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In the present paper, we have compiled data on 565 layered and differentiated igneous intrusions globally,
documenting their (i) location, (ii) age, (iii) size, (iv) geotectonic setting, (v) putative parent magmal(s), (vi)
crystallisation sequence, and (vii) mineral deposits. Most studied intrusions occur in Russia (98), Australia (72),

’c‘)“"e;al"‘“_‘t““ Canada (52), Finland (37), South Africa (38), China (33), and Brazil (31). Notable clusters of: (i) Archaean in-
C:;P;p::n trusions (~ 15%) include those of the McFaulds Lake Area (commonly known as the Ring of Fire, Canada),

Pilbara and Yilgarn cratons (Australia), and Barberton (South Africa); (ii) Proterozoic intrusions (~ 56%) include
those of the Giles Event and Halls Creek Orogen (Australia), Kaapvaal craton and its margin (South Africa and
Botswana), Kola and Karelia cratons (Finland and Russia), and Midcontinent Rift (Canada and USA); and (iii)
Phanerozoic intrusions (~ 29%) include those of eastern Greenland, the Central Asian Orogenic Belt (China and
Mongolia) and Emeishan large igneous province (China). Throughout geological time, the occurrence of many
layered intrusions correlate broadly with the amalgamation and break-up of supercontinents, yet the size and
mineral inventory of intrusions shows no obvious secular changes.

In our compilation, 337 intrusions possess one or more types of mineral occurrences, including: (i) 107 with
stratiform PGE reef-style mineralisation, (ii) 138 with Ni-Cu-(PGE) contact-style mineralisation, (iii) 74 with
stratiform Fe-Ti-V-(P) horizons, and (iv) > 35 with chromitite seams. Sill-like or chonolithic differentiated in-
trusions present in extensional tectonic settings and spanning geological time are most prospective for Ni-Cu-
(PGE) mineralisation. In contrast, PGE reef-style deposits are most prevalent in larger, commonly lopolithic
intrusions that are generally >1 Ga in age (~ 75%). Stratiform Fe-Ti-V-(P) horizons are most common in the
central and upper portions of larger layered intrusions, occurring in the Archaean and Phanerozoic. Approxi-
mately 80% of intrusions with chromitite seams are older than 1 Ga and > 50% of them also contain PGE reefs.

Based on the distribution of layered intrusions in relatively well explored terranes (e.g., Finland, South Africa,
Western Australia), we propose that many layered intrusions remain to be discovered on Earth, particularly in
poorly explored and relatively inaccessible regions of Africa, Australia, Russia, Greenland, Antarctica, South
America, and northern Canada.

1. Introduction Amongst the earliest widely accepted concepts was that of gravitational

fractionation, whereby liquidus crystals settle from the evolving magma

Layered intrusions represent igneous bodies composed of stratified
layers, made apparent through variations in (i) mineralogy (e.g, mineral
modes, grain sizes, and preferential weathering and alteration), and (ii)
chemical composition of the rock or its constituent minerals. Following
the pioneering works of Cameron and Emerson (1959), Hess and Smith
(1960), Jackson (1960), and Wager and Brown (1968), numerous
studies have focussed on the origin of the layering (see Naslund and
McBimey, 1996, and Namur et al., 2015 for comprehensive reviews).
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and accumulate on the temporary floor of the magma chamber (Darwin,
1845; Bowen, 1915; Wager and Brown, 1968; Morse, 1969). However,
the discovery of hundreds of layered igneous bodies during the last 50
years has revealed types of layering that cannot be explained by gravi-
tational settling alone.

Namur et al. (2015) have classified layer-forming processes into
dynamic and non-dynamic processes (Table 1). The former category

includes syn-magmatic, hydrodynamic, and late- to post-magmatic
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Table 1

Summary of dynamic and non-dynamic layer-forming processes operating during the formation of layered igneous intrusions.
Process Description Layer and layering characteristics Notable examples References
Dynamic

Syn-emplacement processes
Flow segregation

Magma
replenishment

Magma mixing

In situ
crystallisation

Convection-relatied processes
Continuous
convection

Intermittent
convection

Double-diffusive

convection

Mechanical processes
Gravitational

settling

Crystal flotation

Density currents
and Kinetic sieving

Compation

Deformation

Crystals suspended within a propagating
magma conduit will migrate to the area
of minimum shear (i.e., Bagnold Effect).
The efficiency of this is also monitored
partly by the Magnus and Wall Effects.
Within open-system chambers, the
volume of magma will grow
progressively or episodically with
magma replenishment. This may cause
out-of-sequence sill injection,
incorporation of magma batches with
different crystal loads, compositional or
density stratification of 2 magma
chamber, and different degrees of
differentiation between layers.

Mixing can refer to: (i) mixing of two
magmas (e.g., hybridisation); (ii) mixing
of magma and country rock (e.g., crustal
contamination); or (iii) mixing of
magma and crystalline rock (e.g.,
cannibalisation).

The concept suggests that magmas are
primarily liquid and crystals nucleate
directly on the interior walls of the
magma chamber.

Refers to the continuous thermal and
physical chumning of magma, which
keeps crystals suspended if the
convective velocities exceed settling
velocities. Once a critical concentration
of suspended phases is reached, they will
settle according to their physical
properties

Refers to convective and stagnant
periods, where crystals are suspended
and "dropped’ episodically

Refers to a stratified magma chamber
with two dependent contemporaneous
parameters with different diffusion
rates. For example, heat diffuses in the
direction Mg and Fe will diffusive.

The phenomena in which solid particles
suspended in a melt will settle according
to Stoke's Law. That is where denser
minerals will settle fasterrelative to light
minerals.

The phenomena in which solid particles
suspended in a melt with float according
to Stoke’s Law. That is where the solid
phase is essentially lighter than the host
melt.

In a manner similar to turbidite deposits,
crystal slurries may flow or collapse (e
g in response to subsidence or
siesmicity) and become mechanically-
sorted according to the properties of the
suspended load

May also be referred to as filter-pressing,
whereby a porous cumulus pile contracts
or is compacted leading to the expulsion
of intercumulus liquid and the formation
of solid rock.

Deformation can come in two forms: (i)
magmatic deformation, whereby
shearing and viscous flow cause strongly
laminated rocks and aid processes such
as kinetic sieving and melt expulsion and
(ii) tectonic deformation may trigger

Most commonly seen in sills and dykes,
whereby the margins are phenocryst-
poor (often smaller in grain size) and
the centres are phenocryst-rich (often
coarsest in the centre).

Each episode of replenishment and
differentiation will result in the
constructure of cyclic layers, where its
thickness is proportional to the volume
of magma influx. Cryptic layering in
mineral and whole-rock chemistry (i.e.,
increase in mafic cations) may indicate
new fluxes of magma.

Magma hybridisation may cause
monomineralic layers (e.g,
chromitite). Contamination may lead
to cryptic compositional layering or
units dominated by one phase.

Laterally-persisent layers of fairly
uniform thickness. The may be
monomineralic (or close too).

Keeping minerals in continuous
suspension will create laterally-
persistent, thick, modally-graded
layers (potentially monomineralic
layers), which may display a
coarsening-up texture. Continuous
convection may also homogenise a
system if particles are unable to settle
out.

Thick, laterally-persistent and
modally-graded layers. Phases of
convection-stagnation will lead to
cyclic layering.

