Luigi F. Marsili and 
Johann J. Scheuchzer in 1705 (Fig. 3a) (Ellenberger, 1995). From the 
late 1700s, understanding of fold structures and their origins was one of 
several great problems in structural geology. Studies show that De 
Saussure (1796) was the first to attribute folding to horizontal 
compression (lateral push or refoulement horizontaux/latéral) as the 
agent of shortening and folding, during his attempts at a structural 
synthesis of the European Alps. Although he did not speculate specif-
ically on their causes, he writes (De Saussure, 1796): 

“We are still ignorant by what cause these rocks have been tilted. But it is 
already an important step among the prodigious quantity of vertical strata 
in the Alps to have found certain examples which we can be perfectly 
certain were formed in a horizontal position”. 
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Fig. 3. a) Field observations in the European Alps around Lake Uri, Switzerland. The panel shows a part of a larger sketch of Johann Scheuchzer, published by 
Antonio Vallisneri (1715) (from Ellenberger, 1995). b) Field observations of folding in slate near St. Abb's Head, Berwckishire (after Hall, 1815). c) Top: device for 
scale model of folding by lateral compression, presented by James Hall to the Royal Society of Edinburg in 1812. Bottom: Original sketch of James Hall's (1815) 
folding experiment (after Hall, 1815). d) Original photographs of Favre's (1878) folding experiments where deformation was applied by releasing a stretched basal 
rubber film overlain by clay layers (after Favre, 1878). e) Daubrée's (1879) device and experimental model investigating fold formation under confining pressure 
(after Daubrée, 1879). f) Reade's (1886) clay folds investigating flexural slip (after Reade, 1886). g) Original photograph of Willis’s (1894) folding experiments using 
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Playfair (1802) also reached this conclusion, although he considered 
the primary fold-forming force to be vertical. Experimental modelling 
has now been used in the study of folds and folding for more than 200 
years, building upon the approach first applied by Sir James Hall in 1815 
(Fig. 3b, c), who has been called “the Father of Experimental Geology”. 

James Hall was also probably the first to use the word fold in 
connection with geological structures (Hall, 1815, p. 86), where he 
wrote: 

“The consequence was, that the extremities were bought nearer to each 
other, the heavy door was gradually raised, and the strata were con-
strained to assume folds, bent up and down, which very much resembled 
the convoluted beds of killas, as exhibited in the craggs of Fast Castle, …”. 

Hall (1815), a few years after De Saussure's death, insisted that the 
cause of folds was to be found in great tangential pressure in the Earth's 
crust. He had examined the belt of deformed Silurian clastic rocks that 
run in an approximately ENE direction across the southern Uplands of 
Scotland from Galloway to Berwickshire (Hall, 1815). His schematic 
cross-section to illustrate the hypothetical continuation of the strata 
where they had been removed by erosion or were covered by plants and 
debris is shown in Fig. 3b. In order to demonstrate that such forces could 
produce the results observed, he made his famous analogue models, 
where during shortening the layers and rocks buckled (Fig. 3c). Favre 
(1878) developed another experimental setup based on the progressive 
release of an initially stretched basal rubber film onto which a homo-
geneous potter clay layer was deposited. In this way, Favre was able to 
produce a series of anticlines and synclines (Fig. 3d). Daubrée (1879), 
who for over forty years devoted himself untiringly to the pursuit of 
experimental geology and whose great work entitled “Études syn-
thétiques de Géologie Expérimentale”, studied the influence of layer 
properties (thickness and rheology) and pressures performed on the 
geometry of a single layer fold. He demonstrated that fold wavelength 
depends on the layer thickness and rheology, whereas the fold symmetry 
depends on the confining pressure (Fig. 3e). Reade (1886) also devel-
oped several experimental models investigating layer-parallel sliding or 
flexural slip and the influence of layer thickness on folding (Fig. 3f). 

Reade (1886, p. 216–217) was also probably the first to use the 
geometric term Chevron fold, where he wrote in a figure caption 
(Fig. 4a): 

“A to B represents a series of horizontal sedimentary beds, and B to C the 
same set of beds folded into zigzags, which I call chevron-folds, from their 
likeness to the Norman ornament of that name”. 

Among the early experimental studies on folding are the outstanding 
contributions of Willis (1894) in his study of Appalachian folding. Willis 
used brittle-viscous material made of a mixture of beeswax and plaster 
to investigate the influence of confining pressure, layer thickness, and 
layer plasticity (competence) on folding (Fig. 3g). Hence, he explored 

the concepts of “active” and “passive” roles of layering in folding. Willis 
(1894) also introduced the concept that “initial dips” play a significant 
role in determining where folds will initiate. 

As studies on folds and folding progressed, experimental modellers 
also started investigating features like 3D evolution of folding with 
depth (Avebury, 1903, 1905) (Fig. 3h), the relationship between fold 
asymmetry and confining pressure (Meunier, 1904) (Fig. 3i), fold axis 
orientation as a function of kinematics (Mead, 1920) (Fig. 3j), the 
growth of en-échelon folds (Link, 1928), and according to the fact that 
faults and folds could be associated with each other, the relationship 
between folding and thrusting in multi-layered models made of damp-
ened clay and sand mixtures under varying boundary condition 
(extension, horizontal and vertical shortening) (Forchheimer, 1883) 
(Fig. 3k), the effect of layer rheology on fold and fault-related fold ge-
ometry (Schardt, 1884) (Fig. 3l), and the evolution of fault-related folds, 
thrust sequences, nappe tectonics and wedge dynamics (Fig. 3m-o) (e.g., 
Cadell, 1889, 1896; Paulcke, 1912; Koenigsberger and Morath, 1913; 
Lohest, 1913; Chamberlin and Shepard, 1923; Chamberlin, 1925; Ter-
ada and Miyabe, 1929; Kuenen and de Sitter, 1938). Among the early 
studies on experimental modelling of folds, there are some pioneering 
works on the geometric relationships between folds, cleavages and lin-
eations (e.g., Sharpe, 1847; Sorby, 1849; Fisher, 1884; Harker, 1885; 
Becker, 1893, 1896). The seminal work of Hubbert (1937) introduced 
the concept of “scaled models” to the geological community, a concept 
already well known at the time in civil engineering, as well as in hydro- 
and aerodynamics. A properly scaled model can not only reproduce 
natural geometries and structures, but also allows inferring physical 
quantities. 

The earliest attempts to classify folds were made by De Margerie and 
Heim (1888), p. 49–63), who introduced and classified “simple folds” 
into six types: upright, asymmetric, overturned, recumbent, isoclinal, 
fan-shaped folds, as well as “composite folds” (Fig. 4b), and then Van 
Hise (1896a, 1896b), who, in addition to the definition of composite and 
complex folds, observed that many geological folds either show a rela-
tively constant orthogonal layer thickness (now usually termed “paral-
lel” or “concentric folds”) (Fig. 4c) or limb thickness reduction (now 
usually known as “similar folds”) (Fig. 4d). Van Hise (1896a, 1896b) 
also was concerned with the asymmetry of folds. He deduced that 
asymmetry can be a result of interactions of folds with different wave-
length. In this regard, he also recognized that the “abnormal folds” (now 
called “parasitic folds”), are a result of layer-parallel slip associated with 
the larger fold (Fig. 3p). The identification of structural and fabric 
symmetry was also an important topic, as considered in several works, 
for example, the very term déjeté and or régard d'un pli used by French 
researchers (e.g., Thurmann, 1853, quoted by De Margerie and Heim, 
1888, p. 110; Favre, 1878, p. 205; Schardt, 1884, p. 153), which applied 
to an asymmetrical fold and suggests movement or tilting in a certain 
direction and toward the steeper side. Many older structural geology 

wax, plaster, and oil mixtures (after Willis, 1894). h) Avebury's (1903) experimental results on the 3D evolution of folds with depth (after Avebury, 1903). i) 
Meunier's (1904) experimental model investigating fold asymmetry and confining pressure relationships. j) Folds developed under pure shear and simple shear 
conditions (after Mead, 1920). k) Folds, faults, and fault-related folds developed in multi-layered models made of dampened clay and sand mixtures in different 
contractional and extensional settings (from Forchheimer, 1883). l) Fault-related folding resulting from horizontal shortening of a sand and clay multilayer sequence 
(from Schardt, 1884). m) Cadell (1889) simulating folds and thrusts with his experimental ‘squeeze box’ surrounded by the materials and devices used to conduct the 
experiments (after Cadell (1889). Cadell's watercolour illustrations summarizing the evolution (right to left) of folds and thrusts (Image courtesy the British 
Geological Survey). Bottom: Redrawn sketch of Cadell's (1889) folding and faulting experiments (from Cadell, 1889). n) Folds and fault-related folds developed in 
multi-layered models made of dampened sand, clay, and plaster (gypsum) mixtures under horizontal shortening conditions (from Paulcke, 1912). o) Folds and faults 
developed in multi-layered models that show the relationship between rheology and deformation pattern (from Lohest, 1913). p) Illustration of how parasitic folds 
develop in limbs of the major parallel fold (from Hall, 1815). q) Illustration of mechanical analysis of buckling with the formation of cleavage surface and sliding in 
the interface between different layers (from Smoluchowski, 1909). r) Experimental buckling of single layer (1–3) and multilayer (4–9) that show effects of thickness 
and spacing on fold geometry (from Currie et al., 1962). s) Formation of similar folds according to Carey (1962). t) Distribution of computed shear viscosities during 
25 to 90% shortening (from Parrish, 1973). u) Stages in the development of the finite strain patterns for the fold with a viscosity ratio of 42.1. The lines are oriented 
in the directions of the principal strains and their lengths are proportional to the quadratic extension (from Casey, 1976). v) Logarithmic viscosity distribution of 
linear-viscous finite element models of single layer folding under pure and simple shear (from Llorens, 2019). w) Finite element modelling showing the distribution of 
the maximum shear strain after 28% of bulk shortening and investigate the control of overburden, thickness, and detachment layers on the style of deformation and 
fold geometries (from Humair et al. (2020)). 
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text books (e.g., Geikie, 1908; Leith, 1913; Willis, 1923; Nevin, 1931; 
Willis and Willis, 1934; Billings, 1946; Hills, 1963; de Sitter, 1964) 
provided detailed considerations and analyses of folds and other struc-
tures based on fold geometry, kinematics and, to a lesser extent, 
mechanics. 

The first mechanical analysis of folding as a buckling problem was 

studied by Smoluchowski (1909), who computed the shape of waves in 
an elastic layer on a dense, inviscid, fluid substratum, and also noted 
that the formation of cleavage surfaces and sliding in the interface be-
tween different layers (Fig. 3q). The geological problem that interested 
Smoluchowski (1909) was the deformation of the Earth's crust on a soft 
mantle. However, from the late 1950s onwards, mathematical 

Fig. 3. (continued). 
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expressions were introduced to the structural geology community to 
explain folds and folding based on geometry, kinematic and continuum 
mechanic fashions. In this regard, Maurice Biot (1957, 1961) entered the 
field of geological folding theory with a paper in 1957 that had a huge 
impact on the geological community until the present day. Biot also 
produced several other benchmark papers (e.g., Biot, 1959, 1961, 1964, 

1965) that presented some ideas on the mechanisms of folding, espe-
cially the role of instability, arguing that rock deformation and fold 
shapes are governed by viscosity (a belief that is still held by some re-
searchers to the present day). However, the basic fold shape in his 
theories is sinusoidal for low-amplitude folds in an infinite medium with 
initial imperfections that are consistent with some observations. 

Fig. 3. (continued). 
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Ramberg (1959, 1961) arrived at the same equations as Biot (1957, 
1961) for the dominant wavelength for folding of viscous layers, although 
using different techniques and assumptions. Biot et al. (1961) rederived 
his earlier result and assumed perfect slip whereas Ramberg (1959, 
1961) assumed perfect cohesion between the layers. There were also 
some researchers who continued to develop the earlier single-layer 
elastic models. Carey (1962) considered passive similar folds, which 
had termed “rheid folds” by Carey (1953), formed by heterogeneous 
simple shear along the axial surface or “flow lines”, with no shortening 
normal to the shear flow direction (Fig. 3s), although he did not clearly 

name his mechanism. However, according to Flinn (1962), the classical 
concept of rheid folding is mechanically unrealistic. Flinn (1962) 
considered the movement of planes and lines in progressive homoge-
nous strain and showed that during homogeneous strain, no folds and 
boudins can be generated. Hence, he concluded that folds are a result of 
a process of buckling and strong flattening. Furthermore, Flinn (1962) 
emphasized that fold orientation is largely controlled by orientation of 
the finite strain axes and the pre-existing fabrics in a progressive bulk 
coaxial strain field of various strain symmetries, so that layer-parallel 
shortening of a horizontal layer gives upright folds with horizontal 

Fig. 4. a) Redrawn sketch of chevron folds identified and introduced by Reade (1886). b) Redrawn sketches of simple and composite folds classified by De Margerie 
and Heim (1888): 1) simple upright, symmetric fold, 2) simple asymmetric or inclined fold, 3) simple overturned fold, 4) simple recumbent fold, 5) simple isoclinal 
fold, 6) simple fan-shaped fold, 7) ideal composed fan fold. c) Parallel, and d) similar folds (after Van Hise, 1896a). e) Fleuty's (1964) diagram used for describing the 
orientation and classification of folds based on the geometric parameters of axial surface and hinge line (modified after Fleuty, 1964). f) Recumbent folds related to 
backsliding of Caledonian nappes, SW Norway. 
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fold axes, dipping layers give plunging folds, and vertical layers give 
vertical fold axes (Fig. 4e). Moreover, a folded layer can be lengthened 
and unfolded when rotated into the extensional field during progressive 
deformation. In addition, hinge orientation typically varies in layers 
oblique to the principal strain axes, which results in complex structural 
relationships, including non-cylindrical fold geometries. 

Currie et al. (1962) presented an elastic model concerning the me-
chanics of rock folding, in particular looking at the folding of sedi-
mentary rocks under tangential loads using stiff layers of rubber of 
varying thickness in softer photoelastic gelatine, and extended previous 
models to a multilayer formulation by considering layers of equal 
thickness, as well as neglecting friction between the layers and assuming 
the bending energy of each layer would be the same as its neighbour's 
(Fig. 3r). Following studies on structural analysis of geological struc-
tures and spatial and temporal relations of different structures and 
fabrics, the term tectonic style was introduced through an unpublished 
statement by M. Lugeon in 1948. This term refers to the total character 
of a group of related mesoscopic structures that distinguishes it from a 
group of comparable structures of another place or age to describe of all 
tectonic structures including folds (Turner and Weiss, 1963, p. 78–79). 
Hence, a tectonic style embraces all the morphological features that 
characterize a given structure. Fleuty (1964) proposed terms to define 
fold attitude (hinge and axial surface orientation) and tightness (inter-
limb angle), and these parameters became the basis for practical geo-
metric classification of folds (Fig. 4e, f). Fleuty's classification and 
terminology, which also helped link fold shape with strain, was quickly 
accepted and rigorously applied by the structural geology community. 
However, folding (and also refolding) of rock layers into a large range of 
different patterns was still rather enigmatic to structural geologists when 
John Graham Ramsay (1931–2021) began working out the details of 
fold geometry, classification, mechanisms in relation to stress and strain 
in a relevant mathematical framework, which lead to his landmark 
textbook “Folding and fracturing of rocks” (Ramsay, 1967). 

The use of numerical models, especially finite difference and finite 
element methods, since the late 1960s has greatly extended knowledge 
and quantitative understanding of the mechanical evolution of folding. 
Chapple (1964, 1968) was the first to publish computer simulations of 
buckle folding of a viscous layer embedded in a matrix of lower vis-
cosity, where the layer was initially in the form of a low-amplitude sine 
wave, and extended the infinitesimal analysis of Biot's theory using 
finite difference equations and calculating strain rates and finite strains. 
After that, the first fully two-dimensional finite element simulation of 
viscous buckle folding was performed by Dieterich and Carter (1969) 
and Dieterich (1970) with geometry predicted by Euler's method, who 
calculated the stress evolution (magnitude and orientation) in ampli-
fying single layer folds in a uniform isotropic plate, as well as the role of 
relative viscosity of the layer and media on the shape of high-amplitude 
folds. Hudleston and Stephansson (1973) obtained the same general 
results using the finite element method, but changed the amount of 
layer-parallel shortening during amplification and in order to compare 
the resulting fold shapes to natural folds. Parrish (1973) used the finite 
element method to study high-amplitude folding of power-law (non- 
Newtonian) material and obtained the same previous general results as 
Hudleston and Stephansson (1973) (Fig. 3t). Casey (1976) and Cobbold 
(1976, 1977) repeated some of the earlier works (e.g., Dieterich and 
Carter, 1969), using a more accurate and comprehensive method of 
numerically integrating the displacement rate solutions with the ge-
ometry predicted by Biot's theory of internal instability for successive 
stages in the amplification of a sinusoidal single layer buckle fold 
(viscous layer and matrix) and also patterns of cleavages around fold 
hinges (Fig. 3u). Since this pioneering time of computational structural 
geology and tectonics, an increasing number of more sophisticated nu-
merical models have been published (Fig. 3v, w) (e.g., Hobbs et al., 
2011; Llorens et al., 2013a, 2013b; Schmalholz and Mancktelow, 2016; 
Llorens, 2019 and references therein). 

4. 2D geometric classification of folds 

Most descriptions of fold shapes focus on 2D fold profiles perpen-
dicular to the fold hinge. Several graphical methods aim to do this: the 
Busk method deals with parallel folds; and the Higgins (1962) method 
uses concentric arcs. The following discussion uses the usual definition 
of the term ‘fold hinge’ as the row of points of maximum local curvature 
between two adjacent inflection points (i.e., points for which the cur-
vature equals to zero) on the profile of a folded surface. Fold hinges and 
inflection points are usually selected by visual inspection. In order to 
reduce and eliminate the errors, Srivastava and Rastogi (2010) devel-
oped HingeInflex, a numerical program developed in MATLAB® to 
accurately determine inflection and hinge points. This method calcu-
lates the curvature at different points along a curved profile, but can 
only analyse fold shapes described by a single-value function. Fold 
profiles may be analysed geometrically as either: (1) a set of layers with 
variable thickness defined by some geometrical attribute such as dip 
isogons, or (2) the form of a set of single boundary surfaces described as 
a geometric function (Whitten, 1966; Ramsay, 1967; Hudleston, 1973b, 
1973c; Stowe, 1988). Geometrical descriptions of folds and fold com-
plexes go beyond basic descriptions of limb dip, hinge-line plunge etc., 
but such descriptions usually form the foundation of a structural 
description that is independent of any geodynamic concept. 

4.1. Classification of profiles of individual folded surfaces 

4.1.1. Classifications based on the use of non-functional parameters 

4.1.1.1. Interlimb angle. For geometrical fold analysis, it is necessary to 
choose a fold parameter and select a reference system with two lines: 
one tangential to the fold profile curve at the hinge point (x-axis) and an 
orthogonal y-axis. In 2D analysis, the fold attitude can be described by 
simply specifying the plunge of the axial trace (Fig. 1a) in the fold profile 
plane. A fold profile is a two-dimensional projection of the fold onto a 
plane perpendicular to the fold hinge (Ramsay, 1967). As the hinge is 
the point of local extreme curvature between two inflection points 
(Fig. 1a) on the limbs, this definition fails for concentric folds with their 
limbs of constant curvature. To solve this problem, Adamuszek et al. 
(2011) described fold geometry using a fold geometry toolbox. This 
toolbox positions the fold so that all points in curvature-arc-length space 
between inflection points are fitted to a second-order polynomial. The 
local extreme in this polynomial represents the fold hinge (Fig. 1a). The 
topographically highest and lowest points of a fold, respectively, are 
called crest point and trough point (Fig. 1b), and these points do not 
necessarily coincide with fold hinge lines which are commonly found to 
be curved. Fold arc-length is the distance measured over the folded 
surface and twice the arc-length between two inflection points (Fig. 1b) 
(Hudleston, 1986). 

A variety of parameters have been used to describe fold geometry. 
Fleuty (1964) defined the term fold limb (Fig. 1a) as the part of the 
folded surface between adjacent fold hinges on the same surface. He 
used the interlimb angle (θ) (Fig. 1a) to describe fold tightness (Fleuty, 
1964, p. 470–471, Fleuty, 1987) as the minimum angle between the 
limbs as measured in the profile perpendicular to the fold axis, or the 
angle between the lines drawn tangential to the fold surface at the in-
flection points (Fleuty, 1964). Fleuty (1964) then used interlimb angle 
to describe fold tightness and differentiate between the following types 
of folds (Fig. 5): gentle (180◦ > θ > 120◦), open (120◦ ≥ θ > 70◦), close 
(70◦ ≥ θ > 30◦), tight (30◦ ≥ θ > 0◦), isoclinal (θ ≈ 0◦) (Tremlett, 1976) 
and elasticas or mushroom (θ < 0◦ or less than − 3◦). Measurements of 
interlimb angle can be obtained from images of fold profiles, by direct 
measurement in the field, or by plotting fold limbs on an equal-area net. 
For layer-parallel shortening, this angle is related to the amount of 
shortening perpendicular to the fold axial surface, and there are three 
main fold shapes for a particular limb dip: circular, sinusoid and chevron 
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folds (Currie et al., 1962; Treagus, 1997; Ghassemi et al., 2010). The arc- 
length of different fold shapes is expressed as mathematical functions by 
Ghassemi et al. (2010) for similar folding, and the evolution of the 
amplitude – half wavelength aspect ratio with respect to the maximum 
limb dip at inflection point, is introduced for each individual fold shape 
(Fig. 6). For chevron folds, this aspect ratio increases faster during fold 
tightening than for other fold shapes, even though slip often takes place 
and rotates the chevron fold limbs. From the sinusoidal shape, the 
amplitude – half wavelength aspect ratio decreases as limb rotation 
progresses, following the parabola, double hinge and ellipsoidal curves 
(Fig. 6). 

A quantitative description of fold shape based on statistical tech-
niques is proposed by Loudon (1964). He applied statistical moments to 
poles to bedding, expressed as direction cosines and considered each 
moment as a measure of any particular fold. The first two moments are: 

m1 =

∑N
i=1θi

N
, a measure of attitude (1)  

m2 =

∑N
i=1cos2θi

N
, a measure of tightness (2)  

where θi is the angle between the line joining inflection points and a 
bedding pole and N is the number of equi-spaced readings of θi. Other 
moments or combinations of moments can be used as measures of 
asymmetry, shape, skewness and kurtosis (the “tailedness” of the 
probability distribution of a real-valued random variable in probability 
theory and statics, or the sharpness of the peak of a frequency- 
distribution curve). These moments are a series of scalar quantities, 
with potential use for classification purposes and for regional analysis of 
folds. Whitten (1966) has also applied a more general version of Loud-
on's method to folds but was unable to calculate the statistical moments 
for individual folds, as most natural folds are non-cylindrical. The main 
disadvantage of this method is related to its application of statistical 
moments. In addition, Grose et al. (2017, 2019) adapted the technique 
so that the fold profiles and fold axis fields can be derived from struc-
tural measurements using spatially adapted statistical methods to the 
“fold coordinate system” that includes uncertainty characterization and 
sampling of the model space. 

Folds with equal interlimb angle can differ in tightness due to the 
variations in curvature along their profiles. For buckle folds, the shape of 
the fold in sections perpendicular to its axis (Fig. 1a) is related to the 
rheological behaviour of the folded multilayer sequence, which 
continuously controls the attitude of layers at increasing distance from 
the fold hinge. Ramsay (1967, pp. 349–351), suggested that the simplest 
way of defining the limits of the hinge zone is by comparing its curvature 
with that of a circular arc drawn with i1 i2 (inflection points of folded 
surface) as diameter. In this regard, that part where the fold curvature 
exceeds that of the circular arc can be defined as the hinge zone and the 
parts of the fold on either side of it where the curvature is less than that 
of the circular arc are defined as the fold limb (Ramsay, 1967; Price and 
Cosgrove, 1990). This definition is useful, but one of its limitations be-
comes apparent when applied to those folds where the amplitude to half- 
wavelength ratios (or curvature) are ≤1. 

Alternatively, the hinge zone is defined by two parameters P1 and P2 
to describe fold profiles. P1 is the ratio of the fold limbs lengths to the 
width of the hinge zone. P1 is then defined as the ratio of the length of 
projection of limbs on the line joining the inflection points to the length 
of the projection of hinge zone on the same line. Moreover, P2 is ob-
tained by expressing the maximum curvature of the folded surface as a 
ratio of the unit curvature of the circle drawn with two inflection points 
as a diameter. A limitation of this definition is that the values of both P1 
and P2 approach infinity as the hinge zone is reduced to a point as in a 
perfect chevron fold. Thus, Hudleston and Lan (1994) focused on the 
curvature of the fold hinge to evaluate the power-law exponent of 
viscous layers involved in buckle folds. They calculated the curvature, k 

(x), by fitting low-degree polynomials to the x-y coordinates used to 
represent shapes and evaluate Eq. 3 for a best-fit polynomial: 

k(x) =
d2y

/
dx2

[
1 + (dy/dx)2

]
3/2

(3) 

Increasingly angular hinges imply more localised and therefore 
higher hinge strains, and thus a higher power-law exponent. 

4.1.1.2. The classification suggested by Twiss (1988). Twiss (1988) and 
Twiss and Moores (2007), based on Fleuty's (1964) work, proposed three 
classifying parameters of fold style by comparison with the shapes of 
cylindrical surfaces. These parameters were: the aspect ratio P of the 
amplitude to the half-wavelength, the relative limb rotation or folding 
angle ϕ (= 180◦ – interlimb angle; this relation is valid for gentle to 
isoclinal folds) (Fig. 7a), and a measure of the relative curvature at the 
fold closure (the bluntness, b). The term fold style was used specifically 
about the set of geometric and morphologic features that describe the 
form of folds, notably cylindricity, tightness, symmetry, aspect ratio P, 
and bluntness (angularity). Fold style involves any geometrical feature 
that is common to a group or generation of folds, particularly in an 
orogenic belt or in a single lithological unit. 

In Twiss' (1988) fold classification, (a) the folding angle (Fig. 7a) in 
the range of 0–360◦ defines the three major types: Acute (0◦ < ϕ < 
180◦), Isoclinal (ϕ ≈ 180◦), and Obtuse (180◦ < ϕ ≤ 360◦) and six 
subtypes (gentle, open, close, tight, fan and involute), (b) if the aspect 
ratio, folding angle and bluntness fall within the range of 0.1 ≤ P ≤ 10 
(or − 1 ≤ logP ≤ 1) which defines five categories of folds as (Fig. 7b): 
wide, broad, equant, short and tall, and (c) if the bluntness falls within 
the range 0.0 ≤ b ≤ 2 it defines six fold types as sharp, angular, sub-
angular, subrounded, rounded and blunt (Fig. 7c) (Twiss and Moores, 
2007, p. 284–287). The bluntness in perfect chevron and circular folds is 
equal to 0 and 1, respectively. 