Laterally-persistent layers resulting in
extreme whole-rock and mineral
compositional gradients and modal

layering.

Laterally-persistent layers which are
modally-graded and fine upward.
Coupled with replenishment, this will
produce cyclic layering.

It is possible that plagioclase will float
in basaltic magma, leading to the
formation of anorthosites in the upper
portions of magma chambers.

Density currents will produce
coarsening-up and near-
monomineralic trough layers. These
layers may truncate other layers or
bifurcate. Such processes are
potentially augmented by seismicity.
Deformed or laminated layers with
variable crystal:liquid ratios. This
process may form monomineralic or
polymineralic adcumulates.

Shearing may form laminated and size-
graded layers with variable crystal:
liquid ratios. Tectonic deformation
may cause density currents (see above)
and the accompanying mechanical
processes.

Skaergaard (Greenland),
Palisades (USA)

Doros (Namibia), Panzhihua
(China), Bjerkreim-Sokndal
(Norway), Muskox (Canada)

Munni Munni (Australia),
Tigalak (Canada), Bushveld
(South Africa)

Bushveld (South Africa), Mont

Collon (Switzerland), Jacurici

(Brazil)

Shiant (Scotland), Bijigou
(China), Khibina (Russia)

Skaergaard (Greenland),
Kivakka (Finland), Akanvaara
(Finland)

Fongen-Hyllingen (Norway),
Pleasant Bay (USA)

Rum (Scotland), Sonju Lake
(USA), Ilimaussaq (Greenland)

Kalka (Australia), Sept Iles
(Canada)

Skaergaard (Greenland),
Bushveld (South Africa),
Canindé (Brazil), Dais
(Antarctica)

Sept Iles (Canada), Klokken
(Greenland)

Fongen-Hyllingen (Norway),
Bjerkreim-Sokndal (Norway),
Sept Iles (Canada), Gosse Pile
(Australia)

Irvine (1987), Gorring and
Naslund (1995)

Irvine and Smith (1967),
Jensen et al. (2003), Song
et al. (2013), Owen-Smith
and Ashwal (2015)

Wiebe and Wild (1983),
Hoatson and Keays (1989),
Hamey et al. (1990), Eales
and Cawthorn (1996),
Karykowski et al. (2017a)

Monjoie et al. (2005),
Latypov et al. (2017),
Friedrich et al. (2020)

Kogarko and Khapaev
(1987), Holness et al.
(2017), Wang and Wang
(2020)

Naslund et al. (1991);
Choban et al. (2006)

Wilson et al. (1987); Wiebe
(1993)

Maes et al. (2007), Pfaff
et al. (2008), Holness et al.
(2012)

Goode (1976, 1977),
Namur et al. (2011)

Irvine et al. (1998), Maier
et al. (2013a), Pinto et al.
(2020)

Parsons and Becker
(1987a), Namur and
Charlier (2012)

Moore (1973), Higgins
(1991), Bolle et al. (2000)

(continued on next page)
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Process Description Layer and layering characteristics Notable examples References
subsidence and changes in intensive
parameters.
Late-stage mush-related processes
Metasomatism Infiltration metasomatism representsthe =~ May produce abrupt and potentially Muskox (Canada), Rum Irvine (1980), Boudreau
re-equilibration of cumulus phases with monomineralic zones. May also (Scotland), Stillwater (USA), and McCallum (1992),
allochthonous intercumulus fluids produce sharp changes in grain-size. 76535 (Lunar) Holness et al. (2007),
ascending in response to tectonism, Elardo et al. (2012)
buoyancy, or compaction.
Contact Contact metamorphism occurs at the May produce cryptic layering or Skaergaard (Greenland) Naslund (1986)
metamorphism boundary between magma and contry rhythmic layering in response to

Reactive porous
flow or
constitutional zone
refining

Ostwald Ripening

Liquid
immiscibility

Non-dynamic

rock. Through diffusion or
devolatilisation, the bounding magma
may be subject to rheomorphism,
become compositional distinct or
crystallise at different rates.
Represents the migration of fluxing
agents through a cumulate pile, which
may alter the melting point and
nucleation rate of grains it interacts
with.

The process in which larger cumulus
grains grow at the expense of smaller
grains in order to minimise the suirface

free energy of the system.

In addition to silicate-fluid and silicate-
sulphide immiscibility, two contrasting
silicate magma compositions may unmix
causing distinct layers. An extremely Fe-
rich (plus other mafic cations) melt may
segregate from an Si-rich (plus other
felsic cations) melt.

Fluctiations in intensive parameters

Pressure variation

Oxygen fugacity

Crystallisation occurs down a liquid line
of descent primarily according to
temperature, pressure, and composition.
Pressure changes in response to

defor , chamber replenish or
eruption will alter crystal assemblages
and nucelation rates.

Changes in oxygen fugacity can alter the

changes stability of the liquidus assemblage and
in particular, modify phases that
comprise multi-valent cations (ie.,
feldspar and Fe-Ti oxides).
Self-organising crystal nucleation
Nucleation and A liquid must be supersaturated and
crystal growth rate undercooled in order for crystal
fluctuation nucleation to occur, which is in essence,
a response to return the system to
compositional equilibrium. Nucleation
rate is controlled by volume and surface
free energy, whereas growth rate is
controlled by volume free energy.
Oscillatory or Oscillatory nucleation operates close to a
diffusion-controlled  eutectic point whereby constituents of a
nucleation crystallising phase will diffuse toward

the growing crystal, leaving a depleted
boundary layer that cannot nucleate
further crystals.

rheomorphism.

This may produce laterally-persistent
changes in grain-size and cause cryptic
zoning. In addition, it may produce
oscillatory zoning on cumulus minerals

May produce adcumulates (sometimes
monomineralic) with a mosaic-like
texture of fairly homogeneous grain
size. Mode and grain-size should
positively correlate.
Sulphide-bearing layers are generally
laterally-persistent and thin.
Immiscibility between a silicate melt
and a fluid may produce a layer of
pegmatitic granophyre. Immiscibility
between two sillicate melts would
produce abrupt compositional and
mineralogical changes.

Laterally-persistent cyclic or rhythmic
layers, which genrally fine upward.
This may also produce flotation
cumulates due to instigating
plagioclase supersaturation.

May produce an alternating sequence
of silicate and oxide assemblages. Can
also produce modal and cryptic
layering (ie., plagioclase Ew/Eu*
composition).

Modal layering in that mode and
average grain-size share a negative
correlation. In turn, nucleation density
and grain-size share a negative
corerlation. The formation of
crescumulates occurs in response to
changes in crystal growth rate

Alternating sequence of crystalline
phases with fairly aburpt contacts. As
with nucleation rate, a negative
correlation between modal proportion
and average grain-size should be
apparent.