A challenge with Twiss' (1988) fold classification is that the results of 
its application cannot be fully represented on a two-dimensional dia-
gram so that natural folds will plot in the “impossible geometries” 
domain of the trapezoidal diagram shown in Fig. 7d. Moreover, data 
from complex multilayer buckle folds and macro-scale to regional folds 
as plotted on this diagram will show large errors. Twiss' (1988) diagram 
(Fig. 7d) has to our knowledge never been applied in published research. 
Furthermore, the classification of asymmetric folds is complicated by 
requiring six parameters (aspect ratio, folding angle, bluntness of 
closure, two inclination angles and the hinge tangent angle). In general, 
the simplest classification of asymmetry is the ratio between the short 
and long limbs, which is very easy to use. 

4.1.2. Mathematical classification of fold profile 

4.1.2.1. Classification using Fourier series. Several authors (Chapple, 
1968; Stabler, 1968; Hudleston, 1973a; Ramsay and Huber, 1987, p. 
314–316; Stowe, 1988; Singh and Gairola, 1992; Bastida et al., 1999, 
2005) have used Fourier series to describe single fold shapes, assuming 
that folds are naturally periodic. The Fourier coefficients were optimized 
using least squares fitting of the coefficients for a known wavelength. 
The advantage of this method is that a limb is approximated by a 
mathematical function, which is useful for further analysis of folding 
mechanism. 

The most commonly used Fourier transformation for folds was sug-
gested by Hudleston (1969, 1973a, pp. 15–26), who used only the two 
coefficients b1 and b3 of a sine series to classify the profile shapes of 
folded surfaces through a graphical representation of b1 vs. b3. In this 
regard, if f(x) is a periodic function with period 2π and integrable be-
tween – π and π, the form of the Fourier transformation useful to geol-
ogists is (Fossen, 2016): 

f (x) = b1sinx+ b3sin3x+ b5sin5x… (4) 
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Fig. 5. Geometrical fold classification based on interlimb angle (modified after Fleuty, 1964) with the following examples of folds: From the Zagros fold-and-thrust 
belt, the Parsi, Kabir Kuh, Kuh-e-Asmari, Kuh-e-Pahn, Khaviz, Sim, and Meymand anticlines; From the USA, the Teton anticline, Sheep Mountain, Teapot dome, 
Emigrant Gap anticline, Grand Hogback monocline, Raplee Ridge monocline, and the Transverse Ranges; From the United Kingdom, Bristol Channel and North 
Yorkshire; From Europe, Sant Corneli Bóixols in the Spanish Pyrenees, Mt. Catria and Majella anticlines in Italy, and Nerthe anticline in France; as well as examples 
from the Persian Gulf, the Strait of Hormuz, Canadian Rockies, the sub-Andean Ranges, the North Sea, North Africa, and eastern Arabia. 

Fig. 6. Diagram of interlimb angle and maximum limb dip of different fold shaped versus the aspect ratio (i.e. ratio of fold amplitude to half the wavelength) of the 
folds (modified after Ghassemi et al., 2010). 
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where b1 and b3 are called the Fourier Coefficients, which are considered 
as significant inputs into the description of fold shapes and are unique to 
each waveform. Hudleston (1973a) dropped the b5 components from 
this classification because it has little effect on the fold shapes and 
amplitudes. To apply this classification to natural folds, first select a 
sector of the complete layer between an inflection point and a hinge 
point. The coordinate y-axis is chosen so that it passes through the in-
flection point and is parallel to the axial surface of the fold. The x-axis of 
the coordinate system passes through inflection point perpendicular to 
the y-axis so that the origin is the inflection point. With this coordinate 
frame all the a-type Fourier coefficients become zero; only the b-type 
Fourier coefficients can be represented in the function. The values of 
these components can be obtained by finding coordinate values of any 
points on the original layer (Stabler, 1968): 

y1 = b1sinx1 + b3sin3x1 (5)  

y2 = b1sinx2 + b3sin3x2 (6)  

y3 = b1sinx3 + b3sin3x3 (7) 

By dividing the quarter wavelength fold sector into three equal parts, 
four determinants become very simple algebraic expressions and three 
ordinate measurements can be made to give the values (Stabler, 1968): 

b1 =
(

y1 +
̅̅̅
3

√
y2 + y3

)/
3 (8)  

b3 = (2y1 − y3)/3 (9) 

Fourier transformation or harmonic analysis distinguishes folds into 
six standard shapes, from A (box folds) to F (chevron folds) (Fig. 8a), 
with five standard amplitudes (from 1 to 5) (Fig. 8b). For example: 2-4E 
to 2-3F fold classes are tight-to-open angular, chevron folds, with nar-
row hinge zones and quite straight limbs. Folds are classified by their 
general style or may be given a definitive letter and number classifica-
tion to denote more exactly the amplitude-wavelength relationships. 
Hudleston's (1973a) scheme distinguishes 30 idealized fold profiles 
(Fig. 8b). 

Stabler (1968) and Hudleston (1973a) both used the sine terms of a 
Fourier series to characterize single-surface fold shape, and Fletcher 
(1979), Johnson and Pfaff (1989) and Cruikshank and Johnson (1993) 
have used the cosine terms to analyse fold shape (layer and surface) and 
its changes during fold growth from low to moderate amplitudes. 
However, it should be noted that the single layer fold profiles we see in 
natural examples are solutions to the Swift-Hohenberg equation (Swift 
and Hohenberg, 1977; Ord and Hobbs, 2019): 

∂w
∂t

= α ∂4w
∂x4 + β

∂2w
∂x2 + f (w) (10)  

where w(x,t) is the deflection of a layer during folding measured as the 
displacement normal to the layer from its initial condition, x is a dis-
tance measured along the layer, t is time, and α, β are constants. In this 
equation, f(w) is a function that expresses the resistance in the matrix to 
the deflection of the layer. This expression was solved assuming f(w) to 
be a linear function of w (Biot, 1965), whereas in principle, the resultant 
fold profile could be quite irregular so that the solution is a localised fold 
rather than a sinusoidal fold train. 

The Fourier approach is particularly useful for sinusoidal fold shapes 
whereby a limb can be approximated by a single mathematical function. 
One the negative side, it cannot be applied to chevron, elliptical or box 
folds. Upon inspection of the shapes of Hudleston (1973a) fold classes, 
we find that certain fold classes are defined by the ratio b3/b1, while the 
others involve variable ranges of b3/b1 values. The ratio b3/b1, or the 
slope on a graph of b3 against b1, is a sensitive indicator of shape, and 
varies from negative values for straight-limbed folds, through zero for 
sinusoidal shapes, to positive values for folds with rounded hinges and 
short limbs (Hudleston and Lan, 1994). Another limitation is that two 

Fourier coefficients can give only a rough approximation of the func-
tions that describe fold morphologies (Stowe, 1988). Singh and Gairola 
(1992) reduced the ranges by adding eight more classes to Hudleston 
(1973b) classification. The ranges could be reduced still further by 
introducing more new classes. However, this would probably only in-
crease the confusion in the nomenclature of fold shapes. 

Schemes based on Fourier analyses do not describe fold asymmetry. 
Hence, Tripathi and Gairola (1999) proposed a classification of folds 
based on a concept of ‘degree of symmetry’ (DA). DA is deduced from the 
Fourier coefficients that define the shape and size of the two limbs of the 
fold. The degree of asymmetry of a folded surface, from one inflection 
point to another, is thus a function of the distance between the two 
points, which represents two limbs of an asymmetric fold, on the b3 vs b1 
graph from the origin. In this regard, the degree of asymmetry is the sum 
of the differences in the aspect ratio (or size component) (Δsize) and the 
shape component (Δshape) of the two limbs of an asymmetric fold (Tri-
pathi and Gairola, 1999). A problem with this method is that the degree 
of symmetry does not express the extent to which the asymmetry is due 
to differences in shape or amplitude. Profiles of symmetric folds are 
characterized by a mirror plane of symmetry that passes through the 
closure and is normal to, and bisects, the median line segment between 
adjacent inflection points. Asymmetric folds have a shorter and steeper 
limb called a forelimb and a longer and gentler limb called a backlimb 
(Fig. 9). In order to represent the fold asymmetry on a 2D coordinate 
graph, it is necessary to describe this geometrical feature using only two 
parameters, but such a description is not complete. Bastida et al. (2005) 
improve this classification scheme by defining the degree of asymmetry 
as the ratio of “shape asymmetry” Sa = Ab/Af and “size asymmetry” Aa =

y0b/y0f, where Ab and Af are, respectively, normalised area of the 
backlimb and forelimb. The normalised area is the ratio of the area 
between the limb area and the rectangular area that bounds the limbs 
(Fig. 9). Also, y0b and y0f are the y0 parameters of the backlimb and 
forelimb, respectively (Fig. 9). The plot of these parameters in a diagram 
of Sa against Aa for all folds of a specific set allows visualization of the 
variation in asymmetry of these folds. 

Schemes based on Fourier analyses do not describe the degree of 
harmony of multilayer folds. This problem was partly solved by Sri-
vastava and Gairola (1997) who proposed classifying multi-layered folds 
using an ‘Index of Non-Harmony’ (INH), that describes the degree of 
variation in shape of different fold surfaces. In this classification, INH =
1000σn, and: 

σn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
∑

x2) − (
∑

x)2
/

n
n

√

(11)  

where n is number of fold surfaces and x = b3/b1. Values of INH of 
multilayered folds are classified as ‘Strictly Harmonic’ (INH = 0), ‘Per-
iharmonic’ (0 < INH ≤ 15), ‘Subharmonic’ (15 < INH ≤ 30), ‘Sub-
nonharmonic’ (30 < INH ≤ 45), ‘Nonharmonic’ (45 < INH ≤ 75) and 
‘Strongly Nonharmonic’ (INH > 75) (Srivastava and Gairola, 1997). This 
classification is limited, for example by being based on the b3/b1 ratio 
and not on the actual geometry of the fold surfaces. This implies, 
theoretically, that disharmonic multilayer buckle folds sharing the same 
shape but with different wavelengths and amplitudes (e.g., concentric 
semi-circular folds) may offer a ‘strictly harmonic’ fold class because the 
constitutive surfaces share the same b3/b1 ratio. 

A harmonic fold is simply defined as being continuous along its axial 
surface for many multiples of the half wavelength, whereas a dis-
harmonic fold dies out within a couple of half wavelengths (Twiss and 
Moores, 2007, p. 289; Fossen, 2016, p. 259). Multilayer folds formed by 
active folding die out in both directions along the axial surface trace, 
unless the fold ends at a discontinuity. In this regard, the half wave-
length may be approximated by the spacing of adjacent axial surfaces (S) 
(Twiss and Moores, 2007, p. 290; Alsop et al., 2020), and the continuity 
of the axial surface (D) (or the depth of folding; see Twiss and Moores, 
2007, p. 289–290) may be directly measured to produce a scale- 
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Fig. 7. a) The folding angle, interlimb angle, and 
symmetry of the folded surface. The folding angle 
ϕ is the angle between the normal to the folded 
surface constructed at the inflection points. b) 
Geometries of symmetric folds with various 
values of aspect ratio P. c) Geometries of sym-
metric folds with various values of bluntness b (a- 
c after Twiss and Moores, 2007). d) Plots of 
natural data sets on the trapezoidal system (log-
arithm of aspect ratio versus tightness) of Twiss's 
(1988) fold classification. For a given trapezoid, 
differences in fold style are defined by the 
bluntness. Modified after Twiss (1988).   
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independent measure of the harmony (H) which is equivalent to the 
ratio D/S. Fig. 10 shows three examples of upright to asymmetric dis-
harmonic folds. In general, plots on the D – S graph show that the dis-
tance (D) that individual meso-scale folds can be traced along their axial 
surfaces increases as the maximum spacing (S) between adjacent axial 
surfaces becomes greater (Fig. 10). In addition, the ratio H ranges 25 to 
4, and is shown to reduce in a non-linear way as S increases (Fig. 10). In 
some cases, individual folds may form en-échelon arrays within the 
folded multilayer sequence. These folds do not geometrically interlink 
and do not therefore create refold patterns. 

4.1.2.2. Classification using power function and conical curves. Bastida 
et al. (1999) proposed classifying fold shapes using a power function to 
characterize single limbs of fold profiles. They describe how to convert 
the shape parameter obtained from a given classification to the corre-
sponding shape parameter for another scheme: 

y = y0

(
|x|
x0

)
n (12)  

where n characterizes the fold shape, x0 and y0 are the coordinates of the 
inflection point, and y and x are the parallel to the vertical fold axial 
surface and horizontal coordinates, respectively within the interval 
[− x0 , x0]. In order to avoid the fold size effect, a normalised area, 
defined as the ratio between the area under the fold and the area under 
chevron fold with the same aspect ratio (or 2A/x0y0) is used (Fig. 11a). 
Using these functions, a fold limb can be described by two parameters: 
(1) the exponent (n) of the corresponding power function describing the 
limb shape (n = A

x0y0 − A), and (2) the aspect ratio or normalised ampli-
tude, y0/x0, which is the ratio between the height and the width of the 
limb (Fig. 11a) (Bastida et al., 1999, 2005; Lisle et al., 2006). The 
amplitude and wavelength depend on layer thickness and viscosity 
contrast, so that the wavelength increases and the amplitude decreases 
with increasing layer thickness and viscosity contrast. 

The following n values characterize some distinctive fold shapes 
(Fig. 11b): (1) n < 1 for cuspate folds; (2) n = 1 for chevron folds; (3) n 
= 2/(π – 2) ≈ 1.75 for sinusoidal folds; (4) n = 2 for parabolic folds; (5) n 
> 2 for double hinge folds, and (6) n → ∞ for box folds. Cuspate-lobate 
folds are trains of low-amplitude short wavelength folds with narrow 

sharp hinges in one direction and broad rounded hinges in the opposite 
direction. They are characteristic of compressed interfaces separating 
layers of strongly differing mechanical competence, so that the lobate 
folds are cored by the more competent and cuspate folds by the less 
competent material (i.e., cusps always point into the material with 
higher viscosity) (Ramsay and Huber, 1987, p. 394; Fossen, 2016). 
Cuspate-lobate folds formed in competent layers tend toward a perfect 
circular (concentric) shape (subclass 1B, see Subsection 4.2.1) with a 
maximum layer-parallel shortening of 36% (de Sitter, 1964; Ramsay, 
1967), and a wavelength close to twice the layer thickness. Cuspate- 
lobate folds formed in an incompetent layer of thickness t enclosed in 
a more competent medium tend to form class 3 folds (Zagorčev, 1993). 
The power functions approximate well the geometry of folded surface 
profiles with interlimb angle >0◦. The system chosen by Bastida et al. 
(1999) is formed by the tangent to the profile at its hinge point (x-axis) 
and its normal through this point (y-axis). This selection may cause 
practical problems of accurately determining the hinge and inflection 
point, a problem discussed by Aller et al. (2004). 

Conic sections, as the method of mathematical function to descrip-
tion the geometry of folded surface profiles, have been used as a 
convenient way to characterize non-cylindrical folds or parts of folds (e. 
g., Dahlstrom, 1954; Twiss and Moores, 2007, p. 278; Davis et al., 2011, 
p. 365), even though it represents a simplification of most natural non- 
cylindrical fold shapes (Welker et al., 2019). Conic curves correspond to 
planar sections through a circular cone at different angles (Fig. 11). The 
shape of the conic depends on the orientation of the section, and lies in a 
spectrum of shapes ranging from closed ellipses with different aspect 
ratios, to parabola, and then through to hyperbolas with different aspect 
ratios (Fig. 11c). This progression in shape is expressed by an increase in 
the eccentricity, e (the amount a conic section deviates from being 
perfectly circular); this is the distance from a general point on the 
conical curve to a fixed focus divided by the distance from the general 
point to a fixed straight line. When 0 ≤ e < 1, the result is an ellipse, 
while e = 1 defines a parabola, and (e > 1) a hyperbola. The aspect ratios 
of the limbs h, defined as the ratio between their height and width of the 
limb considered (Aller et al., 2004) suggest that natural folds show a 
variety of shapes and amplitudes similar to the range exhibited by parts 
of conic sections with different eccentricities and axial ratios. However, 
Aller et al. (2004) point out a drawback in using eccentricity as a 

Fig. 8. a) Graphic method of plotting fold shape using Fourier coefficients (modified after Hudleston, 1969, 1973a). The stippled area is where double hinged folds 
occur. The letters A to F describe overall fold shape, and the numbers 1 to 5 relate to the amplitude number, which used for visual harmonic analysis and 30 ideal fold 
form defined between inflection and hinge points (b). Modified after Hudleston (1969, 1973a). 
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classification parameter, which is that the admissible range of e for 
conics depends on their aspect ratio. Instead, they preferred to use the 
normalised area (as defined by Bastida et al., 1999 and Lisle et al., 
2006), which is a fundamental variable for a two-dimensional descrip-
tion of folds. A classification scheme of folds with a set of conic standard 
shapes to facilitate the classification of natural fold profiles by visual 
comparison is shown in Fig. 11d. This scheme shows a range from 
chevron to elliptical folds, similar to the Hudleston (1973a) fold classi-
fication (Fig. 8b). Cuspate folds and isoclinal folds, except those 
approaching a quarter of an ellipse, cannot be fitted by a cone. However, 
isoclinal folds can be fitted by a function composed of a quarter of an 
ellipse and a line segment of length c that is a prolongation of the ellipse 
arc, so that c/y0 ratio allows us to extend the range of fold shapes with a 
possible fit as far as the box fold (Fig. 11) (Aller et al., 2004; Bastida 
et al., 2005). 

4.1.2.3. Classification using Bézier curves. A Bézier curve (Bézier, 1966, 
1967) is a cubic equation that can be used to simulate many natural fold 
shapes. It consists of one or more polynomial segments concatenated in 
daisy-chain fashion (Srivastava and Rastogi, 2010; Gogoi and Mukher-
jee, 2019). Each segment of such a curve is uniquely defined by the 
position of four points (two end points and two control points) labelled 
Pj, where j = 0, 1, 2, 3, … to classify fold profiles (De Paor, 1996; Sri-
vastava and Lisle, 2004;Srivastava et al., 2010; Srivastava and Rastogi, 
2010). It always follows end point interpolation property, i.e., it passes 
through the first and last control points. Bézier curves are always 
tangent to the control polygon at the endpoints. Through this property, 
sequential Bézier curves are joined easily at their end control points, 
which ensures that complicated shapes can be drawn with elegance. 
Using Bézier curves, the process of designing shapes can be quickly 
mastered by just moving the control points. Most 2D graphic drawing 
software packages use Bézier curves. Srivastava and Lisle (2004) used 
computer-aided Bézier curve analysis by three points: P0 (0, R), P1 (L, R) 
and P2 = P3 (1,0) to describe fold shapes (Fig. 12a). The distance L be-
tween P0 and P1 determines the fold shape (or shape of the curve), whose 
simplified parametric equations, with relation to the reference frame 
shown in Fig. 12b are: 

x(t) = 3(1 − t)2t L+ 3(1 − t)t2 + t3 (13)  

y(t) = R
{
(1 − t)3 + 3(1 − t)2t

}
(14) 

The parameter t marks progress along the Bézier curve from the start 
point (P0), where t = 0, toward the end point (P2), where t = 1. The 

parameter R is the aspect ratio (= A/B), where A is amplitude and B is 
base length (Fig. 12b). Note that only two parameters, L and R, are 
needed to define the fold shape. L is here related to the distribution of 
curvature on a single fold limb between the hinge and inflection points, 
while R relates to the amplitude/wavelength ratio. The effect of varying 
L and R on fold shapes modelled as Bézier curves is shown in an L – R 
graph (Fig. 12c, d). On the L – R graph, L = 0, corresponds to chevron 
folds with straight limbs and curvature concentrated at the hinge. L =
0.44, 0.55 and 1 correspond to cosine curves, parabolic folds and 
elliptical folds (by ductile flow), respectively (Fig. 12c, d) (Srivastava 
and Lisle, 2004; Lisle et al., 2006). Slight variations in amplitude, 
interlimb angle and frequency of folding indicate that folds can develop 
parasitically on the rear of a macroscopic fold (Ramsay and Huber, 
1987, pp. 320, 454). 

Lisle et al. (2006) offered a MATLAB® code for classifying profiles of 
folded surfaces with a versatile program called FOLD PROFILER that 
incorporates four existing methods: cubic Bézier curves, conic sections, 
power functions and super-ellipses. Classification by FOLD PROFILER 
compares natural fold profiles with curves representing mathematical 
functions (Fig. 12c, d). This allows for rapid implementation of the four 
methods above for the analysis of fold shapes, but has the disadvantage 
that the results are sensitive to the user's selection of the position of the 
fold hinge point and where to measure the tangent to the limb slope. The 
main advantage of this method is that the theoretical curves are 
repeatedly remodeled during the fitting procedure, giving an immediate 
appreciation of the effect and sensitivity of changes in these parameters. 
Liu et al. (2009) also developed the program ‘Bézier Fold Profiler’ and 
determined a classification of folds based on two parameters: the axial 
lift-up ratio of the central part of a fold (=lFD/lAD) (Fig. 12c) to describe 
the distribution of curvature between the hinge point and the inflection 
point, and the interlimb angle. This approach generates folds with a 
broad spectrum of forms ranging from box folds to chevron folds. Nat-
ural folds are rarely isolated structures so, in order to simulate complex 
natural folds, three more parameters are used; the angle through which 
the axial surface is deflected, the increment of thickness of the hinge 
zone, and the limb elongation (Liu et al., 2009). 

4.2. Classification of profiles through folded layers 

4.2.1. Ramsay's dip isogon classification 
Ramsay (1967) recognized that the issues of fold curvature and layer 

thickness in describing fold shape could not be adequately covered by 
just having parallel and similar folds. Thus, he considered the many 

Fig. 9. Definition of breadth, amplitude, aspect ratio and normalised area of a forelimb and backlimb in an asymmetric folded surface. Modified after Lisle 
et al. (2006). 
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variations between these two kinds of folds such as changes in layer 
thickness through the fold and also changes in curvature in successive 
layers within a multilayer fold. His geometrical classification of folded 
layers is based on patterns of dip isogons, orthogonal thickness (tα) and 
the thickness parallel to the axial surface (Tα). He also advocated 
measuring the variation of orthogonal thickness with distance along the 
bedding plane in fold profiles, and the variation of layer thickness par-
allel to the axial surface with the distance to the axial surface (Fig. 13). 
Such classifications were very influential and have long played an 
important role in the study of fold morphology and in elucidating the 
principal folding mechanisms (Ramsay, 1967; Hudleston, 1973a). Note 
that the axial surface of the fold is determined from the axial trace and 
the fold axis. The axial trace drawn through the points of maximum 
curvature of the bedding planes and defines the strike of the axial sur-
face. The axial trace can also come from intersection of the axial lane 
and any other plane (e.g., erosional or folded surfaces). The axial surface 
of a cylindrical fold can be found by connecting the centres of ellipses 
(elliptical outcrop pattern of cylinder on a plane topographic surface) 

drawn tangential to several folded surfaces in their hinge zones 
(Stauffer, 1973). This technique may also be applied to asymmetric 
cylindrical folds. The axial surface contains both the strike line and the 
fold axis. The orientation of a fold axis controls the attitude of folded 
layers in a direction parallel to the fold axis. 

Ramsay (1967) uses the concept of curvature, measured on cross- 
sections through cylindrical folds, to establish a classification scheme 
for the relationship between adjacent folded surfaces. In cylindrical 
folds, every surface can be defined by a straight geometric line parallel 
to the hinge line known as the fold axis. Elliott (1965) introduced the 
useful concept of ‘dip isogon’ as the lines (or curves) joining top and 
bottom points of equal dip (α) of a layer in the fold profiles or on 
adjacent folded layers (Figs. 13a and 14a, b). Constructing several dip 
isogons on the fold profile exhibit one of three patterns: divergent, 
parallel or convergent isogons from outer arc and inwards. Often, iso-
gons are drawn at 10◦ intervals for each surface (Peña, 2001), but the 
choice is dictated by the actual form of the fold. Ickes (1923), in 
determining the geometry of parallel, similar and neutral-surface 

Fig. 10. Harmonic and disharmonic fold analysis in three natural examples from Cap de Creus, Spain. The half wavelength of folds is approximated by the spacing (S) 
of adjacent axial surfaces (shown in red and blue), while the continuity of the axial surface may be measured directly (D) to produce a ratio (H) that is equivalent to 
D/S (see Twiss and Moores, 2007, p. 289–290). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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folding used isogons in the same way as described here, although he did 
not use the term isogon. The zero-degree isogon can be taken as a 
reference isogon for such analysis. Ramsay (1967) used patterns of 
isogons, together with folded layer thicknesses to separate folds into 
three classes, where Class 1 has convergent isogons, Class 2 has isogons 
parallel to the axial surface (similar folds), and Class 3 has divergent 
isogons (Fig. 13b). There are three subclasses for Class 1: 1A, 1B (parallel 
folds) and 1C (Fig. 13b). Convergent isogons imply that the curvature of 
the inner arc is greater than that of the outer arc, and this case is reversed 
for divergent isogons. Note that the degree of convergence of isogons 
reduce from subclass 1A toward 1C, and generally from Class 1 - Class 3. 
Subclass 1A was first recognized by Nevin (1931) as supratenuous folds 

(where layer thickness decreases in the hinge zone), and were, together 
with parallel and similar folds, included in a rarely used three-fold 
classification (Willis and Willis, 1934, pp. 34–38). If curvatures are 
compared for both interfaces of the same layer, then the curvature class 
for the waves of the layer can be expressed by two numbers e.g., 1,3 or 
2,2 etc. (Chadwick, 1976). Perfect concentric and kink folds are exam-
ples of parallel folds, and perfect chevron and box folds exemplify 
similar folds. Similar folds are most common structures in orogenic 
hinterlands and are often assumed to have been flattened buckles in 
upper crustal rocks deformed at low metamorphic grades (Ramsay and 
Wood, 1973). They are also common in sheared rocks with little or no 
rheological layering, such as marbles and quartzites. In some folds called 

Fig. 11. a) Classification of shapes of the folded surface based on the diagram of aspect ratio versus normalised area (modified after Bastida et al., 1999, 2005; Lisle 
et al., 2006). b) Some of the main fold morphologies obtained from monomial functions with several values of exponent n and normalised amplitude (after Bastida 
et al., 1999, 2005). c) Main types of conic sections resulting from the intersection of a right circular cone and a plane. d) Chart of conic standard shapes that can be 
used in the classification of natural fold profiles by visual comparison. c is a prolongation of the ellipse arc, and c/y0 is the normalised length (after Aller et al., 2004). 
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“constrained fold”, both the normal and vertical thickness are variable, 
and their amplitudes die out systematically toward boundaries (Ramsay, 
1962, 1967; Johnson and Pfaff, 1989). Ramsay (1967) used also the 
normalised orthogonal thickness tα′ (= tα/t0), the normalised axial sur-
face thickness, Tα

′ (= Tα/T0), and the limb dips (α) for graphically 
classifying natural folds. He suggested plotting these two derivatives of 
thickness against limb dips as the fold class depends on how the dip 
relates to the tangent of the curve tα′ (Figs. 13b and 14c, d). It may be 
possible to measure specimens of mesoscopic folds directly, but not on 
larger or smaller scale folds. Ramsay's (1967) dip isogon classification of 
folds is applied in Fig. 14 to a meso-scale fold profile in the Rabassers 
quartzite layers (Cap de Creus, Spain) perpendicular to the fold hinge. 

Four morphological types of similar folds were proposed by Yakovlev 
(2008) based on the ratio of the competent layer thickness to the total 
thickness of rock sequence. They are (Fig. 15): (1) ‘Single viscous layer 
folds’ (Fig. 15a) if the ratio of the competent layer thickness to the total 
thickness of rock sequence is smaller than ~0.1, larger folds have more 
gentle shapes with hinges wider than 10–100 the layer thickness and 
relatively short limbs. However, the higher-order single viscous layer 
folds are mainly formed in the hinge space of larger folds. (2) ‘Multilayer 
folds’, forming when the competent layer thickness is ~0.3–0.7 of the 

total thickness of the folded rock sequence (Fig. 15b). They have widths 
narrower than ~10 times the total thickness of rock sequence and 
relatively long limbs. If slates and sandstones develop a cleavage, the 
cleavage fan opens upward in competent layers in anticlines and opens 
down in incompetent layers. The switch from a convergent fan in the 
inner arc to a divergent fan in the outer arc can be associated with the 
migration of the neutral line from the outer toward the inner arc with 
increasing shortening (Frehner and Exner, 2014; Bobillo-Ares et al., 
2017). (3) ‘Chevron-type folds’ form where the competent layers 
comprise more than ~0.8–0.9 of the total thickness of rock sequence 
incorporating a high viscosity contrast (Fig. 15c). The mechanical 
interaction between layers during folding can influence the develop-
ment of chevron folds, as explained by Johnson and Ellen (1974), 
Johnson and Honea (1975), and Ramberg and Johnson (1976). Fowler 
and Winsor (1996), chevron folds often form in the cores of concentric 
folds. Various terms have been proposed to apply to the space problems 
than often develop in chevron and parallel-type folds. Examples are fold- 
accommodation faults, bulbous hinges, hinge collapse (inner-arc 
collapse with volume loss), the filling of hinge voids by crystallizing 
minerals (i.e., saddle reef; Ramsay, 1974; or fold-related veins, Druguet, 
2019), outer arc stretching, flow of incompetent material from the limbs 

Fig. 12. a) A cubic Bézier curve defined by 
four control point, P0-P3. The parameter t 
describes progress of a moving point along 
Bézier curve. b) Reference frame and geo-
metric elements of the simplified cubic 
Bézier curve used to fit and classify folded 
surface profiles (after Srivastava and Lisle, 
2004; Srivastava and Rastogi 2010). Fold 
classification based on Bézier curve method 
(after Srivastava and Lisle, 2004): c) Classi-
fication scheme based on aspect ratio and 
shape. Lift-up ratio (==lFD/lAD) is used to 
describe the distribution of curvature be-
tween the hinge point and the inflection 
point, where lFD and lAD represent the length 
of the line segments FD and AD in which B, F 
and C are the three control points of the 
bottom layer (after Liu et al., 2009). d) 
relation of classification scheme to standard 
mathematical function. ILA is interlimb 
angle.   

S.T. Nabavi and H. Fossen                                                                                                                                                                                                                    



Earth-Science Reviews 222 (2021) 103812

21

to hinges and flowage of interbedded competent and incompetent ma-
terial that might include welding, and S-C structures that thin the limb 
(e.g., Ramberg, 1963a, 1964; Ramsay, 1974; Boyer, 1986; Mitra, 2002; 
Hudleston, 1986; Hudleston and Tabor, 1988; Ormand and Hudleston, 
2003; Jeng and Huang, 2008; Bastida et al., 2007; Deng et al., 2013; 
Torremans et al., 2014). A common situation is where diagenetic cracks 
in a competent layer are perpendicular to bedding, the cleavage of slates 
may be used for measuring a shortening value, and (4) ‘Stack folds’ or 
‘Counter thrust folds’ form if slates and sandstones have no cleavage, 
and the viscosity contrast of layers is low (~ 2 and smaller) due to 
numerous hinge wedge thrusts on the opposite limbs of the folds 
(Fig. 15d). The folds have sharp hinges where neighbouring thrusts have 
long limbs and are ~1–2 layer thicknesses apart. The necessary increase 
in thickness of layering in the hinge (similar h/H ratio, Class 2) exists 
due to doubling of inter-thrust units. Because almost pure buckling 
(rotation of limbs) is active, the dip angle of limbs relative to vertical 
axial surfaces relates to their percentage shortening value. In general, 
the main geometrical characteristics of ideal similar folds can be 
explained as the result of the heterogeneous rotation shear (Bobillo-Ares 
et al., 2018). 

Ramsay's (1967) classification of folds is often used because it is non- 
genetic and easy to apply. This classification has two bases: (1) a lateral 
basis, that compares the curvatures of the inner to the outer arcs across 
one folded layer; and (2) a transverse basis, which is based on the angle 

though which the layer interfaces are deflected. Different deflection 
angles result in asymmetric (V-type), antisymmetric (W-type) and 
symmetric (X-type) fold classes (Chadwick, 1976). Ramsay (1967) also 
related fold geometry to mechanism, suggesting that single layer folds 
that fall into Class 1A and Class 3 signal that their evolution involved 
differential shortening across their axial surfaces, while a combination 
of Class 1B and Class 1C geometries signals by flexural slip. Fold 
mechanism can often be explored by evidence of (1) slip and slip sense 
from striae and slickenfibres, (2) hinge dilation, (3) boudinage with 
bedding-perpendicular veining, (4) or complex arrays of extension 
veins, shear fractures or stylolites near fold hinges, and (5) flexural slip 
developed only in the latest stage of folding (Dubey, 1980; Behzadi and 
Dubey, 1980; Dubey and Behzadi, 1981; Tanner, 1989; Jacques et al., 
2014). Class 2 suggest shear folding or a mechanism involving slip or 
flow (e.g., Ramsay, 1967). Shear folds are Class 2 folds formed by 
heterogenous simple shear, where the shear plane parallels the axial 
plane of the fold. A transition from Class1B to Class 1C folds in 
competent layers is indicative of the migration of material from the fold 
limbs to the fold hinges. This migration could be related to either 
volume-loss or a superimposed homogeneous flattening (Jacques et al., 
2014). Hence, a unit circle of Class 1B fold obtained by the “Inverse 
Thickness Method” of Lisle (1992b) changing to an ellipse, so that the 
axial ratio of this ellipse gives the finite flattening strain ratio. 

A refinement of fold classifications was made by Donath and Parker 
(1964), where their classification is a generic-mechanical scheme based 
on mean ductility and ductility contrast (or absence of such) within the 
folded sequence. Although this scheme contrast with the descriptive 
classifications, it has long been employed by geologists because it can be 
used in the field. Donath and Parker (1964) classified folds into three 
main groups based on mechanism: (1) flexural folds, (2) passive folds, 
and (3) quasi-flexural (disharmonic) folds (e.g., Davis, 2014). The 
overall combination of buckling, flexural-slip, and tectonically driven 
pressure solution fashioned the quasi-flexural folds. Note that flexural 
flow in this classification (the thickening of the hinges during buckling) 
differs from flexural flow as used by Ramsay (1967) who used it for a 
combination of buckling and homogeneous flattening. Friction between 
layers is an essential factor in flexural-slip folding, where low and high 
friction favours the development of concentric and kink folds, respec-
tively (Honea and Johnson, 1976; Tanner, 1989; Hudleston et al., 1996; 
Damasceno et al., 2017; Wu et al., 2019). 2D visco-elastic, plane strain 
FE-models (Damasceno et al., 2017; Wu et al., 2019) indicate that 
flexural-slip does not occur continuously during buckling. Overall, the 
temperature and pressure at which flexural-slip occurs are generally 
low. Instead, each frictional interface is activated and deactivated in a 
hierarchical sequence during folding. Moreover, the ratio of incompe-
tent to competent layer thickness is a crucial parameter in the devel-
opment of multilayer chevron folds. 

The spacing between individual layers in a multilayer package also 
plays an important role in the behaviour of the mechanism of folding 
and the harmony of the fold geometry. If the spacing is sufficiently large, 
each individual layer folds as an active single layer independently of the 
others, forming disharmonic folds (Ramberg, 1962, 1964). In multi-
layers composed of alternate incompetent and competent layers, the 
competent units develop Class 1B or Class 1C folds and the incompetent 
layers develop Class 3 folds (Ramsay, 1967). Material model experi-
ments by Hudleston (1973b) demonstrate that simultaneous buckling 
and flattening is also an efficient mechanism for developing Class 1C 
folds, particularly in situations where the initial wavelength of folds is 
much larger than the wavelength predicted by buckling equations and 
the viscosity contrast is very low. Folds in this category must either 
change their styles from layer to layer, or some structural discontinuity 
must develop in the folded sequence. Thus, it can be said that the ge-
ometries of folds of a multi-layered sequence are also a function of the 
number of layers as well as their mechanical properties. 

Fig. 13. a) Definition of layer inclination (α), dip isogon, orthogonal thickness 
(tα) and thickness parallel to axial surface (Tα) of a folded surface (modified 
after Ramsay, 1967; Ramsay and Huber, 1987). b) Fold types defined on thetα′

− α diagram (modified after Ramsay, 1967; Ramsay and Huber, 1987). 
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4.2.2. Problems with Ramsay's dip isogon classification 
Fold thickness is a standard measurement for geometrical analysis 

and classification of folds. Ramsay's (1967) dip isogon classification has 
a rigorous mathematical basis, but it is difficult to measure the required 
data accurately if photographs of axial profiles are not available. This 
classification scheme does not also include folds such as chevron, kink 
and box folds whose profiles contain straight limbs and sharp hinges. 
Moreover, where dip is small, it is difficult to determine the exact 
tangent point to measure. Any inaccuracies will introduce errors in the 
classification. To ease this problem, Ramón-Lluch et al. (1989) provide a 
computer program aimed at eliminating the usual subjectivity in this 
type of measurement, making them easier and faster to use. The 
Applesoft BASIC program is called RAFOLD and automatically calculates 
the dips of different parts of a large fold. Ramsay (1967) defined the fold 
thickness as the distance between two parallel lines tangent to the upper 
and lower fold interface and measured thickness parallel to the axial 
surface or perpendicular to the tangents. Alternatively, Sherwin and 
Chapple (1968) defined thickness as the distance between folded in-
terfaces as measured perpendicular to one interface. When discussing 
the definition above Adamuszek et al. (2011) mentioned that the 

thickness between the upper and lower interface is an imprecise defi-
nition of the axial surface and not applicable to generic fold shapes with 
complex geometries. However, the average thickness of a fold train can 
be defined by dividing it into discrete folds based on the solution of 
Laplace's equation and then using the FE-method solver code MILAMIN 
that divides folds based on the location of inflection points on their 
upper and lower interfaces (Dabrowski et al., 2008). Other problems 
with Ramsay's (1967) classification include: (i) it treats each layer 
separately rather than taking a multilayer fold as a single unit – a 
problem partially solved by Srivastava and Gairola (1999) (see subsec-
tion 4.2.3)., and (ii) the difficulty of positioning a hinge zone (Roder, 
1978), and identifying the reference thickness (t0) to determine tα′. 
Ramsay (1967, p. 369) acknowledged that even though most folds have 
properties that conform to his isogon-based t′ − α fold classification, 
there remain complexly shaped folds with curved hinges and axial sur-
faces formed during progressive or multiphase heterogeneous defor-
mation (Fossen et al., 2019; Carreras and Druguet, 2019) that do not 
easily fit into this classification. Another limitation of Ramsay's (1967) 
classification was discussed by Hudleston (1973a), who introduced the 
new parameter (ϕα) and designed a new graph α − ϕa that uses positive 

Fig. 14. Ramsay's (1967) fold classification and construction of dip isogon applied on a natural sub-vertical section through a multilayer fold in quartzite layers from 
Cap de Creus, Spain. Photograph is rotated 90◦ clockwise. 
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and negative signs (by convention) for the dip isogons. Hudleston 
(1973a) thereby distinguished three types of Class 1C folds to illustrate 
the scope and the limitations of the tα′ − α and the ϕ − α methods. 
Bastida (1993) first highlighted this problem and proposed to describe a 
fold limb by the ratio between the slopes of two segments of the curvi-
linear plot on the tα′ − α graph. However, this method requires more 
measurements and calculations than the tα′ − α graph (Fig. 13). Despite 
of the fact that the use of Ramsay's (1967) classification is laborious and 
unsuitable for the analysis of large data sets, the isogon approach is 
enduring and provides an excellent tool for analysing the geometry of 
single folds. 

4.2.3. Modifications of Ramsay's dip isogon classification 
Zagorčev (1974, 1993) modified Ramsay's (1967) dip isogon classi-

fication by further subdividing subclass 1A folds into three types 1A1, 
1A2 and 1A3 using the straight line ϕα = − α, symmetrical to ϕα = α in 
the Hudleston's diagram (1973) (Fig. 16). The line ϕα = − α, equivalent 
to tα′ = sec α in the Ramsay diagram, divides fold type 1A2 into two 
separates fields: one for folds of the type 1A1 (− ϕα > α), and other for 
folds of the type 1A3 (− ϕα < α). Buckled layers usually form class 1B 
folds or folds close to 1B of 1A3 or 1C types. Zagorčev (1993) also 
subdivided class 3 folds into three subclasses: 3A, 3B and 3C. Folds of 
subclasses 3A and 3C can be defined as fold shapes complementary to 
subclasses 1C and 1A, respectively (Fig. 16). Nevertheless Zagorčev 
(1993) considered folds of types 1A1 and 3C to be rare in nature. 

Lisle (1997) also suggested a different subdivision of Ramsay's fold 
classes by dividing class 3 folds into new classes 3A, 3B and 3C based on 
polar plots of the inverse of their layer thickness (Fig. 17). According to 
Lisle (1997), each fold can be characterized by a single number (their 
flattening index F). F describes the amount and direction of the flat-
tening or the ellipse within each fold limb in terms of the semi-axis of the 
ellipse or the semi-axis of the hyperbola: F = ± b/a, where the positive 
sign denotes an ellipse and the negative sign a hyperbola. This index 

describes the axial ratio of the elliptical pachymetric indicatrix on the 
inverse thickness polar diagram. For levels of layers and individual folds, 
the description of strain ellipse includes its shortening percentage 
perpendicular to the axial surface and hinge line of a fold as well as the 
orientation of the axial surface (the longest axis of the ellipsoid), which 
is perpendicular to the fold hinge line (Yakovlev, 2012a, 2012b). Folds 
with hinge lines subparallel to a stretching lineation or the axis of 
maximum elongation, may according to Lisle (1997) develop by: (a) 
superposition of a tectonic strain on a sedimentary compaction fabric, 
(b) superposition of two tectonic strains, and (3) progressive non-coaxial 
deformation. Such folds are common in high-strain shear zones, thrusts, 
mylonite belts, and transpression zones (e.g., Ramsay and Wood, 1973; 
Grujic and Mancktelow, 1995; Carosi and Montomoli, 1999; Morales 
et al., 2011; Bastida et al., 2014). 

Class 1 folds are characterized by positive F values (0 to ∞) that 
measure the amount of homogeneous flattening perpendicular to the 
axial surface required to generate the fold shape from a parallel fold 
(Class 1C for F > 1, Class 1B for F = 1 and Class 1A for 0 < F < 1) 
(Fig. 17). Class 3 folds are folds (or mullions) with strongly thinned of 
limbs, typically developed in incompetent single layers (Talbot and 
Sokoutis, 1992). These folds are characterized by negative F values (0 to 
-∞). According to Lisle (1997), Class 3A folds are generated by flattening 
of 3B folds normal to their axial surfaces and have F values ranging from 
− 1 to -∞ (Fig. 17g). Class 3B folds (F = − 1) have pure Class 3 fold ge-
ometries developed by the superposition of flattening strains. Class 3C 
folds (− 1 < F < 0) are the result of flattening parallel to the axial 
surface and are relatively rare in nature. Srivastava (2003) presented a 
somewhat similar modification, but his method applies only to truly 
concentric folds. Variations in fold shapes can be due to variable rheo-
logical properties of the folded layers associated with physical condi-
tions, and/or by non-steady flow during the folding processes. 

Srivastava and Shah (2008) modified Ramsay's (1967) classification 
by introducing a character that they called an “isogon rosette” 
(Fig. 18a). Dip isogons drawn on fold profiles have two properties: (1) 
dip isogons in Class 1B folds are of equal length, and (2) the isogons 
behave as material lines during homogeneous flattening. These isogons 
can be arranged in a rosette by displacing the isogons without changing 
their orientation until their mid-points become the common intersection 
point. The outer ends of isogons in the rosette trace a characteristic 
curve that defines the fold geometry. This curve is a circle for parallel 
folds, an ellipse for flattened parallel folds, and it is reduced to a pair of 
points for similar folds (Fig. 18a). Since isogons behave as material lines 
during flattening, the characteristic curve, namely, the ellipse, directly 
represents the strain ellipse in flattened parallel folds. In this regard, the 
geometry of a given fold can be represented by a point on the RS – θ 
graph (Fig. 18b), where RS is the two-dimensional strain ratio and θ is 
the angle between the maximum principal strain and the fold axial trace. 
This method assumes that flattening occurs completely posterior to and 
not concomitant with the buckling stage. Most natural folds, however, 
occur as multi-layered sequences so that they may or may not demon-
strate the simplicity of single layer folding schemes due to variations in 
the amount and direction of applied stress, composition, viscosity, 
porosity, shape and size of grains in different layers. In this regard, 
Srivastava and Gairola (1997, 1999, 2003) proposed a new classification 
scheme based on the degree of fluctuation in the geometry of different 
layers folded in multi-layered packages that may be represented by a 
single curve or line on a Cartesian plane in the σn(tα′) versus α or σn(Tα

′) 
versus α diagrams (Fig. 18c). Here, σn, tα′ and Tα

′ are standard deviation, 
orthogonal thickness and axial surface parallel thickness, respectively 
(Fig. 18c). They divided multi-layered folds into two major categories, 
namely ‘isodeviatoric’ and ‘anisodeviatoric’. All plots in the diagram 
(Fig. 18c) will originate from the same origin but vary later. Thus, after 
α = 0◦ (say at 10◦) if the fold plots parallel or along the abscissa, the fold 
is classified as ‘isodeviatoric’. A special variety of isodeviatoric folds is 
‘analogous’ folds (Fig. 18c) where all the layers have the same geometry. 
Analogous folds may be further categorized into 10 classes using 

Fig. 15. Four types of similar folds distinguished by the ratio of the thickness of 
the competent and incompetent layers and by their viscosity contrast (modified 
after Yakovlev, 2008). 
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prefixes as 1A1-, 1A2-, 1A3, 1B-, 1C-, 2-, 3A-, 3B-, 3C- and composite- to 
analogous fold, depending upon the types of fold geometries in the 
folded package layers (Srivastava and Gairola, 1999). ‘Anisodeviatoric’ 
folds can be further divided into ‘peri-analogous’, ‘sub-analogous’, ‘sub- 
nonanalogous’, ‘nonanalogous’ and ‘strongly nonanalogous fold’ classes 
(Fig. 18c). This classification has three limitations. The first limitation 
relates to the use of the ratio of actual thickness (tα) to axial surface 
thickness at dip isogon (T0) zero degree, and the ratio of axial surface 
parallel thickness (Tα) to T0. The actual thickness of the layer cannot be 
compared within a multi-layered fold or two or more of such folds, 
because similar ratios may apply to different combinations of layer 
thicknesses. Second, the classification does not convey the degree of 
harmony of the fold or folds. Thus, this classification is based on the 
degree of variation in the geometries of the layers rather than their 
actual geometries. This means that many different geometries within a 
multi-layered fold could be represented by the same one line or curve on 
the σn(tα′) versus α or σn(Tα

′) versus α diagrams. Third, results obtained 
from tα′ and Tα

′ will be the same as long as the relation between these 
two parameters is valid. 

5. 3D fold classifications 

Geometrical data obtained from natural folds are largely incomplete 

and often restricted to two dimensions. Also, strict fold trains are pre-
dicted by all 2D models as they must for a linear matrix, and geologists 
often approximate folds as cylindrical to simplify description and anal-
ysis. However, field-based observations, numerical as well as analogue 
modelling results show that fold geometry becomes complicated in 3D. 
Folds are inherently 3D structures and their geometries and processes 
also need to be studied in 3D. Hence, the attitude and geometry of folds 
in 3D help identify larger and regional-scale structures, their processes 
of growth and evolution, and also the distribution and pattern of fold- 
related fracture networks. 

5.1. Classification of folds based on attitude 

5.1.1. Fleuty's classification 
Loudon (1964) and Whitten (1966) suggested the use of the four 

statistical moments of the orientation distribution of the normal to the 
fold profile to express the attitude, tightness, asymmetry, and shapes of 
folds. The attitude of a fold can be defined by the axial surface and hinge 
orientation, typically on spherical projections. Fleuty (1964, pp. 
481–488) classified folds based on the dip of their axial surface and the 
plunge of their hinge line (Figs. 4e, 19). His simple and widely used 
diagram categorizes folds as overturned if both limbs dip in the same 
direction as the axial surface and the steep limb has an up-side-down 

Fig. 16. a) Definition of angle ϕa for classification of folded layers and sign convention in the case of a positive dip angle (modified after Hudleston, 1973a). b) 
Classification diagram, modified from Hudleston (1973a) and Zagorčev (1993). 
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stratigraphy. Folds with subhorizontal axial surfaces or with maximum 
dip up to 10◦ are recumbent in Fleuty's (1964) classification. 

Bastida et al. (2014) reviewed existing ideas on kinematic evolution, 
strain distribution, and significance of recumbent folds in orogens and 
their relationship with other structures. Large-scale recumbent folds can 
also form by flow of salt toward salt walls and in allochthonous salt and 
salt glaciers (Jackson and Hudec, 2017). Fold nappes are large recum-
bent folds with inverted limbs over several square kilometres in area and 
are common in high strain settings, for example, the Morcles fold nappe 
(Helvetic nappes of the Switzerland Alps) (Ramsay, 1981; France, 1987; 
Ramsay et al., 1983; Ramsay and Huber, 1987). 

In many orogenic belts, spatial associations between overturned and 
tight to isoclinal recumbent and inclined to upright folds are common 
and classified in to two main types of transition. One type, from nappes 
in the internal zones of orogens to gentle to open upright folds in their 
foreland (Fig. 20), is displayed by the Pennine nappe pile stopping short 
of the upright folds of the Jura Mountains in front of the European Alps 
(Trumpy, 1960; Laubscher, 1978). The second type is where upright 
folds in the supra-structure overlie recumbent folds in the infra-structure 
(de Sitter and Zwart, 1960). The transition from upright to recumbent 
and vice versa first-generation folds has been discussed by Sanderson 
(1979) and Rattey and Sanderson (1982), who noted that as the axial 
surfaces rotate from upright to recumbent as the folds tighten, cleavage 
intensifies and the fold envelope steepens, with more and more rock 
layers becoming inverted. Upright folds (domes and basins) may also 
dominate orogenic core complexes, with recumbent folds being associ-
ated with the overlying detachment (Kruckenberg et al., 2011; Wiest 
et al., 2019). 

When a time lag is assumed between the inception of folding and the 
development of cleavage, the cleavage may not be strictly axial planar. 
Consequently, the cleavage may cross one or both limbs and form 

transected folds (Fig. 1b). Transected folds form when there is a time 
difference between the onset of folding and cleavage formation; usually 
cleavage forms after a certain amount of folding (Borradaile, 1978; 
Johnson, 1991; Fossen et al., 2019). In transected folds, the cleavage can 
parallel the axial trace of the fold profile but cross the axial surface and 
also the fold hinge in three dimensions (Fig. 1b). A fold classification 
that relates the geometry of a fold to its cleavage was proposed by 
Treagus (1982). This classification is based on the angle β between the 
cleavage trace and the normal to the folded layer within the profile 
plane. Treagus' angle β (1982) is similar to Hudleston's angle ϕα (1973b), 
and uses the same sign convention. This angle is graphed against the 
normalised limb dip. This classification complements rather than re-
places that of Ramsay (1967) and Hudleston (1973a). Numerical 2D 
modelling of folds can involve a variety of combinations of kinematic 
mechanisms. The MATHEMATICA™ program ‘FoldModeler’, developed 
by Bobillo-Ares et al. (2004, 2009) models how the fold profile accom-
modates progressive shortening as small successive increments are 
added during folding of an initially horizontal layer. ‘FoldModeler’ ap-
plies available information on cleavage orientation around the fold and 
makes the assumption that cleavage records the XY plane of the strain 
ellipsoid. 

Fleuty's diagram (1964) can be very important for analysing trans-
pressive deformation zones (e.g., Curtis et al., 2010; Debacker, 2012; 
Nabavi et al., 2017a). This means that, for originally horizontal layering, 
we can combine this diagram with the triangular strain diagram pro-
posed by Jones et al. (2004). In this version of the Fleuty diagram 
(Fig. 19), recumbent, upright, and vertical folds relate to dip-slip, 
contraction and strike-slip movements. After plotting the attitude of 
all the folds of any stated generation in a particular area, the concen-
tration of each dominant component becomes obvious in each part of the 
region. These concentrations divide the region into domains of non- 

Fig. 17. a-f) Fold classes represented on the polar graph of inverse layer thickness (1/t) and orientation (α). g) Classification chart for folds plotted on polar graph of 
inverse normalize thickness (1/t́) versus dip α. F is flattening index (after Lisle, 1997). 
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coaxial strain with axial surfaces from the oldest to the younger gener-
ations of folds with different tightness, symmetries, and rotations. The 
wide range of orientation of fold elements in the tectonic setting may be 
attributed to differences in orientation of pre-deformational foliations, 
later deformation events, progressive deformation, non-steady state 
deformation, flow heterogeneity, mechanical stratigraphy, and bound-
ary conditions (in model setups). These factors not only cause a great 

diversity in the orientation of fold elements but also affected the cylin-
dricity of folds. Little (1992) proposed a graph describing how the 
strikes of fold axial surfaces and interlimb angles vary for specific cases 
of simple shear, simple transpression and incremental transtension using 
the model assumptions of Sanderson and Marchini (1984). In general, 
we have a combination of strain components as heterogeneous de-
formations. In this regard, asymmetric distribution of fold attitudes data 

Fig. 18. a) Profile sections with isogon in 
different classes of folds with characteristic 
curves through end points of isogon rosettes 
(modified after Srivastava and Shah, 2008). 
The characteristic curve is a rectangular hy-
perbola, circle, ellipse, and hyperbolas. b) 
the geometry of a given fold can be repre-
sented and classified by a point on the RS – θ 
graph, where RS and θ are the two- 
dimensional strain ratio and the angle be-
tween the maximum principal strain and the 
fold axial trace, respectively (after Srivastava 
and Shah, 2008). The obliquity flattened 
folds with respect to the fold axial trace can 
be further classified into Class ±1A, Class 
±1C, Class ±3A, and Class ±3C, depending 
upon whether the maximum principal strain 
is rotated counterclockwise or clockwise 
relative to the fold axial trace. c) σn(tα′) and 
σn(Tα

′) versus α diagram for multi-layered 
fold classification. The curves mark the 
limits of different fold classes. From Srivas-
tava and Gairola (1999).   
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sets (and also taking fold symmetry into consideration) on the Fleuty's 
(1964) diagram (Fig. 19) indicate a general curvilinear fold geometry 
within the transpressional zone. As a result, we can take Fleuty's (1964) 
diagram (Fig. 19) as showing the ‘strain path of folding’ and a relative 
estimation of strain partitioning through a systematic collection of fold 
data. 