Stillwater (USA), Bushveld

(South Africa), Sept Iles
(Canada)

Stillwater (USA), Kiglapait

(Canada)

Stillwater (USA), Bushveld

(South Africa), Sept Iles
(Canada)

Ilimaussaq (Greenland),

Stillwater (USA), Panzhihua

(China)

Stillwater (USA), Bushveld

(South Africa)

Skaergarrd (Greenland),

Freetown (Sierra Leone),
Klokken (Greenland), Bjerkreim-

Sokndal (Norway), Rum
(Scotland)

Skaergaard (Greenland)

Boudreau (1988),
Nicholson and Mathez
(1991), Karykowski et al.
(20172)

Boudreau (1987), Higgins

(2002)

McBirney and Nakamura
(1974), Reynolds (1985),
Namur et al. (2012)

Ferguson and Pulvertaft
(1963), Lipin (1993), Pang
et al. (2009)

Ryder (1984), Reynolds
(1985)

Hawkes (1967), Wager and
Brown (1968), Goode
(1976), Duchesne and
Charlier (2005), Faure et al.
(2006)

McBirney and Noyes
(1979); Boudreau and
McBirney (1997)

processes, whereas non-dynamic processes refer to fluctuations in
intensive parameters (e.g., temperature, pressure, and oxygen fugacity)
that govern the liquid line of descent of a silicate magma. Under certain
circumstances, dynamic and non-dynamic processes can cause the for-
mation of monomineralic cumulate layers composed predominantly of
minerals that normally crystallise along cotectics (e.g, chromitite,

magnetitite, anorthosite).

In addition to being natural laboratories for studies on igneous
processes, layered intrusions host a wide range of important mineral
deposits. Among the most studied are PGE reef-style deposits (e.g., UG2

and Merensky reefs of the Bushveld Complex, JM reef of the Stillwater
Complex, and the Main sulphide zone of the Great Dyke), commonly
with Ni and Cu as significant by-products. Additional important ore
types include massive seams or disseminated layers of chromite and
titanomagnetite. The chromite seams usually occur in the unevolved
portions of the intrusions whereas Fe-Ti-V oxide seams and layers

typically occur in the more evolved portions of layered intrusions. Both

types of oxide seams tend to show remarkable lateral consistency and
commonly share knife-sharp contacts with the underlying and overlying
silicate host rocks. Other important types of ore deposits associated with
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layered intrusions include rare earth elements (REEs), Zr, and Nb, hos-
ted by alkaline layered intrusions (e.g., llimaussaq, Thor Lake, Bokan,
Khibina) or in mineralised pegmatites in their roof rocks (Dostal, 2016),
and platinum placers associated with zoned Ural-Alaskan intrusions
(Himmelberg and Loney, 1995; Tolstykh et al., 2005).

In the present study, we have compiled data on 565 layered in-
trusions, documenting their (i) location, (ii) size, (iii) age, (iv) setting,
(v) putative parent magma(s), (vi) crystallisation sequence, and (vii)
mineral deposits. Our database includes intrusions of tholeiitic, cale-
alkaline, and alkaline lineage, emplaced in intra-continental, arc, and
collisional settings that show clearly defined modal and cryptic layering
of ultramafic, mafic, and/or felsic minerals. We do not include oceanic
intrusions formed at spreading ridges although the styles and origin of
layering in these clearly show many commonalities to continental in-
trusions (e.g., Bedard, 2015). Finally, we also do not discuss intrusions of
the granitic family although we are conscious that some of these can be
layered (i.e., syenites; Parsons, 1987). Based on our data, we review the
distribution of the intrusions in space and time and evaluate concepts of
igneous layering and ore genesis.

2. Liquids, cumulates, and layers

Our understanding of the formation of layered intrusions is built on
the idea that liquidus crystals precipitated from a silicate magma and
accumulated, through processes such as gravitational settling or in situ
crystallisation, on the temporary magma chamber floor. The cumulus
minerals are typically embedded in a matrix of crystallised (trapped)
liquid and cumulus theory acknowledges the existence of relatively
liquid-poor and crystal-poor portions of an evolving magma chamber.
Because the term “cumulate™ has genetic connotations (it implies that
crystals have accumulated) it has not been immune from criticism (see
Boudreau, 2019). Prior to further discussion, it is thus important to
briefly outline common terminology for components of such systems
and their genetic connotations.

The ratio of cumulus minerals to the crystallisation products of the
trapped liquid (ie., cumulus crystal rims and/or oikoerysts) is generally
used to distinguish between adcumulates (> 95% cumulus minerals),
orthocumulates (95-85% cumulus minerals), and mesocumulates (85-
75% cumulus minerals; Wager et al., 1960). Primocrysts are liquidus
crystals, whereas oikocrysts and chadacrysts constitute the enclosing
and enclosed crystals, respectively, in a poikilitic rock. The origin of
oikocrysts and chadacrysts remains debated, with various authors pro-
posing crystallisation of intercumulus liquid (Wager et al., 1960), tur-
bulent mechanical sedimentation (Barnes et al., 2016a), infiltration
metasomatism (Maier et al., 2021), and peritectic reaction between melt
and crystals near solidification fronts (Barnes et al., 2021).

Cumulates may also contain crystals that did not precipitate from the
same parent magma, including (i) xenocrysts (ie., crystals inherited
through assimilation) and (ii) antecrysts (ie., crystals inherited from a
genetically related antecedent magma). Finally, more exotic types of
cumulates include: (i) heteradcumulates, which are poikilitic adeumu-
lates that are composed entirely of oikocrysts and chadacrysts (Barnes
et al., 2016a) and (ii) crescumulates, which refer to the spinifex-type
texture of allochthonous primocrysts in a metastable environment
(Wager and Brown, 1968).

Common terms found in many petrological models of layered in-
trusions are “liquid”, “mush”, and “slurry™. In fluid mechanics, a liquid
refers to an incompressible substance that can flow independently of
pressure. The term liquid thus includes crystal-bearing liquids (i.e., lig-
uids entraining a cargo of phenocrysts). A slurry refers to a crystal-liquid
mixture that is only able to flow under pressure (ie., a Bingham fluid),
whereas a mush is a partially molten rock consisting of a continuous
solid framework, within which trapped liquids may percolate and
convect (Marsh, 2013; Cashman et al., 2017). Much debate in recent
years (see Holness et al., 2019 for a current review) has focussed on the
nature of trans-crustal magma systems. Some authors propose that these
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systems are predominantly composed of mush (e.g, Marsh, 1996, 2006;
Christopher et al., 2015; Cashman et al., 2017; Sparks and Cashman,
2017; Edmonds et al., 2019; Lissenberg et al., 2019), whereas others
propose that these systems consist predominantly of liquids that frac-
tionate in situ (eg, Jackson, 1960; Campbell, 1978; Marsh, 1996;
Latypov, 2003; Latypov et al., 2013). Proponents of a mush-rich trans-
crustal network draw on (i) the absence of geophysical evidence for
liquid-rich chambers beneath active volcanos (Hill et al., 2009; Kiser
et al., 2016; Cashman et al., 2017; Magee et al., 201 8), (ii) the diversity
and complexity of erupted crystal cargo (Ginibre et al., 2002; Berloetal.,
2007; Kilgour et al., 2014; Cashman and Blundy, 2013), and (iii) the
contradictory residence times of phenocrysts and melts as determined by
radiometric dating, diffusion rates and numerical modelling (Morgan
et al., 2004; Costa et al., 2010; Cooper, 2015). On the other hand, the
presence of liquid-rich systems is supported by the (i) progressive in-
ward crystallisation of layered intrusions (e.g, Skaergaard; McBirmey
and Noyes, 1979), (ii) fractionation of liquids as recorded by composi-
tional zonation of liquidus crystals (Loomis, 1983), (iii) the disruption of
accumulated crystals by processes such as scouring or slumping (Morse,
1969), and (iv) the presence of unevolved chilled margins and fine
grained to aphyric sills in the floor of some intrusions (e.g, Bushveld;
Barnes et al., 2010; Wilson, 2012; Maier et al., 2016a).