Rickard (1971) classified folds on the basis of three parameters: the 
dip of the axial plane, the plunge of the fold axis, and the pitch of the fold 
hinge in the form of a triangular diagram. He identified the following 
fields in which common fold types plot: (1) upright folds (with axial 
plane dipping 80◦ to 90◦), (2) inclined folds (80◦ to 10◦), (3) recumbent 
folds (10◦ to 0◦), and (4) reclined folds (with pitches of fold hinge be-
tween 80◦ to 180◦ on the axial plane, thus plunging at the same angle as 
the dip of the axial plane) (Fig. 21). This is a special and comprehensive 
triangular diagram where the pitch of fold hinge is plotted with a vari-
able scale along the lines representing constant dip of axial plane, while 

the plunge of fold axis varies from 0◦ along the base line to 90◦ at its 
zenith (Fig. 21). However, the plot is still restricted by the assumption of 
cylindricity. 

5.1.2. The attitudes of folds on the equal-area net 
When folds are too large or poorly exposed to be measured directly in 

the field there are a variety of methods available to characterize their 
geometries. One of these methods involves the use the equal-area or 
Schmidt net. Turner and Weiss (1963) provide abundant examples of 
how to describe large folds in metamorphic rocks using field measure-
ments plotted on equal-area nets. Sediments accumulate as sub-
horizontal layers so that, where undeformed, the pole to their bedding is 
everywhere sub-vertical and, plots near the centre of the net. After cy-
lindrical folding, the poles to folded layers are distributed along a great 
circle, on what is called the π-diagram (Fig. 22). The pole of that great 
circle corresponds to the fold axis (or β-axis). Alternatively, the fold axis 

Fig. 19. Classification of folds based on the orientation of the hinge line and the axial surface (modified after Fleuty, 1964) combined with the strain triangle graph 
proposed by Jones et al. (2004). Gray curved arrow shows fold attitude transition zone and strain component. It should be noted that this only applies to trans-
pression, not transtension, but we can make the lower left cornered Extension, and thereby also cover transtension. 

Fig. 20. Change in deformation and fold style in the orogenic belt, like the Zagros orogen, Iran.  
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can be inferred from the intersection on a Schmidt net, of great circles, 
representing different orientations of the fold limbs on what is now 
known as the β-diagram on an equal area net or Schmidt net (Ramsay, 
1964). Commonly, a π-diagram, which plots the poles of folded surfaces 
on the equal-area (Schmidt) net, is used to graphically show the orien-
tation of such elements of fold geometry as the plunge of the fold axis, its 
fold symmetry, interlimb angle and the attitude of its axial surface 
(Ramsay, 1964). 

Ramsay (1967) suggested two mathematical techniques for fold 
analysis. The first determined the unimodal pole distribution using 
vectors of directional cosines, and this technique is often called 

summing vectors. The second technique fixes the axes of cylindrical 
folds by determining the best-fit pole to their π-circles. Each pole to 
folded bedding is 90◦ from the axis of a perfectly cylindrical fold. In 
practice, the poles of any natural folds seldom lie exactly on a single 
great circle but define a zone around this circle (Fig. 22a-c) from which 
the great circle can be determined statistically. The attitude of a fold 
axial surface can be constrained if the orientation of its axial trace is 
known. If the fold is of parallel (or similar) type, its axial surface can be 
obtained by joining the bisector of interlimb angle with the fold axis, 
because the axial surface always bisects the interlimb angle of parallel 
folds. 

Fig. 21. Triangular graph of classifying fold attitude (modified after Rickard, 1971).  

Fig. 22. Cylindrical fold geometry: a) 3D sketch of a cylindrically folded layer. b) Lower-hemisphere of Schmidt net for a cylindrical fold. c) Polar tangent diagram of 
layer attitude in non-plunging and plunging cylindrical folds (modified after Bengston, 1980). Conical fold geometry: d) 3D sketch of a conically folded layer. e) 
Lower-hemisphere Schmidt net projection of a conically folded surface. c) Polar tangent diagram of layer attitude in Type-I and Type-II conical folds (modified after 
Bengston, 1980). 
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A conical surface can be generated by rotating a line (the generator 
that is fixed at the apex of a cone) oblique to a defined rotation axis 
(Fig. 22d). This conical surface has a conical axis coinciding with the 
rotation axis, and the angle θ is equal to the angle between the pole to 
fold limbs and the rotation axis. Geometrically, a conical fold is char-
acterized by the trend and plunge of fold axis, and by a semiapical angle 
β, which is the angle between the generator (where one end of the 
generator is fixed in the cone apex and the other end is free to move) of 
the conical surface and the fold axis (Fig. 22d, e). The semiapical angle is 
zero in perfect cylindrical folds (Fig. 22a). Folds with two hinge zones 
are conical if their hinges are not parallel to one another and the 
intersection of their axial surfaces is the axis of rotation (Stauffer, 1964, 
1967; Gray et al., 1980; Stockmal and Spang, 1982; Nicol, 1993; Pueyo 
et al., 2003; Mandujano and Keppie, 2006; Pastor-Galán et al., 2012; 
Mulchrone et al., 2013). Overall, conical folds can be divided into cir-
cular conical, elliptical conical (symmetrical and asymmetrical) folds 
and combination of segments of different ellipses (e.g., Stauffer, 1967; 
Wilson, 1967; Venkitasubramanyan, 1971; Kelker and Langenberg, 
1982, 1987, 1988). The simplest geometry of a conical fold is a circular 
conical fold, in which the angle between the generator and the cone axis 
is constant and equal to the semiapical angle. Furthermore, conical folds 
can be classified as Type-I and Type-II based on a hyperbola curve 
passing through bedding data and its curvature with respect to the origin 
on a polar tangent diagram (Bengston, 1980, 1981). The polar tangent 
diagram is a circular template that on it is perimeter azimuths are 
plotted in 2◦ increment clockwise from 0◦ to 360◦. In addition, dips are 
plotted as a set of concentric circles, representing 5◦ intervals from the 
origin to the periphery (i.e., from 0◦ to 90◦). Type-I conical fold is 
defined by a hyperbola concave toward the origin on the polar tangent 
diagram and the fold spreads out and flattens down plunge (Fig. 22f). In 
contrast, Type-II conical fold is defined by a hyperbola convex toward 
the origin on the polar tangent diagram and the fold comes to a point 
down plunge (Fig. 22f). The amount of curvature of the data locus re-
flects the magnitude of the apical angle of the conical fold. In this regard, 
as the apical angle increases, the amount of curvature increases (Beng-
ston, 1980, 1981). Many authors have described the geometries and 
kinematics of conical folds and suggested several statistical methods 
capable of distinguishing between cylindrical, circular conical and 
elliptical conical folds among any data set. In the case of cylindrical 
folds, the most important features depend on its curvature (e.g., hinge 
and inflection lines and dependent features such as limb, interlimb 

angle, wavelength, etc.). The description of non-cylindrically folded 
layers requires the specification of additional parameters (Lisle and 
Robinson, 1995; Lisle, 2003). In general, curved orogens may be a likely 
location of large-scale conical folds when deformation is primarily due 
to differential rotation around a rotation axis affecting a population of 
geological surfaces with a variety of initial orientations. 

It is useful to compare cylindrical and conical folds to understand 
these effects. If the axis of a cylindrical fold has been rotated to hori-
zontal, then the strike of every single layer not only parallels all other 
layers, but also parallels the fold axis. In such folds, any folded layer will 
reach the pre-deformational position if the plunge of the axis is restored. 
But this does not happen in conical folds because the strike of the folded 
layer varies. A folded surface can be represented by the normal (pole) to 
the surface measured at several locations. When plotted on the net, the 
pattern of poles (or normal) determines the type of fold. Poles measured 
around a cylindrical fold are the easiest to fit (Cruden and Charlesworth, 
1972; Kelker and Langenberg, 1976) because they lie on a great circle on 
the unit sphere. By contrast, poles to circular conical folds lie on small 
circles (Fig. 22e), and poles to elliptical conical folds lie in an ellipse 
projected onto the surface of the sphere. Parts of our knowledge con-
cerning fold attitudes is achieved through the use of Schmidt net, and 
several digital applications can be used for such analysis, for example 
FieldMove Clino (Petroleum Experts), GEOrient (Holcombe software 
Holcombe, 2013), Stereo32 (Röller and Trepmann, 2008), OpenStereo 
(Grohmann and Campanha, 2010), Stereonet (Cardozo and Allmen-
dinger, 2013) and StereonetMobile (https://www.rickallmendinger. 
net/). 

5.2. Classification of folded surfaces 

Turner and Weiss (1963) distinguished cylindrical from non- 
cylindrical folds based on the shape of the axial surface. They defined 
planar cylindrical folds (Figs. 23a and 24a), planar non-cylindrical fold 
(Figs. 23b and 24b), non-planar cylindrical fold (or polyclinal folds; 
Carreras and Druguet, 2019) (Fig. 23c), non-planar non-cylindrical fold 
with cylindrical (Fig. 23d), and non-cylindrical axial surface (Fig. 23e). 
Following this classification scheme, Williams and Chapman (1979) 
proposed a classification of non-cylindrical folds using a triangular PQR 
plot and based on measurements of two parameters: the interlimb angle 
(θ) and the hinge angle (β) (Fig. 25a). The end members of the resulting 
triangular plot are planes, cylindrical isoclines, and isoclinal domes. One 

Fig. 23. a) Folds are described as plane and non-plane depending on the shape of the axial surface (after Turner and Weiss, 1963).  

S.T. Nabavi and H. Fossen                                                                                                                                                                                                                    

https://www.rickallmendinger.net/
https://www.rickallmendinger.net/


Earth-Science Reviews 222 (2021) 103812

30

of the conditions for the PQR diagram is that the hinge angle must be less 
than the interlimb angle. In this classification, there are also non-planar 
non-cylindrical folds (Fig. 24b) which use a parameter of axial surface 
angle (γ) (Fig. 25b). Fold shapes vary infinitely between the three end-
members planes, cylindrical isoclines, and isoclinal domes based on 
degree of planarity (P = α/180), degree of domicity (Q = 180 – (α + (180 
– β))/180), and degree of non-cylindrism (R = (180 – β)/180) (Fig. 25c) 
(Williams and Chapman, 1979). Each parameter varies between 0 and 1, 
while the relationship between all three parameters is: P + Q + R = 1. 
Therefore, if two of these values are known, the third can be determined. 
Furthermore, the degree of non-planarity of non-planar non-cylindrical 
folds could be represented by a parameter S = (180 – γ)/180), varying 
from 0 for plane folds to 1 for folds with isoclinally folded axial surfaces. 
It may be plotted on the triangular PQR diagram as a circle whose area is 
proportional to the size of S or by a proportional bar-scale or by writing 
in the axial surface angle γ (Fig. 25b) (Fig. 3 in Williams and Chapman, 
1979). 

The orientation of a conical fold is described by the trend and plunge 
of its axis and by the semi-apical angle between the fold axis and a 
straight line constructed on the conical surface, called a generatrix. 
Considering fold amplitude (A) versus fold width (W), three forms of 
conical folds for shape reference emerges: vertical elliptical conical folds 
(A/(λ/2) = 2), circular conical folds (A/(λ/2) = 0.5), and horizontal 
elliptical conical folds (A/(λ/2) = 0.25). These define linear trends of 
constant values for the ratio A/W with the terminus of the conical folds 
vanishing at the origin (Fig. 25d) (Welker et al., 2019). 

Sheath folds (Fig. 26) are strongly non-cylindrical folds whose hinge 
lines curve more than 90◦. They can form in zones of simple shear by 
gradual rotation of fold hinges toward the shear direction and by drag 
effect associated with rigid inclusions during non-coaxial deformation. 
In cross-section, sheath folds typically exhibit elliptical shapes (Fig. 26) 
(Carreras et al., 1977; Alsop and Carreras, 2007; Alsop and Holdsworth, 
2012). 

5.3. Fold classification based on curvature analysis 

Recently developed surveying and remote sensing methods all offer 
some sort of mathematical framework for quantitative description. 
Differential classification of surfaces, introduced by Leonhard Euler 
(1707–1783), allows us to group surfaces according to curvature defi-
nition, as defined by Carl Friedrich Gauss (1777–1855). Curvature, in 
addition to dip magnitude, dip direction, coherence, energy gradients 

and reflector rotation, is one of the more popular geometric attributes. 
Curvature measures the lateral change in dip magnitude and dip direc-
tion. As the fold gets more open, the tangent circle and its radius get 
larger and larger until straight with an infinite radius with zero curva-
ture. The normal curvature will reach maximum and minimum values in 
two orthogonal directions, and these values are the principal curvatures 
k1 and k2, respectively (Fig. 27a) (e.g., Bergbauer and Pollard, 2003; 
Mynatt et al., 2007; Pollard and Fletcher, 2005). The directions k1 and 
k2 corresponding to these principal curvatures are the principal di-
rections. The principal curvatures and directions are a convenient way 
of describing surface curvature in the vicinity of a point on the surface. 
In this regard, the maximum principal curvature and its direction at 
every point can highlight the areas of tightest folding, and paired with 
the directions of minimum principal curvature can highlight the loca-
tions of fold hinges (Pearce et al., 2006). Other curvature parameters 
calculated from the principal curvatures (Gaussian, KG, and mean cur-
vatures, Km) together provide a quantitative description of the shape of a 
surface (Mynatt et al., 2007; Lisle and Toimil, 2007; Zulauf et al., 2017). 
Other important curvatures are the most positive (kpos), most negative 
(kneg), dip (kdip), and strike (kstrike) curvatures (Roberts, 2001). Various 
algorithms and software have been proposed for the calculation of 
principal curvatures of geological surfaces (e.g., Ozkaya, 2002a, 2002b; 
Bergbauer and Pollard, 2003; Bergbauer et al., 2003). Most of these deal 
with infinitesimal properties of the surfaces and their variation 
(Fernández-Martínez and Lisle, 2009). 

The goal of curvature analysis is to describe how a surface changes its 
shape. Curvature analysis has been related to strain (e.g., Lisle, 1994) 
and has been applied to the exploration of fractured petroleum reser-
voirs to identify variations in subseismic fracture and deformation band 
density and its relation to porosity and permeability (e.g., Fischer and 
Wilkerson, 2000; Mandujano et al., 2005; Allwardt et al., 2007; Berg-
bauer, 2007; Stephenson et al., 2007; Pearce et al., 2011; Shaban et al., 
2011). It has also been applied to subsidence-related risks, glaciated 
mountain landscapes, watersheds, mineral resource assessment, land-
slide, landform, and rivers (e.g., Stecchi et al., 2009; Romstad and 
Etzelmüller, 2012; Prasicek et al., 2014). 

Roberts (2001) proposed a geologic curvature classification scheme 
for a point on a surface by using the Gaussian curvature (KG): KG = Kmin. 
Kmax, and mean curvature (KM): KM = (Kmin + Kmax)/2 (Fig. 28). To 
mitigate the muting effect of KM, Stewart and Podoloski (1998) proposed 
using the total curvature (KT), where KT = k1 + k2. The concept of 
Gaussian curvature was introduced in Gauss's landmark paper on the 

Fig. 24. a) A segment of gently inclined and plane cylindrical fold in the large-scale non-cylindrical folded turbiditic sequences at Almograve, Portugal. Photograph 
by Sigurd Fossen. b) Upright and non-plane non-cylindrical fold in turbiditic sequence at Makran, SE Iran. Photograph by Stefen M. Schmalholz. 
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Theorema Egregium (“remarkable theorem”), considered by some to be 
the most important theorem within differential geometry. It is clear from 
the Gaussian curvature relation that the Gaussian curvature at a certain 
point vanishes as soon as one of the principal curvatures becomes zero, 
in which case the point is called a parabolic point (Fig. 27c). When the 
principal curvatures are both non-zero and positive, the Gaussian cur-
vature is positive and the point is termed elliptic (Fig. 27b). Finally, when 
the principal curvatures are non-zero and of opposite signs (i.e., the 
surface curves upwards in one direction and downwards in the other), 
the Gaussian curvature is negative, which corresponds to a hyperbolic 
point (Fig. 27d). While both the mean and Gaussian curvatures could be 
defined in terms of the two principal curvatures k1 and k2, they represent 
a fundamentally different perspective on surface curvature. The mean 
curvature is an extrinsic measure of the surface curvature. This means 
that it depends on the way the surface is embedded in the surrounding 
3D space. On the other hand, the Gaussian curvature is an intrinsic 
measure of the surface curvature, meaning that it is independent of the 
surrounding space within the space itself (Hyde et al., 1996; Weeks, 
2001). We have stated that the Gaussian curvature is an intrinsic 
property of the surface, yet the classical definition that we have given 
above relies on extrinsic concepts, namely the principal curvatures. This 
is in fact the “remarkable” aspect in the Theorema Egregium of Gauss. 
However, Gauss showed that the Gaussian curvature could also be 
defined on the basis of angle and distance measurements within the 
surface itself (i.e., intrinsically). The distinction between the mean and 
Gaussian curvatures is important, as some surfaces might be extrinsi-
cally curved, yet remain intrinsically flat, for example, buckling a flat 
stratum into a sequence of symmetrical cylindrical folds gives the sur-
face a non-zero mean curvature, even though the Gaussian curvature of 
the surface is still zero since one of the principal curvatures is zero. 
Consequently, a flat plane cannot be transferred into a spherical or 
saddle-shaped surface by buckling/bending deformations alone since 
these surfaces have non-zero intrinsic curvature. 

Maps of total curvature describe the shape of surfaces better that 
mean curvature, where strain can vary over small areas and surface 
curvature changes rapidly (Dunham and Crider, 2012). Different com-
binations of ranges of these principal curvatures define structures such 
as saddle (KG < 0), cylindrical folds (monoclastic or uniclastic surfaces) 
(KG = 0), and domes and basins (KG > 0). These can be further divided 
into synformal structures (including basins, KM < 0) and antiformal 
structures (including domes, KM > 0) (Fig. 28) (Fig. 2 of Mynatt et al., 
2007; Florinsky, 2016; Zulauf et al., 2017). KM = 0 indicates the surface 
is a flat plane (that is neither concave nor convex) or a surface where 
Kmin = − Kmax what Lisle and Toimil (2007) refer to as ‘perfect saddle’. 
Structures where KG = 0 must have Kmin = 0 and are therefore consistent 
with a plane strain deformation. Areas of extreme KG are generally 
inferred to correspond to areas of high 3D strain. It is important to note 
that the principal curvatures cannot be uniquely determined in points 
where the normal curvatures are all equal. Such a point is called an 
umbilical point (Hyde et al., 1996). The plane and sphere are the only two 
surfaces that are entirely composed of umbilical points. Perfect fold 
types shown in Fig. 28 require at least one principal curvature to be zero 
even for the plane, saddle, and cylindrical folds, whereas these geome-
tries rarely occur in natural folds and often associated with measure-
ment errors, inherent irregularities, fold-accommodation faults/ 
fractures, and penetrative strain. 

Principal curvatures are useful to quantify the amount of folding and 
to identify fold axes and generalized hinge lines ((Mynatt et al., 2007); 
Lisle et al., 2010). Assuming that rocks layers deform according to thin 
plate theory, Bergbauer and Pollard (2003) have demonstrated show 
curvature analysis based on approximate mathematical descriptions of 
generalized fold geometries can lead to significant errors between the 
maximum curvature of a planar curve and the second partial derivative 
as a function of slip along the curved line when considering more 
complex areas of non-cylindrical folding. For further analysis of the 
folded surfaces, differential geometry is the appropriate tool for 

Fig. 25. a) Geometrical description of a noncylindrical plane fold, as θ, inter-
limb angle and β, hinge angle. b) hinge surface γ in the cylindrical, non-plane 
folded surface. c) The variety of fold shapes and their position on the PQR di-
agram (a-c modified after Williams and Chapman, 1979). d) Plot of fold 
amplitude (A) versus fold width (W). Three forms of conical folds for shape 
reference (modified after Welker et al., 2019): Vertical Elliptical Conical Folds 
(VECF) (amplitude/(λ/2) = 2), Circular Conical Folds (CCF) (amplitude/(λ/2) 
= 0.5), and Horizontal Elliptical Conical Folds (HECF) (amplitude/(λ/2) =
0.25) define linear trends of constant values for the ratio of A/W with the 
terminus of the conical folds vanishing at the origin. Profile sections along the 
crestal trend of the 1:3 and 1:10 periclines define curved trends for the ratio A/ 
W that are highly discordant to conical fold trends and do not terminate at the 
origin (modified after Welker et al., 2019). 
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quantitative description of curved geological surfaces such as bedding, 
fractures, faults, plumose structures, foliations, sedimentary boundaries 
and unconformities. The geologic curvature classification combines the 
information from both the Gaussian curvature and the mean curvature 
and, thus, successfully divides geologic surfaces into areas of structural 
similarity (Lisle and Robinson, 1995; Ozkaya, 2002b; Schmid et al., 
2008). The Gaussian curvature is sometimes referred to as the total 
curvature, which is a powerful tool to detect and analyse non-cylindrical 

Fig. 26. a-b) illustration of progressive folding into a sheath fold during shearing in high strain zones. (c-d) and (e-f) show sections parallel and perpendicular to the 
transport direction (shear sense), respectively, as indicated by dashed lined in (a-b) (modified after Fossen et al., 2019). 

Fig. 27. a) 3D conceptual model of curvature of the surface. The unit vectors X1 and X2 along which we find the maximum and minimum normal curvatures k1 and k2 
are called the principal directions, which are orthogonal; the curvatures ki are called the principal curvatures. Surface categorization based on the sign of Gaussian 
curvature, a surface point is called: b) elliptic (or umbilic) point, if KG > 0; c) parabolic point, if KG = 0; d) hyperbolic point, if KG < 0. 
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shapes and to predict fractures (Lisle, 1992a, 1994; Bergbauer, 2007; 
Shaban et al., 2011; Sou et al., 2012) in which the fracture patterns vary 
in terms of geometrical and topological relationships. However, because 
the Gaussian curvature is an intrinsic quantity, it is not adequate for 
distinguishing between differently aligned shapes in space. The differ-
ence between predominantly convex and predominantly concave situ-
ations can only be determined by the mean curvature. In geologic terms, 
the mean curvature separates antiformal from synformal shapes. 
Curvature-based predictions typically assume that folded layers behave 
like flexed elastic plates, and relate plate strain to the shape of a folded 
layer (Mynatt et al., 2007). 

Lisle and Toimil (2007) suggested ways of analysing geological 
surfaces in terms of the number and characters of the folds present 
(Fig. 29). This method uses differential geometry to work out a gener-
alized definition of folds as being composed of “adjacent points on a 
surface that share some common curvature characteristic”. The sign of 
the value of principal curvature indicates the sense of curvature. Ac-
cording to definition, a (convex-upward) antiform is composed only of 
points with positive curvature, whereas a (concave-upward) synform is 
made up of negatively curved portions of the surface; the boundaries 

between adjacent folds of both types are marked by points of zero cur-
vature. A positive Gaussian curvature implies that four classes of folds 
result from this definition (Fig. 29): 1) Synclastic antiforms (M > 0, G >
0) include domes and more elongate whale-back forms. 2) Anticlastic 
antiforms (M > 0, G < 0) resemble house roofs with a sagging ridge. 3) 
Anticlastic synforms (M < 0, G < 0) have the form of a shoehorn or a 
stick or rhubarb or celery. And 4) Synclastic synforms (M < 0, G > 0) are 
basins and more elongate canoe-shape folds. 

Lisle (2003) described a periclinal fold as a kind of non-cylindrical 
fold that define elliptical and/or hyperbolic pattern on maps, for 
which the ratio of their principal curvature values is known as Dupin's 
indicatrix. In such folds, elliptical and hyperbolic patterns indicate 
dome-basin structures with synclastic curvature and saddle-like anti-
clastic curvature, respectively. Geological curvature is a combination of 
the mean curvature and the Gaussian curvature. This procedure allows 
us to identify and visualize the shape and orientation of areas on 
geological surface. Hence, the geological curvature classification is a 
powerful tool to subdivide surfaces into areas of structural similarity (e. 
g., Bergbauer and Pollard, 2003; Lisle and Toimil, 2007; (Mynatt et al., 
2007); Burtscher et al., 2012). Together with a reasonable curvature 
threshold, kt was introduced to extract geologically significant aspects of 
fold shapes by disregarding curvature magnitudes less than a certain 
value, quantifying to what extent a surface locally departs from an 
idealized shape. In this regard, (Mynatt et al., 2007) use the terms dome, 
antiformal saddle, synformal saddle, and basin for fold types 1–4, 
respectively (Fig. 28). Such areas are particularly important in the 
migration of hydrocarbons, as dome and basin structures in imperme-
able layers can trap hydrocarbons and the connecting saddle points 
define spill points. Fig. 30 presents the geological curvature distribution 
of the Sheep Mountain Anticline, a double plunging asymmetric fold 
located near Greybull, Wyoming, with varying curvature threshold so 
that by applying this technique, areas on the surface were identified 
(Mynatt et al., 2007). From a structural point of view, area of non-zero 
Gaussian curvature can be associated with strained zones, and faults 
might be recognized on Gaussian curvature plots. Analysis of both 
continuous and discontinuous curvature provides a very useful way to 
understand how surficial variations in an area relate to structures. 
However, in order to fully understand volume changes, especially for 
hydrocarbons reservoirs, curvature analysis must be accompanied by 

Fig. 28. Geologic curvature classification. The geologic curvature of a point on a surface can be determined from the Gaussian curvature (Kgauss) and mean curvature 
(Kmean) at the point (modified after Roberts, 2001; Bergbauer and Pollard, 2003; Bergbauer et al., 2003; Mynatt et al., 2007). 