Igneous layering is characterised by sheet-like units that are miner-
alogically, texturally, and (or) compositionally distinct. Where these
show regular and repetitive grading from unevolved to evolved com-
positions, they are termed Cyclic Units (Eales et al., 1986). By conven-
tion, layered intrusions comprise multiple cyclic units, whereas layered
sills/dykes comprise only one cyelic unit (Namur et al., 2015). In the
present study, we have referred to these types of intrusions collectively
as ‘layered intrusions’. Individual layers are generally distinguished and
characterised by their variation in mineralogy (e.g., monomineralic,
meso-, melano-, and leucocratic), grain size, shape (e.g, planer, lentic-
ular, convolute, colloform, lenses/pods, and seams), or mineral
composition, which in part monitors their lateral continuity. A sequence
of individual layers can be characterised by their lithological and
compositional variability (e.g, modal, graded, or cryptic layering),
regularity (e.g, cyclic, rhythmic, and comb), contacts (e.g, sharp,
irregular/wavy, gradational, convolute, and unconformable), and con-
tinuity (e.g, continuous, discontinuous, intermittent, truncated, and
bifurcated).

It is now widely accepted that a single process cannot account for the
layering present in most known layered igneous intrusions. Layering
processes can operate at any time during the solidification of the in-
trusions. These mechanisms may be independent (e.g, crystal settling
and metasomatism) or dependent (ie., tectonism and density currents)
of one another, occurring either contemporaneously, consecutively, or
consequently. The implication is that rocks may record several super-
imposed layer-forming processes that require detailed holistic studies to
be disentangle. Namur et al. (2015) have proposed a useful classification
of layer-forming processes into dynamic (ie., magmatic and mechanical
processes) and non-dynamic (ie., intensive parameters) processes.

Dynamic layer-forming processes refer to the physical movement or
migration of liquid, erystals, and mush within an active magma cham-
ber. Major dynamic layer-forming processes include mechanical sedi-
mentation and sorting of liquidus phases (e.g., Wadsworth, 1961; Goode,
1976; Irvine, 1987; Namur et al., 2011; Holness et al., 2012), chamber
replenishment and magma mixing (e.g, Hoatson and Keays, 1939;
Hamey et al., 1990; Eales et al., 1990; Karykowski et al., 2017a),
convection-related processes (e.g., Kogarko and Khapaev, 1987; Wilson
etal., 1987, Naslund et al., 1991; Holness et al., 2017), magma currents
or flow segregation (e.g, Irvine, 1987; Gorring and Naslund, 1995;
Irvine et al, 1998; Maier et al., 2013a), liquid immiscibility (e.g.,
McBirney and Nakamura, 1974; Namur et al., 2012), contact meta-
morphism (e.g.,, Naslund, 1936), and metasomatism (e.g., Irvine, 1980;
McBirney, 1987; Boudreau, 1988; Sonnenthal, 1990; Boudreau and
McCallum, 1992; Nicholson and Mathez, 1991; Mathez, 1995; Holness
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et al., 2007; Mathez and Kinzler, 2017; Maier et al., 2021; Marsh et al.,
2021).

Non-dynamic layer-forming processes generally refer to fluctuations
in intensive parameters within an evolving magma chamber. An inten-
sive parameter is one which operates independently of systems scale, i.
e., they operate similarly in small and large layered intrusions. The
primary layer-forming intensive parameters include temperature (7),
pressure (p), composition (X), oxygen fugacity (fO,) and viscosity (). In
addition to fluctuations in intensive parameters (e.g, Ferguson and
Pulvertaft, 1963; Ryder, 1984; Pang et al., 2009), non-dynamic layer-
forming processes also refer to self-organising processes operating in a
cumulate pile or mush, or in the sub-solidus state of cumulates. Such
processes include fluctuations in crystal nucleation rates (e.g, Hawkes,
1967; Wager and Brown, 1968; McBirney and Noyes, 1979; Duchesne
and Charlier, 2005), constitutional zone refining during fluid/vapour
flux along a geochemical potential gradient (e.g, McBirney, 19387;
Bruegmann et al., 1989), and Ostwald Ripening (e.g, Boudreau, 1987;
McBimey et al., 1990; Boudreau and McBimey, 1997; Higgins, 2002).

A range of syn-magmatic processes have been proposed to be
responsible for disturbing or enhancing primary igneous layering. The
most important examples include: (i) the indentation of igneous layers
by dislodged autoliths (e.g, Skaergaard, Irvine et al., 1998; Bolangir and
Laramie anorthosite complexes, Dobmeier, 2006; Scoates et al., 2010);
(ii) scouring of layers by crystal slurries cascading along the top of the
cumulate pile (e.g, Bushveld Complex, Maier et al., 2013a); (iii) break-
up of layers due to chamber instabilities (e.g, Boulder Bed of the
Bushveld Complex, Jones, 1976); (iv) thermochemical and/or thermo-
mechanical erosion of igneous layers by magma influx (e.g, potholes of
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the Merensky Reef, Eales et al., 1988; Carr et al., 1999, Latypov et al.,
2013); and (v) o of the most dynamic environments may apply to
oceanic spreading centres, where layering of gabbroic protoliths may be
caused by ut-of-sequence emplacement of sills (e.g,, Bushveld Complex;
Mungall et al., 2016; Abernethy, 2020, Scoates et al., 2021). One ductile
shear at near-solidus temperatures. This resulted in tectonic repetition of
layers characterised by relatively low trapped melt fractions interpreted
through tectonically induced expulsion of pore melt (Bédard, 2015).

3. Layered intrusions in space and time
3.1. Introduction

Layered igneous intrusions have been identified in every continent
on Earth (Fig. 1) and their existence has been hypothesised on the Moon
and Mars (McEnroe et al., 2004; Francis, 2011; Elardo et al., 2012). The
greatest density of terrestrial intrusions occurs within stabilised
Archaean cratons, particularly the Kaapvaal (e.g., Bushveld, Uitkomst,
Stella, Molopo Farms, Trompsburg), Zimbabwe (e.g, Great Dyke), Pil-
bara (e.g., Munni Munni), Yilgam (e.g, Windimurra, Jimberlana), Nain
(e.g., Kiglapait, Fiskanaesset, Ilimaussaq), Superior (e.g, Duluth, Sud-
bury, Coldwell, Ring of Fire), Wyoming (Stillwater), Kola (e.g., Mon-
chegorsk, Fedorova Tundra, Imandra) and Karelia (e.g, Kemi, Penikat,
Portimo, Koillismaa) cratons. The dilated margins of cratonic blocks
appear to be equally favourable, e.g, the Brasilia Belt of the Amazonia
craton (hosting the Cana Brava, Niquelandia, and Barro Alto intrusions),
the Halls Creek Orogen of the Kimberly craton (e.g., Hart, Savannah,
Panton), the Kibaran Fold Belt of the Tanzania craton (e.g., Kabanga,

Fig. 1. Global distribution of layered igneous intrusions coloured by their age and sized by their arial extent (km?). The spatial distribution of cratons is that of
Bleeker (2003), which have been buffered to 500 km. The map was produced in ArcMap 10.7.1. Giant > 10,000 km?, large > 1,000 km? medium > 100 km?, and

small < 100 km?.
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Musongati, Kapalagulu), the Kotalahti Belt of the Karelia craton (e.g,
Kotalahti, Rytky, Laukunkangas), the Central Asian Orogenic Belt (e.g.,
Heishan, Huangshandong, Tulargen, Xiadong) and the Giles event of the
Musgrave province, Australia (e.g, Wingellina Hills, Kalka, Man-
tamaru). There are relatively few intrusions that show no obvious
connection with Archaean cratons or their periphery, examples being
the Chilas Complex of Pakistan and the Beja and Aguablanca intrusions
of Portugal and Spain.