Fig. 29. Fold classification scheme based on the Gaussian curvature (Kgauss) 
and mean curvature (Kmean) (modified after Lisle and Toimil, 2007). 
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vertical sections, drilling logs, volumetric curvature and 3D strain 
analysis (e.g., Al-Dossary and Marfurt, 2006; Pearce et al., 2011; Shaban 
et al., 2011). However, when analysing the earth's surface, one should 
not forget to include the effect of erosion. 

Zero-curvature surfaces are so well-studied in mathematics that they 
have special names. Surfaces with zero Gaussian curvature are called 
developable surfaces because they can be developed or flattened out into 
the plane without any stretching or tearing (Fig. 31a-c). For instance, 

any part of a cylindrical fold is developable since one of the principal 
curvatures is zero. On the other hand, a surface is developable if it can be 
unfolded to a flat surface that preserves lengths and the classical 
example is class 1B folds. Planes, generalized cylinders (Fig. 31a), 
generalized cones (Fig. 31b), and tangent developable (Fig. 31c) are the 
four basic classes of developable surfaces (Fernández-Martínez and 
Lisle, 2009; Rovenski, 2010). Developable surfaces are composed of 
ruling or straight lines (generators). In this regard, several researchers 

Fig. 30. Geological curvature plotted on the Sheep Mountain Anticline model with varying values of the curvature threshold kt (after Mynatt et al., 2007).  

Fig. 31. a-c) Three classes of developable surfaces shown flat and with curvature. d) Structure contour and plunge-line map of the periclinal anticline. The arrows are 
the calculated plunge lines. The fold crest line is marked by the perpendicular relationship between plunge line and structure contour line trends. The divergence of 
the plunge lines toward the south indicates that the structure is decreasing in curvature in that direction. The curved pattern of the plunge lines in the west does not 
accord with the developable fold model. Regions of non-developable surface geometry detected by plunge-line skewness. The coloured areas are those with values of 
skewness greater than 0.1 and probably represent zones close to faults (modified after Lisle and Fernández-Martínez, 2005). 
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(Lisle, 1992a, 1994; Lisle and Fernández-Martínez, 2005; Thibert et al., 
2005; Fernández-Martínez and Lisle, 2009) distinguished cylindrical, 
developable and non-developable surfaces by looking at how straight 
lines interrelate. By definition and according to structural and 
plunge-line maps via the program GenLab (Fig. 31d), which is a MAT-
LAB® code for structural analysis of digitally and seismically mapped 
horizons (Lisle and Fernández-Martínez, 2005), cylindrical folds are 
those for which at least one principal curvature vanishes everywhere. 
Thus, the shape of a perfectly cylindrical fold is given by the translation 
of one generator in space. In other words, in perfectly cylindrical folds, 
the generators are constant in orientation across the surface and are 
therefore mutually parallel so that their orientation is referred to as the 
fold axis. In contrast, the plunge of a more general fold could be constant 
at points along a given plunge line but variable from one plunge line to 
the next (Fig. 31d). On the other hand, generators of non-developable 
surfaces with non-zero Gaussian curvature will form pairs of skew 
lines. Measurements of the so-called skewness, the closest distance be-
tween neighbouring generators, provides an index of deviation from a 
developable geometry. Analysing the map pattern can distinguish 
different domains on a general surface that are closely related to a 
developable geometry. In such maps, regions of structural complexity 
can be associated with brittle as well as ductile deformation (Fig. 31d). 

6. Kinematic and mechanical aspects of folding 

The two most important factors controlling folding and fold type is 
rheology (viscosity contrasts) and the way forces and strain act on a 

single layer or a multilayer sequence. Accordingly, folds can be classified 
as buckle (active) folds, bending folds, and passive folds (Hudleston, 1986; 
Fossen, 2016). Note that this is an ideal classification, and although they 
do occur as pure cases in nature, folds may also be a combination of two 
or all of these end-member fold types. 

6.1. Buckle (active) folding 

Buckling is a process in which layers and sequences fold when sub-
jected to layer-parallel shortening, and requires a difference in compe-
tence (viscosity) between the folding layer(s) and the matrix (Fig. 32) (e. 
g., Biot, 1961; Ramberg, 1963a; Ramsay, 1967; Ramsay and Huber, 
1987; Hudleston and Treagus, 2010). Geological buckling can involve a 
single (Fig. 32a, b) or multiple layers (Fig. 32c). During perfect buckling, 
layers maintain their thickness throughout the folding process, pro-
ducing a parallel, concentric geometry (Currie et al., 1962; Johnson and 
Ellen, 1974). Buckle folds normally form with axes perpendicular to the 
maximum shortening direction and either gradually vanish away from 
the competent layer or are limited by detachment(s) (detachment 
folding). 

The processes of buckling can ideally be divided into the following 
evolutionary stages: layer-parallel homogeneous shortening, nucleation 
of a buckling instability, amplification of the buckle, kinematic growth, 
and locking up (Fig. 32b) (Donath and Parker, 1964; Ramsay, 1974; 
Ramsay and Huber, 1987; Treagus, 1997; Schmalholz, 2006; Butler 
et al., 2020). The amplification is at its maximum at the boundary be-
tween nucleation and amplification and the transition from 

Fig. 32. a) The concept of contact strain around a 
single buckled layer (Ramberg, 1962; Ramsay, 1967). 
b) Scaled amplification curve of single layer buckle 
folds numerically simulated with a viscosity contrast 
of 50 (after Schmalholz, 2006), plotting limb dip or 
amplitude/wavelength versus shortening and transi-
tion between folding stages have clear mechanical 
meaning. c) Multilayer buckle folding with layers of 
increasing competence and the matrix competence 
equal to that in layer 1 (4 > 2 > 3 > 5 > 1 = matrix) 
(modified after Ramberg, 1964).   
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amplification to kinematic growth is where the growth rate vanishes due 
to mechanical folding instability (Schmalholz, 2006). The position of a 
fold within a multilayer sequence influences its shape. Indeed, the po-
sition of the fold relative to its surroundings may be the most important 
factor controlling their development (Williams, 1980). The buckling 
mechanism explains: (1) how fold size and fold shape depend on layer 
thickness and layer properties, (2) how the thickness of the folded layer 
varies in its different parts, and (3) relations of the preferred mineral 
grain orientation to folding (Hudleston, 1986; Ez, 2000). 

6.1.1. Single-layer buckle folding 
Buckle folding of an isolated competent layer (viscous, elastic, and 

viscoelastic) in a less competent matrix subjected to layer-parallel 
shortening was thoroughly investigated in a series of influential 
studies from around 1960 and onwards (Fig. 32a) (e.g., Biot, 1957, 
1961; Biot et al., 1961; Ramberg, 1961, 1963a; Currie et al., 1962; 
Ramsay, 1967; Fletcher, 1974, 1977; Smith, 1975, 1977; Johnson and 
Fletcher, 1994; Schmalholz and Podladchikov, 2001; Jeng and Huang, 
2008). If the viscosity contrast is large, the amplification rate of buckling 
is very high and irregular, and isolated trains of rounded folds (ptyg-
matic folds) form. According to previous studies (e.g., Ramsay, 1974; 
Cobbold, 1976; Schmalholz, 2006; Hudleston and Treagus, 2010; 
Frehner, 2014, 2016), five general stages of 3D fold growth of a single- 
layer buckle fold are distinguished (Fig. 32b): 1) fold nucleation: 2) fold 
amplification; 3) fold elongation, with growth parallel to the fold axis; 4) 
kinematic growth, when fold amplification ceases and fold limbs 
become tighter; and 5) sequential fold growth, representing growth 
perpendicular to the fold axial surface. In this regard, it is important to 
study the evolution of folds and how folds grow to finite amplitude to 
relate fold geometry to strain and rheology. Analogue and numerical 
models (e.g., Ramberg, 1962; Ramsay, 1967; Reber et al., 2010) show 
that, in addition to strain magnitude, the long principal strain axis, 
which is orthogonal to the folded layer in the zone of homogeneous 
strain away from the buckle layer, converges toward the inner arcs of the 
layer (Fig. 32a). Several studies (e.g., Cobbold, 1977; Johnson, 1977; 
Abbassi and Mancktelow, 1990; Mancktelow and Abbassi, 1992; John-
son and Fletcher, 1994) agree that single-layer viscous folds nucleate on 
small and random mechanical perturbations. However, such analogue 
experiments focused mainly on large amplitude fold initiation. To avoid 
such nonlinearities, we consider the infinitesimal displacement and 
small deflections during buckling of a thin plate. This is the route taken 
by Biot (1937). Biot's (1937, 1961, 1965) theory predicts that, if the stiff 
layer is given small sinusoidal perturbations with different wavelengths 
in an infinitely thin 2D layer and Newtonian viscosity, one such 
perturbation will grow faster than the others. Even though all wave-
lengths grow exponentially, there is a fast-growing wavelength that will 
outpace and progressively dominate the others. The wavelength of this 
perturbation is known as the dominant wavelength (λd): 

λd

h
= 2π

( μf

6μm

)
1 /

3 (15)  

where h is the layer thickness, μm is the matrix viscosity, and μf is the 
viscosity of the folded layer. If one considers the energy of a buckling 
system, then the classical Biot solution is the first solution that appears 
once folding nucleates. In this model, the system immediately switches 
to a lower energy configuration and continues to do so as deformation 
proceeds. In this treatment, folds develop sequentially and not simul-
taneously as predicted by the Biot linear model. Hence, Biot's model is 
only valid for initial stages of buckling. Also, in the many analogue ex-
periments published in the 1970s did folds develop sequentially (e.g., 
Cobbold, 1976; Cobbold et al., 1971; Watkinson, 1976). This contrasts 
with many numerical models (e.g., Hobbs et al., 2008; Schmalholz, 
2008; Frehner and Schmid, 2016; Schmalholz and Mancktelow, 2016), 
and such sequential behaviour is now better described by the nonlinear 
theory that can handle large deflections (e.g., Burke and Knobloch, 

2007). 
Numerical models are not currently compatible with natural exam-

ples or experiments, and need improvement with regard to material 
property, interaction and boundary conditions. One of the few three- 
dimensional time-dependent buckling studies that deforms a non- 
Newtonian material in a less viscous medium to large displacement 
was presented by Mühlhaus et al. (1998), the model showed that for 
non-Newtonian behaviour the dominant wavelength is less than the Biot 
(Newtonian behaviour) dominant wavelength. However, this study 
again has a Newtonian matrix. The development of fold trains is better 
explained by the nonlinear, finite amplitude theory developed by Burke 
and Knobloch (2007) who show that soon after buckling begins (during 
which the Biot solution holds) a bifurcation occurs, and the energy of the 
system is represented by two energy surfaces that intertwine with each 
other. As the shortening continues the system jumps from one of these 
surfaces to the other depending on which surface represents the lowest 
energy configuration for that strain (see Schmalholz and Mancktelow, 
2016 and Hobbs, 2019 for details on the physic and mechanics of 
folding). 

Mancktelow (1999) found that, if an initial wavelength is either 
much smaller or much larger than the dominant wavelength, the 
introduced waveform for periodic perturbations grows into folds. Me-
chanical instabilities develop in single layers where (1) there is a rheo-
logical contrast between the layer and its matrix, (2) there is an initial 
irregularity in layer interface, and (3) the layer is shortened or stretched. 
In general, the temperature and pressure during folding control the 
rheological behaviours of the folding layer and the matrix. There is a 
transition between elastic-brittle behaviour at shallow depths of Earth's 
crust and viscoplastic-ductile behaviour at moderate to deep levels that 
is related to confining pressure (crustal depth), and temperature. Elastic, 
viscoelastic, and viscous media are the most common rheologies studied 
for buckle folding (e.g., Biot, 1961; Ramberg, 1961; Jeng and Huang, 
2008). Viscous deformation takes place in situations where stress de-
pends on the strain rate at which the rock is being deformed, while 
plastic deformation accounts for cases in which the material flows 
plastically above a critical stress value, and therefore, stress is strain-rate 
independent. 

Following the influence of strain rate on the buckle folding behav-
iour, Jeng et al. (2002) applied numerical modelling to a single layer 
marked by elastic-viscous layer-matrix properties. According to Jeng 
et al. (2002), the response of a competent elastic layer embedded within 
viscous material under fast strain rate (10− 11 s− 1) will respond elasti-
cally. As strain rate was increased to 10− 10 s− 1, buckling continued and 
the deformation was dominated by a typical elastic response. Moreover, 
when the strain rate slowed to 10− 14 s− 1, the matrix viscosity reduced 
the input energy as well as the magnitude of elastic energy stored in the 
competent layer. As a result, buckling was dampened and the earlier 
developed folds were amplified. Schmalholz and Podladchikov (1999) 
introduced the parameter R for visco-elastic folding as: R = λdv/λde, 
where λdv and λde are dominant wavelengths for viscous and elastic 
folding, respectively. In this regard, if R > 1 and R < 1, folding is 
dominated by elastic and viscous deformation, respectively. The size and 
shape of this instability has been studied intensively by structural ge-
ologists because folding is very common on all scales in deformed 
ductile rocks (Johnson and Fletcher, 1994). Fletcher (1977) developed 
an additional analytical solution for single-layer folding that extended 
beyond the initial increment of folding to low-amplitude folds. Ada-
muszek et al. (2013) extended theoretical models and finite amplitude 
solutions for single sinusoidal layer folds and multiple waveforms rep-
resented by a Fourier series from their beginning to propagation. 

In addition to analytical studies, analogue experiments and field- 
based studies, numerical models provide useful insights into fold 
growth and the evolution of stress and strain during folding, and also the 
mechanical and rotational behaviour of rocks and layers and the effi-
ciency of the folding process. Early numerical models based on finite 
element analysis (FEA) have been used to analyse stress and strain 
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distributions as single layers and multilayers buckled from low to high 
amplitudes (e.g., Dieterich and Carter, 1969; Hudleston and Ste-
phansson, 1973; Parrish, 1973; Parrish et al., 1976; Shimamoto and 
Hara, 1976; Cobbold, 1977; De Bremaecker and Becker, 1978; Anthony 
and Wickham, 1978; Williams, 1980; Lan and Hudleston, 1991). The 
first fully 2D FE-model of viscous buckle folding was performed by 
Dieterich and Carter (1969), who calculated the stress evolution 
(magnitude and orientation) in amplifying single-layer folds. Following 
these researchers, the growth of single- and multilayer folds in viscous 

and viscoelastic layers with random initial perturbation at different rates 
of shortening has been studied intensely using 2D (e.g., Mancktelow, 
1999, 2001; Schmalholz and Podladchikov, 2001; Casey and Butler, 
2004; Schmalholz, 2006; Reber et al., 2010; Eckert et al., 2014, 2016; 
Adamuszek et al., 2016; Damasceno et al., 2017) and 3D numerical 
models (e.g., Kaus and Schmalholz, 2006; Schmid et al., 2008; Reber 
et al., 2010; Fernandez and Kaus, 2014; Liu et al., 2016, 2020; von 
Tscharner et al., 2016). Such models have been modified by Houseman 
et al. (2008) using BASIL, a 2D FE-package that calculates non-linear 

Fig. 33. a) Landsat image of Firouz-abad, Zagros fold-and-thrust belt (Iran) illustrating interacting doubly-plunging anticlines and synclines with curved axes as a 
result of lateral growth, and also some individual periclines (after Michael Rymer). b) Illustration shows conceptualisation of different fold interactions (after Bretis 
et al., 2011; Fernandez and Kaus, 2014). 
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plane strain in viscous single layers while also computing the viscous 
strain rates and associated stress field. However, it was not until 2006 
that the first fully 3D FE-model of viscous buckle folding was presented 
(Kaus and Schmalholz, 2006). Schmid et al. (2008) developed a 3D FE- 
code with different horizontal shortening scenarios to explore the rela-
tionship between single-layer folds and their loading conditions, the 
linkage and superposition of folds with randomly initially perturbed 
layers that controls the location and final 3D development of fold pat-
terns (Eckert et al., 2014; Fernandez and Kaus, 2014; Liu et al., 2016). 
Consequently, as folds grew out laterally in a 3D train, hinge lines of 
segmented folds can approach and interact depending on the distance or 
position with respect to other folds, so that they can link and combine to 
create long, and fully connected hinge lines (Fig. 33a) (e.g., Dubey and 
Cobbold, 1977; Price and Cosgrove, 1990, p. 265; Bretis et al., 2011; 
Grasemann and Schmalholz, 2012; Fernandez and Kaus, 2014). How-
ever, fold interaction does not always happen, and some folds remain 
isolated and generate well-developed doubly-plunging folds (periclines) 
(Fig. 33a). A conceptualisation of different fold interactions situations is 
shown in Fig. 33b. 

Experiments performed on actual rock samples (Ramberg, 1964; 
Ghosh, 1966; Hudleston, 1973b; Neurath and Smith, 1982) for single- 
layer folds have also been studied in detail with illuminating results. 
Despite the widespread assumption that simple shear is very common in 
nature, most laboratory and numerical simulations of buckling involve 
pure shear deformation. However, Llorens et al. (2013b, 2019) present 
numerical models of single-layer folding by simple shear as well as pure 
shear (Fig. 3v) (e.g., prompted by experiments by Manz and Wickham, 
1978). Not unexpectedly, they found that the visual distinction between 
pure and simple shearing of linear and non-linear viscous single layers is 
that axial surface orientations and foliation refraction are more variable 
under simple shear conditions. In addition, the duration of the nucle-
ation stage is larger in folds resulting from simple shear, thus resulting in 
more layer thickening than in pure shear, whereas the maximum 
deviatoric shear stress distribution inside the layers indicates that 
folding a competent layer requires less work in simple shear than pure 
shear (Llorens, 2019). Hence, analyses of folding of single layers have 
provided critical information on the development of fold geometries, 
strain distribution and stress states throughout their evolution. 

6.1.2. Unfolding of buckle folds 
When a folded layer is subjected to layer-parallel extension it may: 1) 

locally break into boudins, 2) thin in a ductile manner and develop 
pinch-and-swell structures through necking, or 3) simply unfold. The 
viscosity ratio between a layer and its surrounding matrix during the 
extension plays a fundamental role in determining how the layer re-
sponds. This ratio may change during progressive deformation, as pro-
posed by Flinn (1962, pp. 387–388), who suggested that rocks 
undergoing progressive deformation will pass through a continuous 
series of shape changes until deformation ceases (Fossen et al., 2019) if 
there are changes in strain rate, metamorphic condition (temperature 
and pressure) and strain-dependent rheology (e.g., Hobbs et al., 1990). 
Unfolding is much more complex in multilayer folds (see Ez, 2000; 
Carreras et al., 2005). Moreover, layer-perpendicular flattening and 
flexural flow related to the longer fold limbs will promote de- 
amplification and unfolding (Frehner and Schmid, 2016). 

It should be noted that “unfolding” refers to the sequential recon-
struction of fold growth backward through time from a geometry 
observed at present to an initial undeformed state, i.e. restoration or 
retrodeformation (Fig. 34). For simplicity, it usually assumes preserva-
tion of length or area (or volume in 3D models) (e.g., Vergés et al., 1996; 
Van Noten and Sintubin, 2019). 

6.1.3. Multilayer buckle folding 
Multilayer folds are far more common in nature than single layer 

folds and their mechanics is much more complicated. Moreover, the 
structures resulting from multilayer folding can show a wide variety of 

geometries (Fig. 32c). Theoretical treatment of multilayer buckling 
closely follows that for single-layer buckling, although analytical, 
experimental and numerical models have shown that stratified rocks 
will rarely be as regular as these theoretical multilayer models. The 
behaviour of a multilayers during buckling depends upon many factors: 
1) the number of competent layers, 2) thicknesses of competent layers, 
3) their spacing and arrangement, 4) the competence contrast between 
layers, 5) the competence of the matrix (Currie et al., 1962; Handin 

Fig. 34. Example of comparison between observed fold-related fractures and 
computed stress distribution using finite element modelling (after Maerten and 
Maerten, 2006). a) Interpreted bedding and fracture patterns in a contractional 
fold exposed in the Coulazou gully, souther France. b) Finite element mesh 
designed to replicate the exposed fold geometry. c) Fold-related stress distri-
bution computed from an originally flat-lying sequence of rock into the 
observed fold shape. d) Unfolded finite element results showing sub-
horizontal sequence. 
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et al., 1976; Treagus and Fletcher, 2009; Ghosh and Sengupta, 2010; 
Hudleston and Treagus, 2010; Schmalholz and Mancktelow, 2016), and 
6) the presence of interlayer slip (Damasceno et al., 2017; Wu et al., 
2019). In this regard, Currie et al. (1962) introduced the term “structural 
lithic unit” (equivalent to the current term mechanical stratigraphy) to 
distinguish packages of multilayered rock that fold discretely and self- 
confined within a larger layered system. 

The formation of multi-order (i.e., different sizes or scales) and 
multi-harmonic folds of mechanically competent and less competent 
layers is a common characteristic of multilayer buckle folds (e.g., 
Schwerdtner and Van Berkel, 1991; Treagus and Fletcher, 2009). 
Another common feature is parasitic folds (higher-order fold structures), 
a concept established by de Sitter (1964), that normally show systematic 
variation in (a)symmetry (S-, Z- and M-shaped) around the main fold, 
and associated variations in interlimb angle, amplitude and frequency 
(Fig. 35a-d) (Frehner and Schmalholz, 2006; Schwerdtner et al., 2010; 
Xypolias and Alsop, 2014; Frehner and Schmid, 2016; Liu et al., 2020). 
This is otherwise known as “Pumpelly's Rule”, after the 19th century 
American geologist Raphael Pumpelly, who stated that small-scale 
structures tend to mimic larger-scale structures that formed at the 
same time (Pumpelly et al., 1894, p. 158), a statement of self-similar or 
fractal behaviour. A series of folds with the same asymmetry are also 
said to share the same vergence. The vergence direction is dictated by 
the sense of displacement of the upper limb relative to the lower limb. In 
this regard, the vergence of S-folds (sinistral shear, counter clockwise 
rotation) and Z-folds (dextral shear, clockwise rotation) allow us to 
predict the location of hinge zone and orientation of lower-order folds, 
sense of displacement/shear and associated rotated limbs (Fig. 35a, b) 
(Ramsay, 1967, pp. 351–355; Hazra, 1997; Carreras et al., 2005; 
Schwerdtner et al., 2010; Xypolias and Alsop, 2014). Vergence is inde-
pendent of fold plunge and can be deduced from examination of either 
asymmetric minor folds or cleavage-bedding relationships (Bell, 1981; 
Weijermars, 1982). However, pre-existing asymmetric structures 
(Fig. 36a) (Frehner and Schmid, 2016) and obliquely oriented veins or 
dykes (Fig. 36b) (Carreras et al., 2005; Llorens et al., 2013a; Fossen, 
2016; Lloyd, 2020) can result in parasitic folds with “wrong” vergence. 
Hence, vergence must be interpreted with care, particularly if the initial 
orientation of the marker is unknown. 

In purely mechanical folding, parasitic folds can result from or be 
influenced by (Ramberg, 1964; Frehner and Schmalholz, 2006; Treagus 
and Fletcher, 2009; Frehner and Schmid, 2016; Liu et al., 2020): layers 
of different thicknesses, the number of thin layers, initial asymmetric 
geometries of thin layers, changes in the effective layer to matrix vis-
cosity ratio, viscosity variations in multilayer systems, matrix anisot-
ropy, strain rate, and the effect of fold trains starting to behave as 
effectively thicker layers so that larger wavelength folds develop. One of 
the most important geometrical characteristics of parasitic folds related 
to major cylindrical folds and folds produced in plane strain field is that 
their hinge lines are parallel. 

There are cases where parasitic folds develop orientations that differ 
markedly from their related large-scale (lower-order) folds due to non- 
cylindricity of large-scale folds and the orientation of the layering 
relative to the axial surface and the principal strain axes. These have 
been called “incongruous” folds (Ramsay and Sturt, 1973). Moreover, 
Treagus and Treagus (1981) showed that oblique layers in plane strain 
can give rise to folds with axes that are oblique to the XY plane of strain 
ellipsoid and restricted to a narrow space, and generally develop en-é-
chelon doubly-vergent (non-cylindrical) folds as periclines that may 
become highly non-cylindrical (Zulauf et al., 2020, 2021). In intensely 
folded units, parasitic folds are particularly well developed near the 
hinges of major folds, and less developed on the limbs (Fig. 35b-d) 
(Ramsay and Huber, 1987, p. 454–456). In addition, the thin layers are 
more deformed on the synclinal hinge zone of the thick layers and more 
stretched on their anticlinal hinge zone (Fig. 35b-d). Frehner and 
Schmalholz (2006) generated a 2D algorithm in numerical FE-models 
that developed parasitic folds during multilayer folding on scales from 

outcrop to crustal (Yamato et al., 2011) with a softer matrix between 
stiffer layers. 

Asymmetric buckle folds can arise from stiff layers initially oblique 
to the maximum shortening direction in pure shear (Treagus, 1973), 
tangential longitudinal strain (or neutral surface folding) (Currie et al., 
1962), and flexural flow (Ormand and Hudleston, 2003). Furthermore, 
in these categories are modifications of pre-existing symmetric and or 
asymmetric folds between enveloping surfaces oblique to the principal 
strain directions, the rotation of parasitic folds on the limbs of lower 
order or larger scale folds and the effects of simple shear or combination 
of homogeneous simple shear and irrotational deformation (Ramsay and 
Huber, 1987; Simpson and De Paor, 1993; Carreras et al., 2005; Alsop 
and Carreras, 2007; Frehner and Schmid, 2016), and or from the 
amplification of an initial asymmetric perturbation (Abbassi and Man-
cktelow, 1990). 

Buckling of a layer or multilayers embedded in a weaker matrix may 
be sinusoidal and periodic, if the applied force is a linear function of the 
layer deflection (see Eq. 10; Fig. 2 in Ord and Hobbs, 2013). Further-
more, buckling can result in localised folds due to geometrically non- 
linear systems and non-coaxial deformation. Where different packets 
of folds interact, chaotic folds can arise (Hobbs et al., 2011; Hobbs and 
Ord, 2012; Ord and Hobbs, 2013). Overall, folds in strongly competent 
layers of a multilayer buckle fold are broadly characterized by harmonic 
trains. Disharmonic and localised folds will develop in less competent 
layers and in the core of multilayer folds during layer-parallel shortening 
(Fig. 35). Natural folds do not produce perfectly periodic fold trains, but 
localised and aperiodic fold trains commonly showing attenuated fold 
limbs and sharp hinges. Many numerical and physical experiments do 
not reproduce features seen in real rocks, which suggests that the physics 
assumption is not correct or complete, so that they do not operate in the 
classical Biot theory of folding (Biot, 1965), which is rigorously true only 
in two dimensions for a layer embedded in a linear matrix. However, 
natural fold examples are not characterized by a single wavelength and 
are not strictly periodic. A series of cross-sections taken normal to the 
fold axes show that both the amplitude and wavelength of folds are 
commonly multi-periodic and irregular (e.g., Price and Cosgrove, 1990). 
An infinite number of wavelengths start to develop, of which one grows 
faster and becomes the dominant sinusoidal wavelength. The behaviour 
of nonlinear systems, however, is more complicated and Fig. 37 shows 
the buckling behaviour of a single layer embedded in nonlinear mate-
rial. Here (Fig. 37) we see that the response may be homogeneous, with 
no buckling behaviour, or a range of buckling behaviours, depending on 
the sensitively to initial conditions, boundary conditions and the evo-
lution of geometry and mechanical properties of both the layer and the 
embedding material during buckling. The heterogeneous response may 
be sinusoidal, periodic but non-localised, localised and periodic, local-
ised and non-periodic, and quasi-periodic or chaotic (Fig. 37) (Burke and 
Knobloch, 2007; Ord and Hobbs, 2013; Hobbs and Ord, 2015; Hobbs, 
2019). Fold trains are predicted by all of the afore-mentioned models (as 
they must for a linear matrix). However, field observations, experi-
ments, as well as numerical models indicate that folds in 3D can never 
continue indefinitely along their hinge lines or along a straight line, even 
if they result from a single phase of folding, so that there must always be 
another arc- and wavelength parallel to the primary fold axis even for 
plane strain and also linking interaction zones due to lateral growth (e. 
g., Schmalholz, 2008; von Tscharner and Schmalholz, 2015; Liu et al., 
2016; Welker et al., 2019; Nabavi et al., 2020b). 