Layered intrusions occur throughout geological time, from the
Archaean (including the ~3123 Ma Nuasahi intrusion, India and the
~3033 Ma Stella intrusion, South Africa) to the Cenozoic (including the
~55-45 Ma east Greenland intrusions, e.g., Kruuse Fjord, Skaergaard,
and Lilloise). There is no clear correlation between age and size; giant
intrusions occur from the Archean, e.g, the ~2.8 Ga Windimurra
intrusion, Australia, to the Phanerozoic, e.g, the ~0.18 Ga Dufek
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intrusion, Antarctica. Amongst the intrusions compiled in this study,
11.0% occur in the Archaean, 25.2% in the Proterozoic and 41.0% in the
Phanerozoic (Fig. 2; 22.8% are unconstrained). As noted by Maier and
Groves (2011), the ages of many layered intrusions correlate broadly
with the amalgamation and break-up of supercontinents. Intrusions
temporally associated with amalgamation may include those at ~2.5-
2.4 Ga (Kola and Karelia cratons, Great Dyke), ~ 2.0-1.8 Ga (Kaapvaal
and Superior cratons), ~ 1.2-1.0 Ga (Midcontinent Rift), and 0.3-0.25
Ga (China and New Zealand). The trigger for magmatism may have been
(i) slab-rollback and consequent lithospheric extension, (ii) trans-
tensional rift zones during oblique collision, or (iii) sub-continental
lithospheric mantle (SCLM) delamination in response to enhanced
subduction (Maier and Groves, 2011). Other intrusions appear to be
temporally related to supercontinent dismemberment likely formed in
response to mantle plume activity (e.g, Emst and Buchan, 1997; Emst,
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REPUBLIC

- Kibaran Fold Belt intrusions
‘ (.5, Kabanga. Muscngall. Kapalagulu
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DR CONGO
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Fig. 3. Enhanced area of Fiz. 1 showing the distribution of layered intrusions in Africa coloured by their age and sized by their arial extent (km?). The spatial
distribution of cratons is that of Blecker (2003), which have been buffered to 500 km. Giant > 10,000 km?, large > 1,000 km? medium > 100 km?, and small <

100 km?.
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2014a), In the following chapters, selected intrusions from all continents
are discussed in more detail.

3.2. Africa

Africa hosts 104 layered intrusions (18.5% of the compilation),
ranging in age from ~3454 to 126 Ma, in size from 0.15 to >65,000 km?,
and in thickness from 0.1 to 12 km (Fig. 3). The distribution of the in-
trusions is highly biased towards southemn Africa, with another impor-
tant cluster in the Kibaran fold belt of Tanzania-Burundi. The reason
likely relates to exposure, access, and infrastructure and thus, explora-
tion history. While small-scale mining did take place in the pre-colonial
era (e.g, for Cu at Okiep, South Africa; Cawthorn and Meyer, 1993;
Clifford and Barton, 2012), the bulk of mining and exploration activity
commenced in the 20th century, in the relatively well-exposed and
accessible Kaapvaal and Zimbabwe cratons. Exploration opportunities
remain significant in these regions (e.g, the recently discovered Flatreef
and Waterberg deposits of the northern lobe of the Bushveld Complex;
Kinnaird et al., 2017; Huthmann et al., 2018; Grobler et al., 2019), but
additional future discoveries will likely be made elsewhere in Africa,
notably the Congo, Tanzania, and West African cratons and their
peripheries.

Africa’s (and the world’s) most important layered intrusion is the
Bushveld Complex of South Africa. It is the largest known layered
intrusion on Earth (> 100,000 km?, Hayes et al., 2017) by an order of
magnitude, for reasons that remain unclear. The remarkable size of the
complex suggests that its emplacement must also have exerted a sig-
nificant impact on global atmospheric conditions. This idea is possibly
supported by the correlation of the Bushveld emplacement (—~ 2054.4 +
1.3 Ma; Scoates and Wall, 2015) with the end of the Lomagundi-Jatuli
event (— 2058 + 6 Ma; Melezhik et al, 2007) and the onset of the
Shunga event (~ 2050 Ma; Hannah et al., 2008; Ernst, 2014a). Aber-
nethy (2020) estimated that the emplacement of the northern limb of the
Bushveld Complex into the Transvaal dolomites may have caused the
release of at least 1,213 Gt of CO, into the Precambrian atmosphere.
This estimate is likely highly conservative as it does not consider the
potential contribution of the extensive sill complex in the floor of the
intrusion, across the entire Bushveld Complex.

The complex displays an extremely diverse range of layering,
including transgressive features such as potholes (Ezales et al., 19388;
Kruger, 1994; Carr et al., 1999; Latypov et al., 2013), pipes (Scoon and
Mitchell, 1994, 2004; Reid and Basson, 2002) and diatremes (Boorman
et al., 2003). Itis also one of few intrusions for which the parent magmas
have been well constrained, based on fine-grained basaltic sills in the
floor of the intrusion (Davies et al., 1980; Sharpe, 1981; Barnes et al.,
2010) and magnesian basaltic and komatiitic chilled margins (Wilson,
2012; Maier et al., 2016a). These data suggest that the complex formed
from a komatiitic parent magma that assimilated upper crust during its
ascent and emplacement. Numerous petrogenetic models have been
proposed to explain the layering (see recent reviews by Maier et al.,
2013a; Cawthorn, 2015; Smith et al., 2021). Thus, the Bushveld Com-
plex is arguably one of the most important natural laboratories in the
study of layered intrusions.

The Bushveld hosts the diverse range of ore deposit types, amongst
them the world’s most important PGE, Cr and V deposits (e.g., Merensky
Reef, Platreef, Flatreef, UG2 and LG6 chromitites, Main Magnetite
Layer; Bames and Maier, 2002; McDonald et al., 2005; Naldrett et al.,
2009; Junge et al., 201 4; Oberthiiret al., 2016; Grobler et al., 2019). The
PGE deposits have been exploited for nearly a century since the dis-
covery of Pt by Hans Merensky and his associates in 1924. The Bushveld
event also led to the formation of: (i) Ni-Cu in chonolithic satellite in-
trusions (e.g., Uitkomst; Gauert et al., 1995; De Waal et al, 2001;
Yudovskaya et al., 2015; Maier et al., 2018a; DA); (ii) polymetallic Sn-w
granite-related mineralisation (McNaughton et al., 1993; Mutele et al.,
2017); (iii) andalusite deposits in the metamorphic aureole (Hammer-
beck, 1986); (iv) building stones such as the Impala Black and African
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Red granites (Pivko, 2004); (v) hydrothermal fluorite deposits (e.g.,
Warmbaths and Vergenoeg, Pringle, 1986; Goff et al., 2004); and (vi)
hydrothermal gold mineralisation in the floor rocks to the complex (e.g.,
Witwatersberg and Sabie-Pilgrim’s Rest goldfields; Frimmel et al., 2005;
Killick and Scheepers, 2005).