6.2. Passive folding 

Folding that does not require layer competence contrast or layer- 
parallel shortening, is characterized as passive. In these cases, layering 
is mechanically passive and only serves as a visual marker. Donath and 
Parker (1964) described the mechanical condition for passive folding as 
one of high mean ductility and low ductility contrast (Fig. 38a). Note 
that ductility may be accommodated by frictional as well as crystal- 
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Fig. 35. a) Development of small-scale (higher-order) Z-, M-, and S-shaped parasitic folds, in which case they provide information about the geometry of the large- 
scale (lower-order) folds. b) Multilayer folded pegmatites in different thickness and wavelength within granodiorite unit. Thin folded layers developed as parasitic 
folds. Loch Cluanie, Northwest Highlands, Scotland. Photograph by David Chew. 2D finite element modelling of non-Newtonian multilayer folding subject to 36% of 
shortening: c) second invariant of stress, d) apparent viscosity (after Adamuszek et al., 2016). 

Fig. 36. a) 2D finite-element simulation snapshots of multilayer folding using Newtonian material as a thin layer exhibiting the pre-existing geometrical asymmetry 
with initial skew angle 60◦ sandwiched between two thicker layers. Increasing background shortening is indicated in % in each stage of the buckle folding process. 
Colours correspond to the second invariant of the strain rate tensor ε̇II . The initial asymmetry results in an alleged parasitic fold with wrong vergence, alongside true 
parasitic folds with correct vergence (after Frehner and Schmid, 2016). b) Progressive development of folds in simple shear model of the syntectonic vein, which is 
affected by dextral shear zone. This particular initial orientation can result in a “wrong” vergence as a result of increasing shear strain (based on Carreras et al., 2005; 
Fossen, 2016). 
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plastic deformation mechanisms at the micro-scale. A common example 
of the former is soft-sediment passive folding. Passive folding is often 
associated with shear deformation. The shear (flow) must be heteroge-
neous for initially planar markers to passively become folds, and the 
marker must make an angle to the shear plane. Such shear-related folds 
are often termed shear folds (Fig. 38b), and at high shear strains, such 
folds tend to develop into sheath folds. Non-planar markers can amplify 
into passive folds also during homogeneous shearing (e.g., Cobbold and 
Quinquis, 1980; Vollmer, 1988; Fossen, 2016). Non-planar markers can 
also amplify into passive folds in almost any strain regime, including 
pure shear (Fossen, 2016), although amplification is generally faster in 
simple shear. 

No structural softening resulting from the development of internal 
structures will occur in perfectly passive folds (no instability) (Schmal-
holz and Schmid, 2012) and the folds are similar (Class 2) and often 
harmonic and sinusoidal. In addition to heterogeneous strain and 
amplification of non-planar structures, passive folds may develop due to 
variations in flow with time (non-steady flow), and ductile accommo-
dation of perturbation of the stress field around the cross-cutting 
element (like fracture, fault, joint and vein) from the time of opening 
until closing and subsequently rotation in the form of flanking structures 
(e.g., Coelho et al., 2005; Druguet, 2019). Passive folds are commonly 
observed within salt diapirs (in passive marker beds such as salt layer 
coloured by traces of other minerals), ice layers in glaciers, 
water-saturated sediments exposed to soft-sediment deformation, and 
sheared marbles and quartzites, and in magmatic deformation observed 
in migmatites, intrusive bodies and lavas. Various types of passive folds 
developing at shallow crustal depths are widely discussed in Section 8. 
Passive folding is probably common not only throughout the crust but 
also in the asthenospheric mantle, with its limited variations in 
composition and high temperature, and shear deformation against the 

overlying rigid lithosphere. 

6.3. Bending 

Bending is the process of folding that describes flexuring of a plane or 
layer induced by a force acting perpendicular or at high angle to the 
layering. Unlike buckling, bending does not depend on any viscosity 
contrast, and in the absence of such contrasts, bending can occur by 
passive folding. However, viscosity contrasts may exist, and such con-
trasts influence the way deformation is taken up by the rocks or sedi-
ments. For example, a common result of a viscosity or competence 
contrast is the occurrence of flexural slip or shear. 

There are several kinds of folds that can form by bending, such as 
fault-bend folds, fault-propagation folds, folds around salt diapirs, folds 
between boudins (neck folds), folds formed by differential compaction 
in sedimentary basins, bending of a subducting plate, and very gentle 
lithospheric bending in response to isostatic readjustments associated 
with plume heads, sedimentary basin subsidence and post-glacial 
isostatic rebound (Fig. 39). In general, there are major differences in 
structural style, fracture and strain patterns associated with buckling 
and bending folds (e.g., Ramberg, 1963; Withjack et al., 1990; Cosgrove 
and Ameen, 1999; Cosgrove, 2015; Tavani et al., 2015; Coleman et al., 
2019). Unlike buckle folds, bending folds are often long, cylindrical 
structures with a much higher aspect ratio (length/half-wavelength 
ratio) than buckle folds, and can form in both contractional, neutral and 
extensional settings. Also, unlike buckle folds, bending does not produce 
fold trains, but rather single structures, notably monoclines and domes. 

The most common structures resulting from bending processes, are 
‘fault-propagation folds’ (Fig. 39a), also known as ‘forced or drape folds’ 
(Fig. 39a) (Friedman et al., 1976, 1980; Logan et al., 1978; Stearns, 

Fig. 37. The various response to the deformation of a layer embedded in a 
nonlinear material (some of the possible solution of to the stationary nonlinear 
Swift-Hohenberg equation). The homogeneous and sinusoidal responses are 
characteristic of linear embedding materials for very small deformation; such 
structures ultimately evolve to a sinusoidal response (after Ord and Hobbs, 
2013; Hobbs and Ord, 2015). 

Fig. 38. a) Fields of folding related to mean ductility and ductility contrast 
(after Donath and Parker, 1964). b) Passive folds form by shearing of distur-
bances in layering, without an active mechanical influence of the layering. Fold 
geometry is that of similar folds. 
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1978; Withjack et al., 1990; Coleman et al., 2019; Nabavi et al., 2020a). 
These form as a fault propagates upwards and creates a monoclinal fold 
ahead of the propagating fault tip. The fault can be normal, vertical or 
reverse, and is often a reactivated basement fault or, in fold-and-thrust 
belts, a fault branch extending upwards from a detachment. Deforma-
tion occurs in an upward widening zone of ductile deformation that 
typically involves flexural slip (bedding-plane slip), fracturing, defor-
mation band formation and/or smaller-scale faulting. 

Another example is fault-bend folding, which is particularly common 
in fold-and-thrust belts where a thrust ramps up a competent layer and 
flattens out at a new weak stratigraphic level (Fig. 39b) (Suppe, 1983, 
1985; Suppe et al., 2004; Brandes and Tanner, 2014; Hughes et al., 
2014). In this case bending occurs above the kink in the thrust. It can 
also occur in the hanging-wall to non-planar normal faults, for example 

as roll-over folds above listric faults (Fossen, 2016; Nabavi et al., 2020a). 
The strain patterns and associated small-scale structural networks 

associated with fault-propagation folds are related to a number of fac-
tors, such as the sense of movement on the underlying fault, the absolute 
and relative mechanical properties of the folded layers, confining pres-
sure (burial depth) and differential stress. Small-scale structures asso-
ciated with fault-propagation folds may influence fluid flow in a 
reservoir during injection or production of hydrocarbons (Zuluaga et al., 
2016). In some cases, a relation between curvature and density of small- 
scale structures such as fractures or deformation bands has been 
demonstrated (Wilson et al., 2016; Fossen et al., 2017). In such cases, 
curvature analysis of such folded layers may successfully predict density 
variations in subseismic structures that can affect fluid flow. 

A simple kinematic model used to explain fault-propagation folds is 

Fig. 39. Examples of bending process in different settings and scales: a) schematic diagram illustrating an extensional fault-propagation fold formed over a planar, 
dip-slip basement fault. Trishear parameters and terminology for the description of pre- and synkinematic growth strata are also shown (based on Coleman et al., 
2019). α, ϕ, and δ are fold limb dip, trishear apical angle, and fault dip, respectively; b) Fault-bend fold kink-style model formed by thrust movement over a ramp 
(after Suppe, 1983, 1985); c) Flexural model generated by 50% of orthogonal flexure and 50% of flexural flow applied to the real subduction zone on the El Salvador. 
Ellipses correspond to finite strain ellipses of the bulk deformation accumulated (the ratio between the between long and short axes) from the beginning of sub-
duction (after Romeo and Álvarez-Gómez, 2018); d) Bending folds formed above and adjacent to salt diapir or igneous intrusion; e) Neck folds formed between 
boudins (after Fossen, 2016); f) Photograph of rectangular boudins formed by stretching of a granitic dike in metasediments with scar folds developed between 
boudin blocks (after Fossen, 2016). 
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the trishear method. Field observations, seismic reflection data, and 
analogue, and numerical models all show that an upward-widening 
triangular ‘trishear zone’ of heterogeneous strain develops ahead of 
the propagating fault tip (Erslev, 1991). In the model, this trishear zone 
is controlled by the fault propagation-to-slip (P/S) ratio (e.g., Erslev, 
1991; Hardy and Ford, 1997; Allmendinger, 1998; Allmendinger et al., 
2004; Hardy and Allmendinger, 2011). Some parameters can change 
during deformation, such as fault strength and displacement, stratig-
raphy and overburden, and the size and shape of the trishear zone. This 
purely kinematic model of passive folding does not take rheology or 
strain rate into account. In particular, flexural slip, which often occurs 
during fault-propagation folding, is not accounted for. When describing 
the growth fold shapes, the ratio of the fold width to fold amplitude as 
the ‘fold-shape factor’ (FSF) is a useful parameter. FSF values depend on 
fault dip, fault throw, displacement rate, cover rheology, cover thick-
ness, basal detachment thickness, and confining pressure (Coleman 
et al., 2019; Nabavi et al., 2020a). Overall, fault-propagation folds 
should be wider if the cover is thicker, if the detachment layer is thicker, 
if the detachment viscosity decreases, or if slip along the fault is slow. 
Accordingly, wide folds with small amplitudes have large FSF values 
(FSF > 1), and narrow folds with large amplitudes have low FSF values 
(FSF < 1). 

A large-scale example of a process involving bending forces is the 
bending (flexure) of subducting lithosphere along convergent plate 
margins. This can in part be attributed to the vertical end load and 
bending moment of the negative buoyancy force acting on the litho-
spheric slab (slab pull), but is also influenced by other tectonic forces, 
such as shearing along the plate margins and horizontal forcing across 
the plate boundary (Fig. 39c). The response of the subducting oceanic 
lithosphere to these forces can be observed in the seafloor bulge of the 
plate near the trench, extensional faulting near the outer-arc trench or a 
folded layer (called bending moment normal faults) along with inferred 
lithospheric weakening that results in the reduction of effective elastic 
thickness of the plate closer to the trench (e.g., Kearey et al., 2009; 
Frisch et al., 2011; Turcotte and Schubert, 2014). Since bending moment 
normal faults develop from flexure, extensional faults usually display 
downward-decreasing displacement toward a neutral surface within the 
plate (Fig. 39c). Lithospheric bending has the first-order dependence on 
the depth of the slab that is subducting and breaks down when signifi-
cant in-plane forces are included (Turcotte and Schubert, 2014). 

Bending of layers can also occur in response to inflation during 
shallow magmatic intrusion (e.g., Wilson et al., 2016; Montanari et al., 
2017; Reeves et al., 2018). Also, the rise of salt diapirs can cause bending 
of sedimentary layers into domes or anticlines (Fig. 39d) (e.g., Talbot 
et al., 2009; Jackson and Hudec, 2017). This effect is accentuated by the 
formation of synclines or minibasins between the salt structures. Here 
layers are bend downwards into synclines due to subsidence above the 
thinning part of the salt layer. 

Gentle bending folds can result purely from differential compaction. 
This typically occurs across large faults where the column of sedimen-
tary fill is much thicker on the hanging-wall side of the fault than on the 
crest of the fault block. On a smaller scale, bending of layers occurs on 
each side of rigid boudins in metamorphic rocks, as the host rock fills the 
gap between boudins as they move apart (Fig. 39e, f) (Price and Cos-
grove, 1990; Harris et al., 2002; Goscombe et al., 2004). The hinges of 
these bending folds are generally thickened with respect to the limbs. 
Neck folds rapidly die out away from the boudinaged competent layer. 

7. Relationship between fold geometry, strain and rheology 

The final strain distribution within folded layers results from the 
accumulation of deformation affecting all the layers, which causes 
variable strain states along and across the layer. Hence, strain in folded 
layers is fundamentally heterogeneous. In this regard, the analysis of 
folds in the field, experimental and numerical studies indicate that the 
state and distribution of finite strain within mesoscopic samples or 

orogenic belts are significant parameters in the interpretation of ge-
ometry, kinematics and mechanics of folds in rocks sequences, and also 
in the reconstruction of the history of deformation (e.g., Hobbs, 1971; 
Roberts and Strömgård, 1972; Hudleston and Holst, 1984; Holst and 
Fossen, 1987). 

Two kinematic models commonly used to explain buckle fold strain 
patterns are those of the tangential longitudinal strain (TLS) (or 
orthogonal flexure in Twiss and Moores, 2007) (Fig. 40a) and flexural 
flow folding (where rock material in incompetent layers flows from fold 
limbs toward hinges and typically produces similar folds) or flexural-slip 
folding (involving slip on bedding surfaces and typically develops par-
allel and concentric folds). These develop in homogeneous isotropic and 
anisotropic layers, respectively, with potential development of minor 
structures in folds such as sigmoidal en-échelon tension gashes and 
saddle reefs (Donath and Parker, 1964; Ramsay, 1974; Harris et al., 
2002; Davis, 2014; Fossen, 2016). TLS concentrate strain in the fold 
hinge zone, with a systematic variation in strain across the folded layer. 
In contrast, flexural flow is characterized by simple shear that concen-
trate strain in fold limbs at the inflection points, with no variation in 
strain across the folded layer and the hinge. The difference between 
these two strain patterns appears to be the same as the difference be-
tween Euler-Bernoulli beam (a beam is a 2D layer that is much longer 
than thick) theory, where plane sections remain normal to the central 
line (or neutral axis), and Timoshenko beam theory, where shearing is 
included so that although plane sections remain plane, they are not 
necessarily normal to the neutral axis (Timoshenko and Gere, 1963). 
One fundamental assumption in all versions of the TLS model (including 
constant area, parallel layer, and FoldModeler) is the neutral line or axis 
that is continuous along the fold (Fig. 40a) (Ramsay, 1967; Bobillo-Ares 
et al., 2000, 2004; Lisle et al., 2009; Aller et al., 2010). In analysis of 
buckle folds, the concept of neutral line (in 2D fold profiles but surface in 
3D cases) is one of the fundamental topics and contributors to fold 
development. The neutral line in a buckle fold divides areas of layer- 
parallel extension (as layer-perpendicular joints/veins, less frequent 
normal faults) around the outer arc from areas of tangential, layer- 
parallel contraction around the inner arc (as layer-parallel joints/ 
veins, reverse faults, stylolites) (Ramsay and Huber, 1987; Lisle et al., 
2009; Frehner, 2011) (Fig. 40a-c), which control the pattern, distribu-
tion, and density of fractures. 

If there is no transport of material from the inner to the outer arc, the 
finite neutral surface migrates toward the outer arc so that the outer arc 
thins while the inner arc thickens (Ramsay, 1967). This migration of the 
finite neutral line results in switch from a convergent fan in the inner arc 
to a divergent fan in the outer arc, in the other words, the XY planes of 
the strain ellipsoid fan across the fold (Frehner and Exner, 2014; Bobillo- 
Ares et al., 2017). However, if shortening is accomplished by dissolution 
of material in the inner arc and precipitation in the outer arc, the neutral 
surface may remain in a central location (Hudleston and Tabor, 1988). 
Apart from the fact that fractures in a folded area can be either pre-, syn- 
or post folding deduced from abutting and cross-cutting relationships, 
fracture patterns in buckle folds cannot be explained simply by the 
neutral line in an elastic buckle fold model. In this regard and according 
to a rheological FE-models (Jäger et al., 2008; Frehner, 2011, 2014; 
Eckert et al., 2014; Liu et al., 2016), two neutral lines can be identified: 
the incremental neutral line (zero layer-parallel strain rate) and the 
finite neutral line (zero finite layer-parallel strain) (Fig. 40c, d). A 
transition zone also develops between these two neutral lines (surfaces 
in 3D cases) that exhibits finite shortening but undergoing extension (a 
low strain zone next to the finite neutral line) (Fig. 40c, d). Frehner 
(2014) shows that, in addition to overburden pressure, viscosity, 
permeability and fluid pressure (Eckert et al., 2014), the extensional 
area in the hinge of a buckle fold is broader than that in the limbs, which 
can explain the distribution of fractures. Since the curvature of a fold is 
maximal at the hinge and decreases to a minimum or zero at inflection 
points, the absolute values of TLS decrease from the hinge to inflection 
points and also to neutral surfaces. The study of different strain patterns 
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provides insight into the kinematic evolution of folds from the initial 
undeformed stage to the final stage. Such studies represent an essential 
basis for the restoration or balancing of structures and calculation of 
shortening. 

In the case of the initially flat layer undergoing buckling in a xyz- 
coordinate system, stress is homogeneously distributed within both 
the layer and the matrix during the initial stages of folding. Indeed, the 
introduction of an interface perturbation during the amplification stage 
of folding results in a mechanical instability through the difference in 
shear stress (Fig. 41a-c), which it varies at every stage of folding, so that 
stress distribution becomes significantly heterogeneous. This results in 
the creation of a rotational flow (w) with non-zero vorticity in the folded 
surface (S0) (as clock- and counter-clockwise rotation) superimposed 
upon the background irrotational flow, which has zero vorticity. This 
rotational flow is responsible for the folding process, so that it amplifies 
the perturbation and develops the fold train emerging from the initial 

perturbation. The rotational flow dominates the folding process and it 
constitutes a key element to understand the folding pattern observed in 
3D models. When the fold limb is well developed, the vorticity flow is 
oriented along the y-axis (Fig. 41d). The sense and magnitude of 
vorticity depends on the dip direction of the layer(s) relative to the 
horizontal shortening direction. At the lateral termination of the fold, 
the rotational flow makes the layer spin about the x-axis, which causes 
the fold to grow laterally. This x-spin is accommodated by a y-spin, 
which increases the layer dip. Moreover, the fold amplification and 
tightness increase continuously as a result of the rotation about the z- 
axis (vertical component of the vorticity). This fold and or fold train 
continues its grow cylindrically with a hinge normal to the shortening 
direction which can be deflected as a result of strain localisation and/or 
through interaction and linkage with other folds (Fig. 41d). Hence, the 
vorticity flow is an important controlling factor in folding and the fold 
interplay processes. Overall, antiformal and synformal fold geometries, 

Fig. 40. a) The strain distribution within a buckle formed in a homogeneous, isotropic layer as a result of tangential longitudinal strain (TLS) such as a massive, 
unbedded limestone or sandstone bed (modified after Ramsay, 1967). b) A sketch of open and mineralized extensional fractures in the outer arc of the chevron fold 
from Varanger, northern Norway. c) Simulation snapshots of a progressively shortened Newtonian single-layer fold with the indicated modelling parameters. Colours 
represent the layer-parallel strain rate normalised by the absolute value of the externally applied strain rate. Finite strain ellipses with their major axis and a passive, 
initially orthogonal marker-grid are plotted (after Frehner, 2011). d) The diagram shows the layer-parallel strain rate and the positions of the two neutral lines on the 
axial surface trace, normalised by the current thickness of the layer at the hinge, with increasing shortening and scaled stretch. The dots indicate the shortening for 
which the different simulation snapshots are plotted (modified after Frehner, 2011). 
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respectively, are characterized by a counter-clockwise and clockwise 
oriented vorticity lines. 

The competent and incompetent layers undergo different types of 
strain during folding. Although these different types of strain occur 
together and because there is no unique relationship between fold shape 
and the state of strain within folded sequences, relationships have to be 
established separately to describe their effects under the number of 
specific models and mechanisms of folding as mentioned in Section 6. 
One of the goals of geometrical analyses of buckle folds is to understand 
the relation between the rheological parameters of the rocks and 
shortening (strain), and also to quantify strain and rheology. 

There are several methods to estimate viscosity contrasts and 
shortening during folding of single and multi-layers such as (1) arc 
length method which measuring the arc length relative to the thickness 
of a folded layer (e.g., Bastida et al., 2005, 2) using thickness versus 
wavelength measurements of folded markers as an indicator of viscosity 
contrast, (3) using wavelength/thickness ratios of single layer folds 
(Fig. 3 in Schmalholz, 2006, 4) using interlimb angle versus length of 
limbs/layer thickness ratio graph for single layer folds; and dip angle of 
the limb versus the thickness of the layer on the limb/thickness of the 
layer on the hinge ratio graph for multilayer folds (Yakovlev, 2012a, 
2012b), (5) curvature-based methods to predict deformation patterns, 
intensity and orientation of structures, (6) cross-section balancing 
principles as kinematic methods. (7) As a common and applicable 
method, amplitude (A), wavelength (λ) (Fig. 42a-d), and layer thickness 
(h) (measured orthogonal to the folded layer) (Fig. 42e-h) of single-layer 
folds may be measured to estimate the bulk strain accommodated from a 
point at which the nucleation amplitude is reached during initial 
buckling development and viscosity contrast between layers during 
folding (e.g., Schmalholz and Podladchikov, 2001; Druguet et al., 2009; 
Hudleston and Treagus, 2010; Llorens et al., 2013b). Within individual 
fold trains, the fold wavelength reduces as amplitude increases, so that 

the A/λ ratio defines a general trend when plotted against λ. In detail, 
when compared to wavelength, the A/λ ratio is not a straight line, with 
amplitude increasing more slowly than wavelength. In general, steeper 
folds typically have lower A/λ ratio, as recumbent folds can develop 
proportionally greater amplitudes that may be a product of increased 
simple shear, which rotates the axial surface toward the shear plane. 
Overall analysis of individual fold datasets on the strain contour graph 
(Schmalholz and Podladchikov, 2001) reveals that most folded layers 
display viscosity contrasts in range between 20 and > 250, while layer 
shortening is generally estimated between 39 and > 70% (Fig. 42b). 
Within individual fold trains, the percentage of concentration typically 
increases as folds become more inclined, or recumbent. 

When plotted on a strain contour graph, the overall trends of data 
from individual fold trains are slightly deviated from the established 
lines marking fixed viscosity contrasts, with some plots suggesting that 
folds with a lower percentage of shortening are marked by lower vis-
cosity contrasts compared to folds with a higher percentage of short-
ening. In more typical cases, folds with a lower shortening percentage 
have greater viscosity contrasts compared to adjacent folds with a higher 
shortening percentage, resulting in more gentle trends on strain contour 
graphs. Schmalholz and Podladchikov (2001) also noted that not all 
folds in a layer grow to the nucleation amplitude simultaneously, 
depending on both initial amplitude and the initial wavelength. Hence, 
folds in the same fold train can be at different points on the scaled 
amplification curve at the same time. Such variations can also result in 
the values of heterogeneous flattening deformation on quite a small 
scale in a fold train (e.g., Hudleston and Stephansson, 1973). 

Guiting (1998, 2005, 2009) has used rheological factors and self- 
similarity in fractal geometry to classify folds assuming that any 
portion of any structure is a scaled-down version of the whole and 
remain so over specified scale ranges. Major factors affecting fold pat-
terns in this classification scheme are elucidated in fractal simulations of 

Fig. 41. a) Illustration of the non-zero vorticity flow in the case of perturbed interface. The opposite horizontal arrows show the shortening direction. The curved 
arrows show the movement of the layer delimited by the interface. The opposite vertical arrows show velocity distribution characteristic of nucleation and 
amplification of fold during compression. b) Representation of an arbitrary volume undergoing a differential shear stress across the interface. c) Flow in a homo-
geneous domain in the right limb of an upright symmetric fold. The bulk shear strain imposed by the bulk folding is partitioned differently in the layers. S0 and S1 are 
folded layer and axial surface reference frame, respectively (c). d) Numerical result of three-dimensional Buckling (detachment folding) (right column) for 17.4% 
bulk shortening showing absolute topography distribution with respect to model bottom. Left column shows contours of relative topography with respect to mean 
height of surface in x-y space (after Grasemann and Schmalholz, 2012). 

S.T. Nabavi and H. Fossen                                                                                                                                                                                                                    



Earth-Science Reviews 222 (2021) 103812

46

a fold (i.e., position of interpolation points (x, y)) and the disturbance 
coefficient d of the fold (− 1 < d <+1) so that if d > 0 and d < 0, folds are 
upward convex and downward convex, respectively. Furthermore, an 
increase in d-value correspond to more complex fold patterns. However, 
there is a critical problem: if folds are fractals, how can they be periodic? 
In this regard, if folds are fractal, by definition, they cannot be repre-
sented by Fourier series, and also not by power functions and Bézier 
curves. By nature, the fractal dimension increases as the complexity 
increases. That is almost the definition of fractal dimension. However, 
3D models of natural fold systems established by photogrammetry show 
that folds include multifractal geometries, recurrence phenomena, and 
their profiles are treated nonlinear dynamical systems (Ord et al., 2018; 
Ord and Hobbs, 2019). 

8. Folding at shallow crustal depths 

In contrast to faulting and fracturing, folding is a ductile deformation 
process that preserves continuity of layers at the scale of observation. In 
the predominantly plastic middle and lower crust, folding is accom-
modated by crystal-plastic and diffusion processes at the microscale. In 
the upper and mostly brittle crust, folding is mainly accommodated by 
brittle deformation mechanisms, i.e., microfracture, grain rotation and 
frictional grain sliding, except for carbonaceous layers where also wet 
solution (pressure solution) and twinning are important, and salt layers 
where crystal-plastic processes occur. However, fold geometry is not 
directly dependent on deformation mechanism, but on viscosity con-
trasts (or the lack of such) between layers involved (Hudleston and 
Treagus, 2010). For example, active folding experiments are typically 
performed in room temperature on clay and sand layers that deform 
frictionally. These experiments produce folds with geometric charac-
teristics that are directly comparable to natural folds formed at high P-T 
conditions deep in the crust, with completely different microscale 
deformation mechanisms. For buckling, elasticity also plays a role, but 
there is no direct relationship between viscosity and elasticity on one 
hand, and temperature-controlled deformation mechanisms on the 
other. The same is true for passive folding, which requires that there is 
no or very little viscosity contrast between the layers. Hence, the same 
principles and laws apply to folds formed in any material at any crustal 
level. Still, folding of rocks and sediments in the upper crust have 
characteristics that carry important implications, for example for strain 
estimates, hydrocarbon exploration/exploitation, CO2 sequestration, 
and quantifying the fold evolution by using syn-kinematic sedimentary 
sequences. In this section we will focus on these characteristics. 

Although the full geometric range of fold types can form under the 
low temperature and pressure conditions of the upper crust, observa-
tions of upper crustal folds reveal two overarching characteristic fea-
tures. First, bending and passive folding are particularly common. This is 
particularly true in soft sediments and sedimentary rocks that are easily 
bent and sheared. Second, upper crustal folding is commonly closely 
related to faulting. Indeed, faults are a trademark of upper crustal 
deformation, and provide very localised deformation that easily affect 
their walls, particularly in soft sediments and lithologies. The combi-
nation of faults and folds is an expression of brittle-ductile behaviour, 
where ductile is to be understood as deformation that preserves layer 
continuity at the scale of observation while brittle deformation disrupts 
layers and other markers. Because of the importance of fault-related 
folds to petroleum geology and foreland orogenic deformation, we 
will discuss such fault-related folds in some more detail below. 

8.1. Detachment folding 

Folding of more competent layers above a weak detachment or 
décollement, without a ramp fault coring the uplift, occurs at various 
scales in the uppermost crust (Fig. 43a). They are commonly found in 
both subaerial and deep-water fold-and-thrust belts, such as the Jura 
Mountains (Fig. 43b) (e.g., Buxtorf, 1916; Humair et al., 2020), the 

Appalachian fold belt (e.g., Chamberlin, 1910; Wiltschko and Chapple, 
1977), the Canadian Rocky Mountains (e.g., Dahlstrom, 1970), the 
western Gulf of Mexico (e.g., Yarbuh and Contreras, 2015), and the 
Zagros fold-and-thrust belt (e.g., Sherkati et al., 2005; Vergés et al., 
2011) (Fig. 2a) and have played a dominant role in the kinematics of 
thin-skinned tectonics (e.g., Dahlstrom, 1969; Jamison, 1987; Poblet 
and McClay, 1996; Mitra, 2003; Brandes and Tanner, 2014; Li and Mitra, 
2020 and reference therein). They also form as gravity-driven structures 
above weak layers, for instance downslope continental margins (e.g., 
Morley et al., 2017; Alsop et al., 2021). The detachment is typically 
overpressured shale or salt, overlain by more competent layers of 
sandstone or limestone. These competent layers develop buckle folds 
whose wavelength, amplitude and other geometric properties follow the 
general rules of buckling described earlier in this paper. They may be 
concentric, chevron or box shaped, showing symmetric, asymmetric, 
disharmonic, lift-off, and multi-detachment styles. However, the folds 
vanish abruptly toward the underlying detachment. This detachment 
separates less- or undeformed footwall from the shortened hanging wall, 
and their formation can be compared to folds formed by pushing a carpet 
on a floor. Tight and disharmonic folds may be evolved in the core of 
detachment folds if there is enough ductile material present in the 
detachment to penetrate the core of the growing anticline. If there is not 
enough material to fill the core of the fold, shortening commonly ac-
commodates by secondary faults in the antiform as a result of local space 
problems, as indicated in Fig. 43b. 

Fold geometries at shallow crustal depths can also be used to eval-
uate the dominant folding mechanism. Schmalholz et al. (2002) distin-
guished three types of folding mechanism depending on the controlling 
material parameters: (i) matrix-controlled folding (controlled by vis-
cosity ratio between layer and matrix), (ii) detachment folding 
(controlled by the thickness of the weak layer below a strong layer) and 
(iii) gravity folding (controlled by the ratio of gravity to viscous stress). 
They also presented a phase diagram that was based on the ratio of 
matrix thickness to layer thickness and the ratio of wavelength to total 
thickness. This diagram allows estimation of the dominant folding 
mechanism from the fold geometry alone. 

8.2. Fault-bend folding 

Fault-bend folding is the imposed folding of hanging-wall layers as 
they move above a fault kink or bend with flat-ramp-flat geometry (i.e. a 
staircase trajectory) (Fig. 43c). Such folds were first recognized by Rich 
(1934) in the Pine Mountain of the southern Appalachian fold-and- 
thrust belt. For thrusting, the bend is typically associated with a ramp 
as the detachment fault transfers displacement to a higher stratigraphic 
level, connecting two weak detachment levels. Fault-bend folds tend to 
have relatively symmetric limbs (Fig. 43c). Movement of the hanging- 
wall layer over the fault bend result in an anticline-syncline pair. 
Folding occurs in two situations. First, the hanging-wall layers are bent 
upwards along the ramp with constant limb dips (the backlimb of the 
fault-bend fold), and second, they bend back to horizontal at the upper 
detachment level (Fig. 43c). In contrast, the forelimb of fault-bend folds 
is passively transported along the upper flat. Because of the layering 
being parallel to the fault, slip easily occurs along bedding interfaces so 
that the folds become flexural-slip folds. Flexural slip and flow imply 
conservation of area and bed-length, and this formed the basis for the 
first geometric models of fault-bend folds. These were somewhat ideal-
ized kink-like models that allowed for easy geometric construction based 
on well and outcrop data (Suppe, 1983, 1985). 

A related model is the fault parallel flow model, where hanging-wall 
particles move with the same velocity along trajectories parallel to the 
fault (Ziesch et al., 2014). In this model, bed thickness is not constant. 
The vertical or inclined shear models, where particles only move along 
vertical or constantly inclined paths, also imply layer thickness varia-
tions and produces kink-like geometries. Most fault-bend folds are not 
kink-like but curved, and the more recent trishear model has been 
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Fig. 42. a-b) Graphs showing wavelength plotted against amplitude/wavelength, and strain contour maps of Schmalholz and Podladchikov (2001) for a series of 
individual fold trains. Wavelength is defined as the distance between two points that occupy a similar position on the fold train (i.e. between adjacent synform 
hinges). The thickness of a layer is measured orthogonal to the folded bed, while amplitude is defined as half the distance from trough to the crest of upright folds. 
Strain contour plots of Schmalholz and Podladchikov (2001) show the estimated percentage of shortening and viscosity contrasts for folded layers. In each of the 
graphs, different coloured symbols represent different individual fold trains. c) Graph showing fold amplitude plotted against fold wavelength, and d) overall data on 
a log-log plot. e) Graph showing folded layer thickness against fold wavelength, and f) overall data on a log-log plot. g) Graph showing folded layer thickness against 
fold amplitude, and h) overall data on a log-log plot. 
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applied to produce models with rounded hinges that better capture 
natural and experimental examples (Connors et al., 2021; Plotek et al., 
2021). 

Fault-bend folds can form in any tectonic regime, also in the exten-
sional regime where a normal fault makes gradual or abrupt changes in 
dip. Normal faults are typically steeper and make a higher angle to any 
sub-horizontal layering, although bedding-parallel faults also occur 
(Fig. 34d) (e.g., Xiao and Suppe, 1992; Shaw et al., 1997; Withjack and 
Schlische, 2006). Overall, extensional fault-bend folds can be modelled 
in the same ways as thrust-related fault-bend folds. While the ramp 
model shown in Fig. 43c is particularly common for fold-and-thrust 
belts, extensional examples show a much larger variety. Fault bends 
may be either concave or convex toward the hanging-wall depending on 
the mechanical stratigraphy that result in different evolution of the 
hanging-wall deformation, strain partitioning and associated structures 
(e.g., Withjack et al., 1995; Delogkos et al., 2020; Nabavi et al., 2020a). 
Listric fault geometry is a classic example of an extensional fault-bend 
fold, where a relationship exists between the geometry of the fault and 
the rollover fold and subsequent basin with either post- or syn-kinematic 
sediment in the hanging wall (Fig. 43e). Anti-listric faults give the 
opposite geometry. 

8.3. Fault-propagation folding 

Fault-propagation folding is the folding of layers ahead of a propa-
gating fault tip, and this is most commonly observed where deeper faults 
propagate upwards into and through an overlying sedimentary sequence 
(Fig. 43f). Fault-propagation folding was first documented for thrust 
faults by Heim (1878) under the name “stretch thrust” (Heim, 1878), and 
later by Willis (1894), Gallup (1951) and Goguel (1952), but are equally 
important in the extensional regime. Fault-propagation folds related to 
thrusting are characterized by an overall asymmetry in the direction of 
transport, upward widening zone of ductile deformation, long, gently- 
dipping backlimb, and short, narrow, steep to overturned forelimb 
(Fig. 43f) (e.g., Suppe and Medwedeff, 1990; Mitra, 1990; Hughes et al., 
2014; Hughes and Shaw, 2015). The geometry and kinematics of 
fault-propagation folds depend on the amount of displacement along the 
basal detachment, the footwall cut-off angle (or ramp angle), and the 
propagation-to-slip ratio. Steeper basement-rooted reverse faults pro-
duce fault-propagation folds in the sedimentary cover as they propagate 
up-section into the overlying stratigraphic sequence (e.g., Withjack 
et al., 1990; Jin and Groshong Jr, 2006; Ferrill et al., 2012; Paul and 
Mitra, 2015). Large-scale examples are represented by the forced 
monoclines of the Colorado Plateau (Davis and Bump, 2009). Normal 
faults also form fault-propagation folds as they propagate up-section, 
then with an asymmetry consistent with their extensional nature. 
Although less common, fault-propagation folds can also form where 
normal faults propagate downwards through a sedimentary sequence. 

As for fault-bend folding, different kinematic models can be applied 
to explain the formation of fault-propagation folds, including flexural 
slip, inclined shear and the trishear models (Fig. 34g) (e.g., Suppe and 
Medwedeff, 1990; Erslev, 1991; Allmendinger, 1998; Allmendinger 
et al., 2004; Hardy and Allmendinger, 2011). Field evidence of 
bed-parallel slip (flexural slip) and small-scale structures cross-cutting 
bedding are commonly observed, suggesting that more than one 
mechanism may be involved and even vary throughout the folding 
history. For example, Zuluaga et al. (2014) noted that flexural slip was 
common at early stages of folding, whereas inclined shear became 
important after 30–50 degrees of forelimb rotation. 

8.4. Slump folding 

Slumping of unconsolidated sediments typically produce folds that 
appear as intraformational in the stratigraphic record. They encompass 
detachment folds and fault-propagation folds, but also sheath folds and 
more complex structures related to shearing of soft and fluidized 

sediment (Fig. 2i). Not only can the hinges become highly curved, but 
also their axial surfaces may become folded during progressive soft- 
sediment flow (Alsop and Marco, 2013). Chaotic folding is promoted 
by the high pore fluid pressures that characterize deformation of un-
consolidated porous sediments. 

Comparison of curvilinear fold patterns in metamorphic rocks and 
soft sediments also reveals no significant geometric difference between 
aspects of curvilinear fold geometries. While folding within meta-
morphic rocks is generally created by deformation associated with 
recrystallization, folding within soft sediments is typically achieved via 
micro-fracturing, pore-collapse accommodating compaction, and inde-
pendent particulate flow, where individual grains move relative to one 
another to create a range of structures (e.g., Alsop et al., 2017, 2020). 

Folds resulting from soft sediment deformation are often found to 
vary from gentle to isoclinal and upright to recumbent, with non- 
cylindrical geometry. Correct identification of folds and fabrics 
created during gravity-driven deformation of unlithified sediments from 
those tectonic structures formed during regional deformation is essential 
when interpreting geological histories preserved within the rock record. 
In this regard, veins developed along fractures, cleavage forming axial- 
planar to folds, truncated folds in their hinges and limbs by overlying 
sequences, incorporation of deformed fragile fragments into overlying 
sediment, cross-cutting clastic dykes, vergence of folds toward the 
sedimentary depocenter, and the sedimentary infill of irregular erosive 
surfaces that truncate underlying structures are all indicative of soft- 
sediment deformation (Fig. 2i) (Alsop et al., 2017, 2019, 2020). 

8.5. Drag folding 

Folds in the hanging wall and/or footwall of faults that can be related 
to the faulting process are generally referred to as drag folds or fault drag 
(Fig. 44). While they were originally thought to be results of friction 
along the associated fault (e.g., Kamen-Kaye, 1953; Laubscher, 1956; 
Hamblin, 1965; Ramsay and Huber, 1987), this view has been chal-
lenged in a number of works (e.g., Reches and Eidelman, 1995; Grase-
mann et al., 2005; Gomez-Rivas et al., 2007; Resor and Pollard, 2012; 
Ferrill et al., 2016). It is now clear that they can originate in a variety of 
ways. Many are former fault propagation folds that were preserved in 
the wall rock as the fold was transected by the fault. Others are 
fault-bend folds or folds that originated from geometric complications 
along the fault, including fault overlaps or fault relay structures (Childs 
et al., 2017). Depending on the geometric situation, drag can be normal 
or reverse, and for fault-bend folds, this relates directly to fault geom-
etry. Normal drag and reverse drag are indicators of ductile deformation 
of geological markers cut by a fault segment in which deformed markers 
are convex and concave in the direction of transport along the fault 
segments, respectively, for normal drag and reverse drag (Fig. 44) 
(Grasemann et al., 2005; Mukherjee, 2014; Fossen, 2016). Hence, the 
sense of displacement along the fault segment can be determined by the 
sense of drag. Drag folds are particularly important where reservoir 
contact relations are a concern, such as in an oil field. In these cases, it 
should be taken into consideration that drag folds are not always imaged 
on seismic data. 

8.6. Salt-related folding 

The presence of a salt layer affects a wide range of deformation and 
structural styles in contractional, extensional and strike-slip regimes 
both in thin- and skinned tectonic. Examples of well-studied structural 
settings are the Gulf of Mexico (e.g., Hudec et al., 2013), the Santos 
Basins in offshore Brazil (Fig. 45a) (e.g., Jackson et al., 2015), the Zagros 
fold-and-thrust belt of Iran (e.g., Jahani et al., 2009, 2017), the Jura 
Mountains and the Alps (e.g., Sommaruga et al., 2017), the Pyrenees (e. 
g., Cámara and Flinch, 2017), and the German Zechstein basin (e.g., 
Strozyk et al., 2017). Faults, folds, and fault-related folds in the tectonic 
system are often associated with differential flow of ductile salt with the 
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depth with respect to surrounding rocks (Figs. 2b, 45a,b) so that the 
presence of salt in the tectonic setting will permit folding and faulting to 
develop over a wide belt. Shortening of the overlying cover result in one 
of three classic geometries of fault-related folds mentioned above 
(Fig. 44a). Salt layers also form efficient detachment levels in exten-
sional settings, particularly on continental margins (Fig. 45b) (Brun and 
Fort, 2011). Internally, a deforming salt layer would deform internally 
by flow folding (a passive folding mechanism) to form similar folds, 
although more competent non-salt layers would easily respond to 
deformation by buckling. 

The geometry and style of salt-influenced structures depend on the 
thickness ratio of the underlaying salt layer and overlying cover, shear 
resistance of a detachment, tectonic setting, the geometry of pre-existing 
weak and fault zone especially in strike-slip settings, as well as the ef-
fects of mechanical stratigraphy (i.e. competency contrast) and strain 
rate (Davis and Engelder, 1985; Stewart, 1996, 1999; Fossen, 2016; 
Jackson and Hudec, 2017; Duffy et al., 2018; Rowan et al., 2020 and 
references therein). However, multiple layers of salt (or detachment 
level) may produce ramp-flat geometries with ramps connecting slip 
detached on salt layers, disharmonic folds, and more complex structural 
style in the setting as described in the Dezful Embayement of the Zagros 
fold-and-thrust belt, SW Iran (e.g., Sherkati et al., 2006; Ghanadian 
et al., 2017; Najafi et al., 2018). If the rheology of the overburden 
significantly differs from that of the salt, the overburden layers are 
active strain markers that can be thickened, thinned, buckled, and bent. 
Salt-related folds have commonly a gradually, asymmetric and 
long-term growth process with respect to tectonic folding, and the 
neutral surface is less developed within them in which shortening 
domain is accommodated by salt flow. Shortening of a thick overburden 
on a thin salt detachment layer produce thrusting rather than buckling, 
whereas thick salt detachment layers tend, in addition to the charac-
teristic rounded, sinusoidal symmetric to overturned folds, to develop 
box and concentric folds with tight to isoclinal cores and gentle crests on 
multiple wavelengths in which salt can flow under relatively small 
stresses either into an anticlinal fold core (e.g., salt-cored anticlines in 
the Zagros fold-and-thrust belt and the Jura Mountains), where evapo-
rite folds are parasitic or rounded chevron shaped, or from a synclinal 
fold crest due to the welding (Fig. 45a). Given the weak nature of salt, 
minor changes in the flow geometry of the deforming salt body may 
produce well-developed sheath folds and interference folds that have 
steeply plunging to vertical hinges. Furthermore, shortening of the thick 
salt body leads to squeezing and upward flow of salt to shallower levels 
in the form of diapirs and even extrude onto the surface to form salt 
sheets and glaciers. In this regard, in addition to the role of the regional 
tectonic system (e.g., contractional, extensional and strike-slip), rising 
salt flow may affect the wall rock and overburden by a bending process 
and localised strain in the form of drag folds resulting from rotation into 
the direction of salt movement, domal structure, minibasins, and mon-
oclinal forced (drape or flap) folds with associated fracture and fault 
networks (Fig. 39d) (e.g., Alsop et al., 2000; Schultz-Ela, 2003; Talbot 
and Pohjola, 2009; Giles and Rowan, 2012). 

9. Discussion 

9.1. Applied aspects of folds and folding in the uppermost crust 

Understanding folds and folding has a long range of applied aspects, 
from predicting the geometry of ore bodies, coal layers and hydrocarbon 

traps to the prediction of deeper faults and evaluation of seismic haz-
ards. Prediction of ore body geometry is directly based on the body of 
geometric and kinematic analyses presented in the main text, and will 
not be specifically discussed. Instead, we find it useful to focus on 
application at shallow and near-surface situations, where they can be 
linked to the growth of faults and fractures, and to depositional patterns. 

9.1.1. Syn-kinematic fold growth 
Syn-kinematic deposition of sediments provides a record of fault 

evolution that can be used to understand fold growth. Vice versa, fold 
growth can be used to predict variations in depositional patterns that 
lead to variations in the distribution and properties of stratigraphic 
units. Sediments deposited during folding and faulting are often termed 
growth strata, as they exhibit thickness variations that correspond to the 
location and formation of such tectonic structures. In converging setting, 
deformation causes folding of the pre-kinematic sedimentary sequence 
and when sedimentation progressively continues during contractional 
deformation, syn-kinematic sediments or growth strata are deposited 
synchronously with folding. The relief caused by shallow folding 
generate a topography that causes thickness variations, with expansion 
away from elevated fault crests (Fig. 46). Fold amplification progres-
sively rotates already deposited layers, causing a characteristic decrease 
in dip and formation of unconformities that may reflect irregular or 
episodic fold growth (Fig. 46) (e.g., Storti and Poblet, 1997; Vergés 
et al., 2002; Poblet, 2012). 

9.1.2. Folds and fractures 
Fractures are, together with the closely related veins and deforma-

tion band structures, important geological features that can have a 
dramatic impact on mechanical strength and flow performance of hy-
drocarbon reservoirs. Since these structures are not directly detectable 
from seismic data, any relationship to larger-scale folds can be of great 
interest. Fracture formation within a folded sequence may relate to both 
regional and local fold-related stresses. The strain distribution and 
fracture patterns vary with different types of folding mechanism (e.g., 
Cosgrove and Ameen, 1999; Cosgrove, 2015). Moreover, fractures can 
be generated either pre-folding, syn-folding or post-folding. Pre-folding 
fractures show no systematic relationship to fold geometry, while syn- 
folding fractures form in response to the stress field that exist any 
time during folding. The local state of stress usually changes both 

Fig. 43. a) Sketch of the progressive evolution of a detachment fold by kink-band migration and variable limb length. In this model, fold limbs lengthen but have 
constant dip (after Poblet and McClay, 1996). b) Buxtorf's (1916) interpretation of the geological structures of the Jura Mountains of Switzerland showing 
detachment folding of Mesozoic and Cenozoic strata above undeformed basement. c) Three stages of the evolution of a fault-bend fold by thrust movement over a 
ramp that cuts through the stratigraphy to link two bedding-parallel flats (after Suppe, 1983). d) Three stages of the evolution of an extensional fault-bend fold 
developed above a normal fault that flattens with depth (modified after Xiao and Suppe, 1992). e) Geometric model showing the effect of fault displacement on the 
listric fault that flatten at depth (after Withjack and Schlische, 2006). f) Three stages of the evolution of a fault-propagation fold (after Suppe and Medwedeff, 1990). 
g) Trishear model of a reverse fault affecting an overlying sedimentary sequence (modified after Allmendinger, 1998). 

Fig. 44. Different types of drag folds develop along normal faults and reverse 
faults. Dashed lines indicate the position of the regional before deformation for 
each case (after Grasemann et al., 2005). 
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spatially and over time, which can complicate fracture patterns in detail 
(Silliphant et al., 2002; Amrouch et al., 2010; Cosgrove, 2015). Com-
plications also arise because of rotation of early-formed fractures during 
folding and overprinting by subsequent structures (e.g., Zuluaga et al., 
2014). Post-folding fractures may be influenced by the fold geometry 
and the release of stress that was locked inn during folding (Engelder, 
1985). Fold curvature is used as a predictor of the distribution, orien-
tation and intensity of fractures. For example, Watkins et al. (2015, 
2018) demonstrated that high-curvature portions of the fold structure 
are characterized by high fracture intensity, and by discontinuous and 
short fractures oriented parallel to the fold hinge line. In contrast, low- 
curvature portions are characterized by low intensity, continuous and 
long fractures with a variation in orientations controlled by mechanical 
stratigraphy. 

Understanding the relative age relationships or chronology between 
fracture networks and folds can be distinguished using criteria such as 
relationships between the orientation of fractures and the fold axis, 
abutting and cross-cutting relationships (i.e. topology) (see Peacock 
et al., 2018, Peacock and Sanderson, 2018 for details), and fracture dip 
angle with respect to bedding. Regional fractures typically develop 
during early stages of layer-parallel shortening. They are oriented 
orthogonal to bedding and usually trend perpendicular and less- 

commonly parallel to the fold axis. Local fold-related fractures usually 
exhibit more complex patterns and their orientations and topology tend 
to vary according to the structural positions and stratal curvature in the 
fold structure (e.g., Fischer and Wilkerson, 2000; Watkins et al., 2015). 
As an example, a schematic block diagram of fracture networks within a 
periclinal fold structure for the Maleh-Kuh anticline in the Lurestan 
structural zone of the Zagros fold-and-thrust belt, Iran is shown in 
Fig. 47. This relatively simple example, which is based on Stearns 
(1969), shows to show the topology (i.e. the abutting relationships of 
fractures that illustrating different node and branch types) and re-
lationships between fractures and folds in different structural position of 
the fold structure, including nose (sample 1), limb (samples 2 and 3), 
plunging part (sample 4) and hinge (sample 5) (Fig. 47a). Other cases 
may be more complex, although some relationship between fold ge-
ometry and fracture distribution, orientation and/or property is usually 
present. Fluid flow in fracture systems is influenced by fracture orien-
tations, heterogeneities, density, and connectivity. In general, portions 
with higher fracture density have more connected fractures and poten-
tially have a higher permeability. However, fracture density is not al-
ways a reliable criterion for predicting reservoir flow properties, for 
which fracture connectivity analysis is needed. In this regard, connec-
tion per branch (CB) (Sanderson and Nixon, 2015, 2018) values can be 

Fig. 45. a) Polyharmonic buckle folds detached on salt in the Campos Basin of offshore Brazil, with two long-wavelength anticlines with young growth strata 
superposed on numerous short-wavelength anticlines in older strata (modified after Twigger, 2015). No scale and orientation provided in original figure. Folding is 
controlled by the competent layers (carbonates) immediately above the salt. b) Seismic section from Lower Congo Basin of offshore Angola showing sedimentary 
sequences detached on salt in the extensional salt-tectonic system (modified after Rouby et al., 2002). 
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represented on ternary diagrams, where higher CB values means higher 
connectivity with a high proportion of Y- or X-nodes, as well as con-
nected branches in ternary diagrams (Fig. 47b, c). 

While the role and effect of folding and fracturing has become 
increasingly evident in many case studies, there is room for improve-
ment and further implementation of these results in the petroleum in-
dustry. During the life cycle of many exploration and production 
projects, the interpretation of the trap in terms of fold geometry is pri-
marily done during the exploration phase, in the context of pro-
spectivity. In contrast, during the appraisal and production phase, the 
interpretation of the field and its reservoir in terms of fold structures, is 
often underappreciated. Consequently, recognition and analysis of the 
fold geometry, folding mechanism, the type and mechanism of fold 
growth and linkage, and also fractures and faults related to different 
types of folding are important for understanding how fluids flow in fold 
structures or which parts of folds represent a better productive sector of 
reservoirs caused by, for example, changes in the intensity, distribution 
and connectivity of fractures (see Evans and Fischer, 2012) for details on 
the distribution of fluids in folds). 

9.1.3. Folds and seismicity 
It is well known that the growth of some folds is linked to faulting, 

notably fault-propagation folds (Barnes, 1996; Mueller and Suppe, 
1997). As such folds become apparent on the Earth's surface, they mark 
the surface projection of the fault and thus indicate its location at depth. 
For large buried faults in tectonically active regions, this may be used to 
predict the location of potential future seismic hazards. 

Large fault-bend folds above thrusts may also be linked to seismic 
activity, as suggested for the Main Himalayan Thrust (Sathiakumar and 
Barbot, 2021). Fault-bend folding rotates stratigraphy to become 

oblique to the underlying thrust, and this can change the loading rate 
across the fold and cause shallower earthquakes (Sathiakumar et al., 
2020). Hence, knowledge about the type of fold and their geometry in 
relation to associated faults can be important to predict seismic hazards. 