The Bushveld Complex is part of the Bushveld LIP (Rajesh et al.,
201 3) that also includes other notable intrusions such as Uitkomst and
the Molopo Farms Complex (MFC). The Uitkomst intrusion is a tubular
layered body that hosts one of South Africa’s largest Ni-Cu-PGE deposits
(407 Mt at 0.35% Ni, 0.13% Cu, 0.63 g/t PGE) and Cr (6.23 Mt at
33.47% Cr203), named Nkomati (Gauert et al., 1995; Maier et al.,
2018a). Recent geochronological work yielded an age of 2057.64 +
0.69 Ma, showing that the intrusion formed part of the Bushveld event
(Maier et al., 2018a). The Molopo Farms Complex (MFC) of Botswana is
an extremely poorly exposed, large layered intrusion (~ 13,000 km?)
that has a similar Sr isotope signature, mineral composition, and age (~
2054 + 5 Ma) as the neighbouring Bushveld Complex (Prendergast,
2012; Kaavera et al, 2020). Despite these commonalities, the two
complexes appear to be separate intrusive suites (Skryzalin et al., 2016).
The MFC comprises a 1.3-km-thick lower ultramafic sequence (harz-
burgite and pyroxenite) overlain by a 1.5-km-thick mafic sequence
(gabbro and norite), (Wilhelm et al., 1988) thought to derive from a
parent magma similar in composition to the B1 magma for the Bushveld
Complex (Barnes et al., 2010; Kaavera et al., 2018). No economic PGE
reefs have been intersected in the MFC, but low-grade PGE mineralisa-
tion (~ 1.1 ppm Pt -+ Pd at 1 m) has been identified in the basal ultra-
mafic portion of the Tubane Section (Kaavera et al., 2020).

Other notable layered intrusions in South Africa include the Stella
and Trompsburg intrusions. The Stella intrusion in the Kraaipan
greenstone belt is one of the oldest layered intrusions on Earth (~
3033.5 + 0.3 Ma). It has been poorly studied since the intrusion has a
limited exposure (~ 18 kmz; Maier et al., 2003a). The bulk of the
intrusion consists of gabbro, which is overlain by magnetite-rich gabbro
and titanomagnetitites that host PGE enrichments of up to 15 ppm over
1 m (Maier et al., 2003a). Trompsburg is a large, lopolithic layered
intrusion (~ 2,500 km? ~ 1915.2 + 5.6 Ma; Maré and Cole, 2006)
identified by a gravimetric survey conducted by Transvaal Orangia
Limited in 1946 (Maier et al., 2003b). Several boreholes drilled in the
1950s intersected mostly gabbro and troctolite, but also anorthosite
with up to 19 magnetitite layers containing up to 1.82% V20s.

One of the greatest densities of layered intrusions (> 18 identified
bodies) occurs in the Barberton greenstone belt (Anhaeusser, 1983,
2006). This raises the question as to why other greenstone belts have
much fewer intrusions. Some of the Barberton intrusions could be
cumulate portions of lava flows. Distinguishing these from intrusive
cumulates is not straightforward (e.g, Mouri et al., 2013), and some lava
flow cumulates have been shown to reach a thickness of several 100 s of
metres (e.g., Mt Keith, Fiorentini et al., 2010). Alternatively, lava flows
in other greenstone belts could have been misidentified and instead
represent intrusions.

In terms of economic importance, the Great Dyke of Zimbabwe (~
2575 + 0.7 Ma) is the second most significant layered intrusion in Africa.
The intrusion forms a ~ 550 km long elongated body that ranges from 4 to
11 km in width (Wilson, 1982; 1996). It likely represents the upper
portion of a dyke that transitioned upwards into a sill complex (Podmore
and Wilson, 1987). Based on mineral chemistry, the composition of the
parent magmas was high-Mg basalt (~ 15-16 wt% MgO; Wilson, 1982).
Prendergast (1991) and Maier et al. (2015a) presented field evidence
documenting a highly irregular contact between the ultramafic and mafic
portions of the intrusion which they interpreted to result from granular
flow of cumulate slurries. The Great Dyke is one of few layered intrusions
where it was possible to conduct detailed studies of compositional vari-
ation relative to distance from the putative feeder zones (ie., the axis of
the intrusion, Prendergast, 1991). This revealed systematic variation in
PGE ratios and total PGE concentrations, with the latter systematically
elevated in the axial facies (Wilson and Tredoux, 1990).
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The Archaean Monts de Cristal intrusion of Gabon (~ 2765 + 11 Ma)
consists of several bodies thought to represent a tectonically dismem-
bered layered intrusion spaced over 100 km (Maier et al., 2015b). The
intrusion consists predominantly of orthopyroxenite, with subordinate
norite and gabbro. The parent magma is proposed to be a basalt with
~10 wt% MgO. Most of the rocks display elevated Pt levels (10-150 ppb)
at low Pd contents (mostly <10 ppb), resulting in high Pt/Pd > 10. The
elevated Pt contents in the rocks and soils caused some interest amongst
exploration companies, but no PGE reefs were found. Instead, the Pt
enrichments were interpreted to reflect the precipitation of primary Pt-
As phases from the magma (Maier et al., 2015b; Bames et al., 2016a).

Much of the giant Kunene Complex of Namibia-Angola (~ 18,000
km?; ~ 1371 + 2.5 Ma) consists of >>20 massif-type anorthosite plutons
(Ashwal and Twist, 1994), which are associated with the ~1.3 Ga
Kunene-Kibaran LIP (Ernst et al., 2013). However, in the Namibian
portion there is a ~ 16-km-thick layered troctolite body (called the
Zebra Mountain lobe; ~ 2,500 km?), possibly resulting from multiple sill
injection (Driippel et al., 2007; Maier et al., 2013b). The Zebra lobe has
numerous, mostly relatively small (< 10 km?) mafic-ultramafic satellite
bodies, some of which host Ni-Cu-PGE mineralisation (e.g, Ohamar-
emba troctolite and Ombuku peridotite) and chromitite (Ombuku; Maier
et al., 2013b).
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Intrusions of the Kabanga-Musongati-Kapalagulu mafic-ultramafic
belt were emplaced during the ~1.3 Ga Victoria event of the Kunene-
Kibaran LIP that extends for ~500 km from Uganda to Lake Tanga-
nyika (Deblond, 1994; Tack et al., 1994; Makitie et al., 2014). The in-
trusions include Ni-Cu mineralised chonoliths (Kabanga) and reef-style
and contact-style PGE-Ni-Cu mineralisation (Kapalagulu and Musongati;
Maier et al., 2010; Wilhelmij and Cabri, 2016; Evans, 2017; Prendergast,
2021). In addition, there is a titanomagnetite deposit at Rutovu and a
large Ni laterite deposit at Musongati (Maier et al., 2010).

Compared to southern and central Africa, relatively few layered in-
trusions are reported from northern Africa. The best known and largest
is the ~202 Ma Freetown intrusion, Liberia, which belongs to the Cen-
tral Atlantic Magmatic Province (CAMP or CA-LIP) and consists of
interlayered ultramafic and gabbroic rocks (e.g, Chalokwu, 20071;
Bowles et al., 2017; Callegaro et al., 2017). Exposure is relatively poor
and much of the body extends into the Atlantic Ocean. Thus, the eco-
nomic potential of the intrusion remains poorly defined.