Also larger situations of bending can be connected with seismicity. 
One is the bending of subducting oceanic lithosphere at oceanic 
trenches. Seismicity is clearly related to this bending, but the mechanism 
of folding is debated. Orthogonal flexure, with outer-arc extension and 
inner-arc shortening is often assumed, but flexural slip folding has also 
been suggested (Romeo and Álvarez-Gómez, 2018). These two models 
predict different seismic patterns. For example, flexural slip-related 
earthquakes would be expected to form along interfaces parallel to the 
slab top, which would result in lower seismic moments than the 
orthogonal flexure model, with reduced tsunami risk in the surrounding 
region. Hence, this serves as an example where a correct determination 
of folding mechanism is important for seismic risk assessment. 

9.2. Future research on folds and folding 

As argued above, characterizing folds and folding are important as-
pects of structural analysis with a large range of applications. Even 
though our knowledge of folds and folding has advanced a lot over the 
last 50 years, there is still great potential for further progress. We still 
need to simplify the complexity of natural folds, particularly when 
generalizing the results of detailed geometric observations, experiments 
and numerical models. Quantitatively we should keep in mind that the 
fold classification schemes and geometrical methods mentioned above 
involve several assumptions, simplifications and uncertainties, and it 
has been demonstrated that some methods consistently give different 
results and accuracy. This could relate to the geometrical parameters 

Fig. 46. Schematic illustration of (a) a fold with associated growth strata and (b) a time line showing the evolution of the fold and relevant terminology for the 
description of affected syn-kinematic growth strata geometry. Growth strata thin and steepen toward the anticline and show a characteristic fanning geometry. 
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used, accuracy of approaches used to measure them, and accuracy of 
fold geometry classification. It could also mean that some of the schemes 
record the fold geometry well only in certain parts of fold structures, or 
that some of the underlying assumptions are inaccurate or incorrect. 
However, such variations in results and accuracy of classification 
schemes may also result from various fold geometries in different 
deformation zones and tectonic settings, geometrical and/or kinematic 
interactions of fold structures, different rheology, pressure and tem-
perature conditions. 

The idealized fold forms are by necessity, simple and idealized. Re-
searchers that use only 2D idealized schemes entrench rather than 
challenge these idealized models and remove themselves from the 
complexity of natural fold structures. Along the same lines, 2D fold 
profiles are useful for some purposes, but when considering the fact that 

folds are inherently 3D structures and may differ in length scale, 
amplitude, wavelength, arc-length, closure direction, fracture patterns 
etc. so that most of them show non-cylindrical geometries and non- 
planar axial surfaces and associated cleavage, and are better treated in 
three dimensions. On the other hand, it is usually difficult to obtain 
enough data from natural macroscopic and regional folds to properly 
evaluate their geometry, kinematics and mechanics. In other words, 
geometric descriptions of folds such as amplitude-wavelength ratio, 
thickness variations and interlimb angles, based only on field observa-
tions, provide limited information of both type and mechanism of 
deformation. In this regard, future work should focus on integrating 
field-based observations, sub-surface data sets, and 3D numerical 
modelling of folds in different model configurations (number of layers, 
layer thickness, type of perturbation and its amplitude in the layer 

Fig. 47. a) Schematic illustration of fold- 
related fracture networks on the Maleh-Kuh 
periclinal fold structure, showing how the 
orientations and topology of fracture net-
works vary depending on the structural po-
sition. Circular trace maps of five fracture 
networks exhibit different node and branch 
types. The diameter of each circle is 2 m. b 
and c) Ternary diagrams of the different 
node and branch types with dark purple dots 
representing the topology of fracture 
network traces in (a). The contours represent 
the average number of connections per 
branch (CB) (i.e. node triangle) (b) and dis-
tribution of I-I (isolated), I-C (partly con-
nected) and C-C (doubly connected) 
branches (i.e. branch triangle) (c), along 
with the table of computed data, and how 
they change relative to the topology. NI, NY, 
NX and NB, respectively, are the number of I- 
node, the number of Y-node, the number of 
X-node, and the number of total branches 
(see Sanderson and Nixon, 2015, 2018 for 
details on fracture network topology and 
connectivity).t. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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interface, type of contact between interacting layers such as free-slip and 
or no-slip interfaces), different geological and tectonic settings (i.e., the 
type of applied boundary conditions and also in the form of 
displacement-based and strain-rate-based boundaries), different me-
chanical properties, and at different scales. In this way we may better 
predict and understand the spatial and temporal evolution of geological 
structures, stress distribution and strain localization, the process of fold 
interaction, identify the parameters that effectively control folding, and 
the distribution and pattern of small-scale structural features such as 
fractures and deformation bands. Continuum mechanics-based FE- 
models can provide a system of equations that describe such deforma-
tion processes and interactions. Due to the continuum nature of the FE- 
analysis, discrete fracturing and faulting cannot be modelled as the so-
lution does not support the development of discontinuities in the mesh. 
However, the FE-solution, together with the strain-softening rheology, 
results in the development of localised deformation zones that effec-
tively behave as discrete fractures and faults at a macroscopic scale 
(Nabavi et al., 2017b, 2018b, 2020b). Furthermore, numerical models 
using the extended finite element (XFEM) can provide a wide range of 
discontinuity applications in the geological structures including fracture 
and fault propagation problems in different modes (Mohammadi, 2012). 

For future studies using 3D numerical models, it is also necessary to 
introduce more complicated physical and geological parameters such as 
temperature, mechanical stratigraphy, structural inheritance, mechan-
ical anisotropy, and overburden pressure for realistic modelling. More-
over, all relevant geometric parameters of the folded layer(s) should be 
recorded and documented to better inform numerical and experimental 
modelling studies. The traditional limitation associated with numerical 
simulation of geological structures have been removed by recent 
computational advances in the form of multiscale models. Most prob-
lems in structural geology involve many scales in time and space. An 
example is the overall stress state and strain pattern in a folded sequence 
which can well be described by macro-scale continuum equations, but 
requires details on a meso- and microscale at the folded layer. In a 
multiscale method, a part of the model which requires a more accurate 
theoretical basis or numerical approximation, due to lack of theoretical 
bases or existing inconsistencies of many conventional models, is 
simulated by a finer modelling scale, which can better represent details 
of the mechanical evolution, material behaviour and the interacting 
effects of material constituents. Hence, another path for future works on 
numerical fold modelling is to use multi-approach (for example, com-
bined finite-discrete element method) and multiscale model results from 
progressive and or multiphase deformation that can avoid the scale- 
limitation of the results. However, it should be noted that forcing in-
terpretations of numerical modelling results to conform to idealized 
models may lead to misleading results. A number of field-based obser-
vations (e.g., Fossen et al., 2019; Carreras and Druguet, 2019), 3D nu-
merical (e.g., Schmalholz, 2008; Welker et al., 2019) and analogue (e.g., 
Ghosh, 1993; Ghosh et al., 2014) models indicate how complex and 
interfering fold structures can form by single-phase progressive defor-
mation as strain heterogeneously accumulates as a function of geometry, 
boundary conditions, pre-existing structures, and material properties. 
The importance of strain partitioning has also been emphasized, where 
different domains are characterized by different fold geometries and 
styles (Holdsworth et al., 2002). Hence, paying attention to fold geom-
etry may help to define structural domains and the nature of deforma-
tion partitioning in a region (Fossen et al., 2019). 

It seems like the potential to make progress in understanding folding 
largely lies in the development of numerical modelling and available 
computing power. As more sophisticated programs can be run, taking 
into consideration more physical variables and complex geometries, we 
are likely to see further advance in our understanding of fold processes. 
This includes studies of the effect of elastic deformation during folding 
(i.e., visco-elastic rather than just viscous behaviour; Hudleston and 
Treagus, 2010), time-dependent rheology, and thermo-mechanical 
feedback processes. 

10. Concluding remarks 

Folds and folding are some of the most important structures and 
deformation processes at all scales and a wide range of different tectonic 
settings. Folds contain valuable information that can be extracted by 
analysis of meso-scale structures, with both local structural and regional 
tectonic implications. In this study, we have reviewed different aspects 
of fold geometry and much of the relevant literature on folds and 
folding. We have discussed classification schemes as well as develop-
ment, advantages, limitations and improvements in their interpretation 
and application. Which ones are more useful depend on the goal of the 
work and nature of the folds in question. 

Even though much valuable and applicable research has been carried 
out on folds and folding during the past decades and centuries, this is 
still a key field of research with a large potential for improvement 
because in many cases, classification schemes have been applied to 
natural examples that do not fulfil fundamental requirements or were 
developed on the basis of unrealistic conceptual models. It is necessary 
to look back to the conceptual and methodological basis of the geometric 
interpretation of folds, paying attention to the basic assumptions, and 
hence to the limits of existing classification schemes, as well as following 
rigorous and accurate approaches of data collection, critically evalu-
ating the structural style and tectonic setting of the analysed area, and 
pondering the important role of field-based observations. Furthermore, 
several first-order parameters controlling fold geometry and folding 
mechanisms have been intensively investigated using analogue and 
numerical models. Hence, there is still potential for further research on 
integrating mechanical models and natural examples to consider and 
predict the parameters affecting fold geometries and kinematic evolu-
tion including choices of modelling method, material properties (i.e. 
mechanical stratigraphy), thickness, mechanical anisotropies, boundary 
conditions, orientation of initial configuration with respect to the 
applied load, interaction relations, inherited structures and deformation 
mechanisms, the orientation of fold-related fractures and associated 
mineralisation, temperature, confining pressure and ages. Hence, folds 
and folding are sensitive to multiple factors that frequently work 
together to dictate the final fold geometry and attitude. 

It is a challenge that most classification schemes are so personalized 
and complex that they are unlikely to be covered in undergraduate and 
even graduate level courses. However, each scheme has its advantages, 
and the different classification schemes and approaches to geometrical 
fold analysis must be known to select the ones that are most appropriate 
for a particular project or purpose. For example, (a)symmetry and ver-
gence should receive particular attention for kinematic analysis. If strain 
is to be quantified, fold tightness (Figs. 5-7, 12c-d), wavelength, 
amplitude (Figs. 25, 32, 42) and variations in layer thickness (Figs. 13, 
16-18, 42) may be essential. The shear strain related orientation and 
non-cylindricity of folds in shear zone may be quantified by plots such as 
Figs. 19, 21, 22 and 25c. An investigation of the role of mechanical 
layering may be supported by dip isogon classifications (Fig. 14). Fault- 
propagation folds could be analysed to determine the depth to the un-
derlying fault through either kinematic (trishear; Fig. 38a) or mechan-
ical modelling (Fig. 34). Curvature analysis is appropriate in cases where 
curvature can be related to structural complexity through strain varia-
tions, in which case active (Fig. 40) and passive folds (Fig. 27-30) must 
be treated differently. Specific cases need to be taken beyond the 
generalized plots and examples shown here, and should be further 
analysed in the light of existing or specifically designed mechanical and/ 
or kinematic modelling. However, geometrical analysis and classifica-
tion forms the foundation for the use of folds in structural/tectonic 
analysis. In general, understanding fold geometries, folding mechanism, 
strain history, as well as relationships in fracture networks are critical 
for prediction of the structural style and variations, and important in a 
wide range of applications, including fractured reservoir exploration, 
carbon capture and storage, aquifer characterization, civil engineering, 
mining industry and seismic hazard prediction. 
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Geometrical methods for fold classification must focus on practical 
methods in the sense that geologists must be able to apply them in the 
field to quickly recognize and describe different types of folds. The large 
number of schemes and methods used for fold characterizations and 
classification may be a challenge. At the same time, each scheme has its 
advantages, and is necessary to be aware of the different schemes to 
choose the most appropriate ones for a specific data set or region. Hence 
one of the purposes of the present paper was to provide an overview of 
the most important methods and classification schemes. However, we 
encourage more researchers to take into account both kinematics and 
mechanics in their interpretation of folds, and emphasize that variations 
in fold style, attitude and geometry often relate to the way strain is 
partitioned into different elements or domains of a deformed rock 
region. 
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Atlas (Vol. 1), Schwabe, Basel. 

Higgins, C.G., 1962. Reconstruction of flexure fold by concentric arc method. Am. Assoc. 
Petrol. Geolog. Bull. 46, 1737–1739. 

Hills, E.S., 1963. Elements of Structural Geology. Methuen & Co. Ltd., London.  
Hobbs, B.E., 1971. The analysis of strain in folded layers. Tectonophysics 11, 329–375. 
Hobbs, B.E., 2019. The development of structural geology and the historical context of 

the journal of structural geology: a reflection by Bruce Hobbs. J. Struct. Geol. 125, 
3–19. 

Hobbs, B.E., Ord, A., 2012. Localised and chaotic folding: the role of axial plane 
structures. Philos. Trans. R. Soc. Lond. Ser. A 370, 1966–2009. 

Hobbs, B.E., Ord, A., 2015. Structural Geology: The Mechanics of Deforming 
Metamorphic Rocks, vol. 1: Principles. Elsevier, Netherlands.  

Hobbs, B.E., Mühlhaus, H.B., Ord, A., 1990. Instability, softening and localisation of 
deformation. In: Knipe, R.J., Rutter, E.H. (Eds.), Deformation Mechanisms, Rheology 
and Tectonics, Geological Society of London, Special Publications, 54, pp. 143–165. 

Hobbs, B.E., Ord, A., Regenauer-Lieb, K., 2011. The thermodynamics of deformed 
metamorphic rocks: a review. J. Struct. Geol. 33, 758–818. 

Hobbs, B.E., Regenauer-Lieb, K., Ord, A., 2008. Folding with thermal–mechanical 
feedback. J. Struct. Geol. 30 (12), 1572–1592. 

Holcombe, R., 2013. GEOrient version 9. http://www.holcombe.net.au/software/rodh 
_software_georient.htm. 

Holdsworth, R.E., Tavarnelli, E., Clegg, P., Pinheiro, R.V.L., Jones, J.J., McCaffrey, K.J. 
W., 2002. Dominal deformation patterns and strain partitioning during 
transpression: an example from the Southern Uplands terrane, Scotland. J. Geol. Soc. 
159, 401–415. 

S.T. Nabavi and H. Fossen                                                                                                                                                                                                                    

https://doi.org/10.1016/j.tecto.2014.06.013
https://doi.org/10.1016/j.tecto.2014.06.013
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0665
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0665
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0665
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0670
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0670
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0670
http://refhub.elsevier.com/S0012-8252(21)00313-5/optFvgC8gTeM4
http://refhub.elsevier.com/S0012-8252(21)00313-5/optFvgC8gTeM4
http://refhub.elsevier.com/S0012-8252(21)00313-5/optFvgC8gTeM4
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0675
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0675
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0675
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0680
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0685
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0685
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0685
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0690
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0690
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0695
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0695
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0700
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0700
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0705
https://doi.org/10.1007/3-540-31080-0_41
https://doi.org/10.1007/3-540-31080-0_41
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0715
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0715
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0720
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0720
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0725
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0725
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0730
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0735
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0735
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0740
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0740
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0745
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0745
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0750
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0750
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0750
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0755
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0755
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0760
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0760
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0760
https://doi.org/10.1007/3-540-31080-0_86
https://doi.org/10.1007/3-540-31080-0_86
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0770
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0775
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0780
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0785
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0785
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0785
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0785
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0790
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0790
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0795
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0795
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0795
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0800
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0800
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0800
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0805
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0805
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0805
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0810
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0810
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0815
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0815
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0820
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0820
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0825
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0825
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0825
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0830
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0830
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0835
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0835
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0840
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0840
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0845
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0845
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0845
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0845
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0850
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0850
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0850
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0855
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0855
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0855
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0855
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0860
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0860
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0860
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0865
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0870
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0870
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0870
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0875
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0875
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0880
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0880
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0885
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0885
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0890
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0890
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0895
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0895
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0900
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0900
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0905
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0905
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0910
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0910
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0915
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0915
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0920
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0920
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0925
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0925
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0930
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0930
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0935
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0935
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0940
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0940
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0940
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0945
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0945
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0945
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0950
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0950
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0955
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0960
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0960
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0965
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0965
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0965
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0970
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0970
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0970
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0975
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0975
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0980
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0985
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0990
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0990
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0990
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0995
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf0995
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1000
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1000
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1005
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1005
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1005
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1010
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1010
http://refhub.elsevier.com/S0012-8252(21)00313-5/optRhXGIWWrN5
http://refhub.elsevier.com/S0012-8252(21)00313-5/optRhXGIWWrN5
http://www.holcombe.net.au/software/rodh_software_georient.htm
http://www.holcombe.net.au/software/rodh_software_georient.htm
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1020
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1020
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1020
http://refhub.elsevier.com/S0012-8252(21)00313-5/rf1020


Earth-Science Reviews 222 (2021) 103812

58

Holst, T.B., Fossen, H., 1987. Strain distribution in a fold in the West Norwegian 
Caledonides. J. Struct. Geol. 9, 915–924. 

Honea, E., Johnson, A.M., 1976. A theory of concentric, kink, and sinusoidal folding and 
of monoclonal flexuring of compressible, elastic multilayers. Part VI: Development of 
sinusoidal and kink folds in multilayers confined by rigid boundaries. 
Tectonophysics 30, 197–239. 

Houseman, G., Barr, T., Evans, L., 2008. Basil: Stress and Deformation in a Viscous 
Material. Microdynamics Simulation. Springer-Verlag, Berlin, pp. 139–154. 

Hubbert, M.K., 1937. Theory of scale models as applied to the study of geologic 
structures. Bull. Geol. Soc. Am. 48, 1459–1519. 

Hudec, M.R., Norton, I.O., Jackson, M.P.A., Peel, F.J., 2013. Jurassic evolution of the 
Gulf of Mexico salt basin. Am. Assoc. Petrol. Geolog. Bull. 97, 1683–1710. 

Hudleston, P.J., 1969. The morphology and development of folds. PhD Thesis. University 
of London, UK.  

Hudleston, P.J., 1973a. Fold morphology and some geometrical implication of theories of 
fold development. Tectonophysics 16, 1–46. 

Hudleston, P.J., 1973b. An analysis and interpretation of minor folds in the Moine rocks 
of Monar, Scotland. Tectonophysics 16, 89–132. 

Hudleston, P.J., 1973c. An analysis of “single layer” folds developed experimentally in 
viscous media. Tectonophysics 16, 89–132. 

Hudleston, P.J., 1977. Similar folds, recumbent folds, and gravity tectonics in ice and 
rocks. J. Geol. 85, 113–122. 

Hudleston, P.J., 1986. Extracting information from folds in rocks. J. Geol. Educ. 34, 
237–245. 

Hudleston, P.J., Holst, T.B., 1984. Strain analysis and fold shape in a limestone layer and 
implications for layer rheology. Tectonophysics 106, 321–347. 

Hudleston, P.J., Lan, L., 1993. Information from fold shapes. J. Struct. Geol. 15, 
253–264. 

Hudleston, P.J., Lan, L., 1994. Rheological controls on the shapes of single-layer folds. 
J. Struct. Geol. 16, 1007–1021. 

Hudleston, P.J., Stephansson, O., 1973. Layer shortening and fold shape development in 
the buckling of single layers. Tectonophysics 17, 299–321. 

Hudleston, P.J., Tabor, J.R., 1988. Strain and fabric development in a buckled calcite 
vein and rheological implications. Bull. Geol. Institute, University of Uppsala, N.S 
14, 79–94. 

Hudleston, P.J., Treagus, S.H., 2010. Information from folds: a review. J. Struct. Geol. 
32, 2042–2071. 

Hudleston, P.J., Treagus, S.H., Lan, L., 1996. Flexural flow folding: does it occur in 
nature? Geology 24, 203–206. 

Hughes, A.N., Benesh, N.P., Shaw, J.H., 2014. Factors that control the development of 
fault-bend versus fault-propagation folds: insights from mechanical models based on 
the discrete element method (DEM). J. Struct. Geol. 68, 121–141. 

Hughes, A.N., Shaw, J.H., 2015. Insights into the mechanics of fault-propagation folding 
styles. GSA Bull. 127 (11–12), 1752–1765. 

Humair, F., Bauville, A., Epard, J.L., Schmalholz, S.M., 2020. Interaction of folding and 
thrusting during fold-and-thrust-belt evolution: insights from numerical simulations 
and application to the Swiss Jura and the Canadian Foothills. Tectonophysics 789. 
https://doi.org/10.1016/j.tecto.2020.228474. 

Hyde, S., Blum, Z., Landh, T., Lidin, S., Ninham, B.W., 1996. The Language of Shape: The 
Role of Curvature in Condensed Matter: Physics. Elsevier, Chemistry and Biology.  

Ickes, E.L., 1923. Similar, parallel and neutral surface types of folding. Econ. Geol. 18, 
575–591. 

Jackson, M.P.A., Hudec, M.R., 2017. Salt Tectonics – Principles and Practice. Cambridge 
University Press, Cambridge.  

Jackson, C.A.-L., Jackson, M.P.A., Hudec, M.R., 2015. Understanding the kinematics of 
salt-bearing passive margins: a critical test of competing hypotheses for the origin of 
the Albian Gap, Santos Basin, offshore Brazil. Geol. Soc. Am. Bull. 127, 1730–1751. 

Jacques, D., Derez, T., Muchez, P., Sintubin, M., 2014. Regional significance of non- 
cylindrical folding in the northwestern part of the High-Ardenne slate belt (Redu- 
Daverdisse, Belgium). Geol. Belg. 17, 252–267. 

Jäger, P., Schmalholz, S.M., Schmid, D.W., Kuhl, E., 2008. Brittle fracture during folding 
of rocks: a finite element study. Philos. Mag. 88, 3245–3263. 

Jahani, S., Callot, J.-P., Letouzey, J., Frizon de Lamotte, D., 2009. The eastern 
termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, evolution, and 
relationships between salt plugs, folding, and faulting. Tectonics 28. https://doi.org/ 
10.1029/2008TC002418. 

Jahani, S., Hassanpour, J., Mohammadi-Firouz, S., Letouzey, J., Frizon de Lamotte, D., 
Alavi, S.A., Soleimany, B., 2017. Salt tectonics and tear faulting in the central part of 
the Zagros Fold-Thrust Belt, Iran. Mar. Pet. Geol. 86, 426–446. 

Jamison, W.R., 1987. Geometric analysis of fold development in overthrust terranes. 
J. Struct. Geol. 9, 207–219. 

Jeng, F.S., Huang, K.P., 2008. Buckling folds of a single layer embedded in matrix- 
Theoretical solutions and characteristics. J. Struct. Geol. 30, 633–648. 

Jeng, F.S., Lin, M.L., Lai, Y.C., Teng, M.H., 2002. Influence of strain rate on buckle 
folding of an elasto-viscous single layer. J. Struct. Geol. 24, 501–516. 

Jin, G., Groshong Jr., R.H., 2006. Trishear kinematic modeling of extensional fault 
propagation folding. J. Struct. Geol. 28, 170–183. 

Johnson, A.M., 1977. Styles of folding: mechanics and mechanisms of folding of natural 
elastic materials. Dev. Geotectonics 11. Elsevier, Amsterdamcon.  

Johnson, T.E., 1991. Nomenclature and geometric classification of cleavage-transected 
folds. J. Struct. Geol. 13, 261–274. 

Johnson, A.M., Ellen, S.D., 1974. A theory of concentric, kink, and sinusoidal folding and 
of monoclonal flexuring of compressible, elastic multilayers. Part I: Introduction. 
Tectonophysics 21, 301–339. 

Johnson, A.M., Fletcher, R.C., 1994. Folding of Viscous Layers. Columbia University 
Press, New York.  

Johnson, A.M., Honea, E., 1975. A theory of concentric, kink, and sinusoidal folding and 
of monoclonal flexuring of compressible, elastic multilayers. Part III: Transition from 
sinusoidal to concentric-like to chevron folds. Tectonophysics 27, 1–38. 

Johnson, A.M., Pfaff, V.J., 1989. Parallel, similar and constrained folds. Eng. Geol. 27, 
115–180. 

Jones, R.R., Holdsworth, R.E., Clegg, P., McCaffrey, K., Tavarnelli, E., 2004. Inclined 
transpression. J. Struct. Geol. 26, 1531–1548. 

Kamen-Kaye, M., 1953. Curvature of low angle faults at Las Mercedes, Venezuela. Am. 
Assoc. Petrol. Geolog. Bull. 37, 2178–2182. 

Kaus, B.J.P., Schmalholz, S.M., 2006. 3D finite amplitude folding: implications for stress 
evolution during crustal and lithospheric deformation. Geophys. Res. Lett. 33, 
L14309. 

Kearey, P., Klepeis, K.A., Vine, F.J., 2009. Global Tectonics. Third edition, Wiley- 
Blackwell.  

Kelker, D., Langenberg, C.W., 1976. Mathematical-model for orientation data from 
macroscopic cylindrical folds. Math. Geol. 8, 549–559. 

Kelker, D., Langenberg, C.W., 1982. A mathematical-model for orientation data from 
macroscopic conical folds. Math. Geol. 14, 289–307. 

Kelker, D., Langenberg, C.W., 1987. A mathematical-model for orientation data from 
macroscopic elliptic conical folds. Math. Geol. 19, 729–743. 

Kelker, D., Langenberg, C.W., 1988. Statistical classification of macroscopic folds as 
cylindrical, circular conical, or elliptical conical. Math. Geol. 20, 717–730. 

Koenigsberger, J., Morath, O., 1913. Theoretische Grundlagen der experimentellen 
Tektonik. Z. Dtsch. Geol. Ges. 65, 65–86. 
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dessen beziehung zur entstehung von faltengbirgen. B. Acad. Sci. Cracov. 2, 3–20. 

Sommaruga, A., Mosar, J., Schori, M., Gruber, M., 2017. The role of the triassic 
evaporites underneath the north Alpine foreland. In: Soto, J.I., Flinch, J.F., Tari, G. 
(Eds.), Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic 
Margins: Tectonics and Hydrocarbon Potential. Elsevier, pp. 447–466. 

Sorby, H.C., 1849. On slaty cleavage. Proc. Geol. Polytechnic Soc. West RidingYorkshire 
3, 300–312. 

Sou, C., Peng, S., Chang, S., Duan, R., Wang, G., 2012. A new calculating method of the 
curvature to predicting the reservoir fractures. Procedia Environ. Sci. 12, 576–582. 

Srivastava, H.B., 2003. Strain determination from concentric folds. Tectonophysics 364, 
237–241. 

Srivastava, V., Gairola, V.K., 1997. Classification of multilayerd folds based on harmonic 
analysis: example from central India. J. Struct. Geol. 19, 107–112. 

Srivastava, V., Gairola, V.K., 1999. Geometrical classification of multi-layered folds. 
Tectonophysics 301, 159–171. 

Srivastava, V., Gairola, V.K., 2003. Recent Classification Schemes for Multi-Layered 
Folds: An Overview. Memoir Geological Society of India: 52, pp. 395–408. 

Srivastava, D.C., Lisle, R.J., 2004. Rapid analysis of fold shape using Bézier curves. 
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