Several gabbroic layered intrusions occur in the Western Ethiopian
Shield, the largest of which is the Bikilal-Ghimbi gabbro (~ 846 + 7.6
Ma; Woldemichael et al., 2010) which underlies an area of ~350 km?®
(Woldemichael and Kimura, 2008). Despite comprising a relatively ho-
mogeneous olivine gabbro core, the margins of the intrusion show
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rhythmic layering of leucogabbro, hornblende gabbro, and horn-
blendite. The Bikilal intrusion hosts one of Africa’s largest igneous
phosphate deposits (~ 181 at 3.5% P,0s) in two horizons of apatite-
bearing hornblende gabbro (Ghebre, 2010).

Several Neoproterozoic post-collisional layered mafic-ultramafic in-
trusions are documented in the Arabian-Nubian Shield of Egypt (e.g,
Motaghairat, Imleih, Korab Kansi, and Shahira; Khedr et al., 2020 and
references therein). Most of the intrusions comprise ~10% ultramafic
cumulates overlain by layered olivine gabbro, troctolite, gabbro, and
homblende gabbro derived from a tholeiitic to calc-alkaline parent
magma (Abdel Halim et al., 2016; Khedr et al., 2020). The Korab Kansi
intrusion differs from the other intrusions since it is host to economic Fe-
Ti-V oxide mineralisation within its upper gabbroic interval. It is
hypothesised that partial melting of metasomatized mantle produced Fe-
and Ti-rich ferropicritic melts leading to the formation of oxide deposits
(Khedr et al., 2020).

3.3. Asia (including eastern Russia)

Our compilation includes approximately 111 layered intrusions
(19.8% of the total) from Asia (including those of eastern Russia),
ranging in age from 3123 to 22 Ma, in surface area from 0.025 to 12,000
km2, and in thickness from 0.06 to 11 km (Fig. 4). The majority of known
Asian layered intrusions occur in China and Russia. The Chinese in-
trusions form several important clusters of relatively small PGE- and Fe-
Ti-V-bearing bodies, including in the Emeishan large igneous province
(LIP), the Tarim LIP, and the Central Asian Orogenic Belt (CAOB).
Important clusters in Russia include the Noril’sk-Talnakh intrusions of
the Siberian traps LIP and intrusions of the Urals Belt.

The largest layered intrusion in Asia is the Chilas intrusion of the
Kohistan terrane of Pakistan (~ 12,000 kmz), for which little informa-
tion is available. It is a relatively young intrusion (~ 85.73 + 0.15 Ma)
that comprises mainly olivine- and plagioclase-dominated cumulates
overlain by gabbronorite, gabbro, and subordinate anorthosite
(Mikoshiba et al., 1999; Takahashi et al., 2007). No economic miner-
alisation has been identified in the Chilas intrusion, but PGE enrich-
ments (< 3 ppm Pt + Pd in grab samples) have been reported in
peridotitic cumulates of the Jijal layered complex, which forms an
arcuate layered intrusion occurring just south of the Chilas intrusion
(Miller Jr et al., 1991).

The economically most important intrusions of Asia are relatively
small and are associated with LIPs. In the Siberian LIP, economically
highly important layered sills occur in the Noril’sk region, notably the
Noril’sk 1, Talnakh, and Kharaelakh intrusions that host the Ni-Cu-PGE
deposits of the Talnakh-Oktyabrsk and Noril’sk-Talnakh ore junctions
(Naldrett et al., 1992; Amdt, 2011). These layered tabular intrusions
have thicknesses up to 360 m and lengths up to 20 km (Malitch et al.,
2010). The Kharaelakh intrusion has been described as the single most
valuable ore deposit ever discovered, consisting primarily of olivine
gabbro with subordinate wehrlite and troctolite that contains a ~ 30-m-
thick massive sulphide orebody that strikes for up to 20 km (Yakubchuk
and Nikishin, 2004). Ore formation in these layered sills is still highly
debated, yet the earliest petrogenetic models proposed by Russian ge-
ologists in the 1950’s, involving emplacement of highly sulphidic
magmas resulting from assimilation of evaporite appear to be still the
most widely supported (Grinenko, 1985). A discussion of the ore-
forming processes is beyond the scope of the present contribution, but
an update of the latest research can be consulted in the 2020 special
issue of Economic Geology on the Noril’sk ore district (e.g, Bames et al.,
2020a) and a revised model for the formation of the Noril’sk ores is
detailed in Yao and Mungall (2021).

Numerous small, layered intrusions hosting Ni-Cu-sulphide (e.g,
Limahe, Zhubu, Erhongwa, Huangshandong), PGE- (e.g., Jinbaoshan,
Anyi, Xinjie) and Fe-Ti-V ores (e.g, Taihe, Baima, Hongge, Panzhihua)
are located in the Permian-aged Emeishan LIP of south China (see Wang
et al., 2018). Many Ni-Cu-sulphide-bearing intrusions in the CAOB have
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no regular layering (e.g, Niubiziliang, Kalatongke, Tianyu, Hulu,
Heishanxia), yet several display modal layering of plagioclase and py-
roxene in their central and upper parts (e.g, Erghonwa, Huang-
shandong, Sun et al., 2013a, 2013b). The giant Fe-Ti-V deposits of the
Panzhihua (1333 Mt at 33% Fe, 12% TiO,, and ~ 0.3% V,0s; ~ 263 + 3
Ma), Baima (1497 Mt at 26% Fe, 7% TiOa, and ~ 0.21% V20s; ~ 262 +
2 Ma), and Hongge (4572 Mt at 27% Fe, 11% TiO,, and ~ 0.24% V,0s;
-~ 259 + 3 Ma) intrusions rival those of the Bushveld in size. The de-
posits are also notable in that the titanomagnetitite layers occur in the
central and lower portions of the intrusions and the total volume of Fe-Ti
oxides far exceeds what could have accumulated from the magma if the
intrusions were closed systems. Thus, their petrogenesis has been
explained by a combination of emplacement of Fe- and Ti-enriched
magmas that had undergone pre-emplacement fractionation of magne-
sian silicates in a deep-seated magma chamber, followed by gravity
settling and sorting of the Fe-Ti oxides (Zhang et al., 201 2a; Song et al.,
2013; Luan et al., 2014; She et al., 2015).

Other economically important, yet relatively small layered in-
trusions occur in the Central Asian Orogenic Belt of northwest China,
which, together with the Finnish Ni belt and the Kabanga-Musongati-
Kapalagulu belt, is amongst the most important examples of orogenic
Ni-Cu sulphide deposits. The intrusions primarily consist of peridotitic
cumulates overlain by pyroxenite, gabbro, and diorite, with Ni-Cu sul-
phide ores being typically hosted in peridotite and pyroxenite at the base
of the intrusions (Li et al., 2012; Su et al., 2014; Mao et al., 2014). The
intrusions tend to be relatively PGE depleted (Cu/Pd > 10,000), which
has been interpretated to represent equilibration of the magmas with
sulphide prior to final emplacement, possibly in a deep-crustal staging
chamber (Sun et al., 2013a; Xie et al., 2014) or magma derivation from
the SCLM (Song et al., 2011; Xie et al., 2014). Several similar-sized Ni-
Cu-sulphide-bearing intrusions occur in the Mongolian CAOB (e.g.,
Nomgon, Dulaan, Oortsog), but are generally more geochemically
evolved than the Chinese intrusions, ie., have thinner and more irreg-
ular ultramafic cumulate units (Mao et al., 2018).

The Yoko-Dovyren intrusion (~ 728.4 + 3.4 Ma) of Siberia is
amongst the best studied layered intrusions in Asia (Ariskin et al., 2016,
2018, 2020; Kislov and Khudyakova, 2020). This intrusion is linked with
the East Siberian metallogenic (PGE-Cu-Ni) metallogenic province
(Polyakov et al., 2013), which is part of the ~720 Ma Irkutsk LIP (Ernst
et al., 2016). It consists of a basal peridotite that is interlayered with,
and contaminated by country rock carbonates, overlain by layered
troctolite, anorthosite and gabbro. The intrusion is 3-4 km thick and
hosts disseminated to net-textured Ni-Cu sulphides at its base (e.g.,
Ariskin et al., 2016, 201 8) and reef-style PGE deposits in its central and
upper portion (Orsoev, 2019; Ariskin et al., 2020).

Eastern Siberia and the Urals belt host numerous Ural-Alaskan-type
zoned intrusions which may contain important placer deposits of Pt,
including those of the Nizhny-Tagil Complex and the Koryak-Kamchatka
Belt (Tolstykh et al., 2004, 2015). The intrusions consist predominantly
of lherzolite and have been interpreted as ophiolitic sequences (Save-
lieva et al, 1997) or exhumed sub-continental lithospheric mantle
(Zaccarini et al., 2002; Tessalina et al., 2007). The PGM placers are
considered to have formed via erosion and weathering of primary Pt-Fe
alloys, Os-Ir-Ru alloys and minerals of the laurite-erlichmanite series
hosted in chromite lodes (O Driscoll and Gonzalez-Jiménez, 2016).

India hosts one of the oldest known layered intrusions on Earth,
namely the Nuasahi intrusion (~ 3123 + 7 Ma) of the Singhbhum
craton. Nuasahi is relatively small (~ 1.5 km?) and comprises chromi-
tiferous ultramafic cumulates overlain by layered gabbroic units, with
subordinate pyroxenite, anorthosite, and magnetitite (Augé et al.,, 2003;
Khatun et al., 2014). Chromite lodes (Durga, Laxmi 1, and Laxmi 2)
occur amongst the basal peridotitic cumulates, whereas a sulphide-rich
breccia zone occurs at the contact between pyroxenite and gabbro in the
centre of the intrusion (Augé et al., 2003; Mondal and Zhou, 2010). In
addition, a 1-2-m-thick massive magnetite layer occurs in the upper
gabbroic portion (Mohanty and Paul, 2008). The intrusion is thought to
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derive from an S-undersaturated boninitic magma derived from second-
stage melting of a depleted metasomatized mantle (Mondal and Zhou,
2010; Khatun et al., 2014). Other notable intrusions in India are those of
the Eastern Ghats Belt (Chimalpahad and Pangidi-Kondapallae com-
plexes). These are medium-sized intrusions (~ 150 km?) that comprise
chromitiferous ultramafic cumulates overlain by gabbro, leucogabbro,
and anorthosite (Leelanandam, 1997; Dharma Rao et al., 2011).

3.4. Europe (including western Russia)

Europe contributes 140 layered intrusions (24.9% of the compila-
tion) to our compilation, ranging in age from 2846 to 1.1 Ma, in extent
from 0.005 to 1,500 km?, and in thickness from 0.004 to 15 km (Fig. 5).
The greatest density of layered intrusions is found in the Fennoscandian
Shield of Finland and Russia, referred to as “Europe’s Treasure Chest” by
Maier and Hanski (2017) and including the Archean Kola and Karelia
cratons. Many of the intrusions host PGE (e.g, Penikat, Portimo, Koil-
lismaa, Fedorova-Pana), Ni-Cu (e.g, Kevitsa, Sakatti, Kotalahti, Mon-
chegorsk), Cr (e.g., Kemi, Monchegorsk, Koitelainen, Akanvaara), and
Fe-Ti-V (e.g, Koillismaa, Koivusaarenneva, Otanmaki, Kauhajérvi, Koi-
telainen, Akanvaara). Other notable intrusions are those of the North
Atlantic LIP in Scotland (e.g, Rum, Cuillin, Aradnamurchin) and the
orogenic Ni-Cu-sulphide-bearing layered intrusions in southemn Spain
and Portugal (e.g, Aguablanca and Beja).

Many of the most mineralised layered intrusions of the 2.44 Ga
Fennoscandian Shield occur in the Tomio-Narankavaara Belt, which
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comprises the intrusions of the Portimo and Koillismaa complexes, as
well as the Penikat and Kemi intrusions. These intrusions are related to
the ~2.44 Ga Baltic LIP, which has been linked with the Matachewan
LIP of the southern Superior craton (Emnst and Jowitt, 2013). The ~30
km? lopolithic Kemi intrusion (~ 2430 + 4 Ma) is particularly inter-
esting because it hosts at a chromitite interval that widens from a few ecm
at the margins to >100 m in the centre of the lopolith (Alapieti et al.,
1989). The layer hosts ~50 Mt of chromite ore (~ 26% Cr,05), consti-
tuting one of the world’s largest chromite deposits. Few other layered
intrusions have their centres exposed, raising the possibility that thick
oxide (and perhaps sulphide) layers of the style found at Kemi remain to
be discovered elsewhere. Just east of Kemi is the ~50 km® Penikat
intrusion (~ 2430 + 5 Ma) that comprises five megacyclic units con-
sisting predominantly of norite, gabbro, and gabbronorite, with subor-
dinate olivine pyroxenite, chromitites, and leucogabbro (Halkoaho
et al., 1990a, 1990b; Huhtelin et al., 1990; Maier et al., 2018b). Penikat
hosts at least six PGE reef-style horizons, several of which contain up to
10 ppm Pd + Pt + Au over approximately 1 m thickness. Furthermore,
Penikat contains highly PGE-enriched pothole structures, analogous to
those of the Bushveld and Stillwater intrusions. The Portimo (Iljina and
Hanski, 2005; Iljina et al., 2015) and Koillismaa (~ 2426 + 5 Ma; Kar-
inen, 2010) complexes also host PGE and, in the case of Koillismaaa,
disseminated titanomagnetite intervals that are enriched in vanadium (i
e., Mustavaara deposit). Both intrusions comprise several tectonically
dismembered layered bodies (a few km? to up to 100 km?) (1ljina et al.,
2015). Koillismaa appears to be connected to Narankéavaara via a deep,
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Fig. 5. Enhanced area of Fig. 1 showing the distribution of layered intrusions in Europe coloured by their age and sized by their arial extent (km?). The spatial
distribution of cratons is that of Blecker (2003), which have been buffered to 500 km. Giant > 10,000 km?, large > 1,000 km? medium > 100 km?, and small <

100 km?.
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dyke- or conduit-like peridotite body that has recently been intersected
by drilling (Jarvinen et al., 2020).

The Koitelainen and Akanvaara intrusions are notable because they
contain thick intervals of PGE- and V- rich magnetite gabbro and a
chromitite layer of unusually low Mg# in their upper portions. (Muta-
nen and Huhma, 2001; Hanski et al., 2001). The 2.06 Ga Otanmaki
complex consists of several, relatively small (~ 20 km2), differentiated
layered intrusions that contain thick Fe-Ti-V ore lenses (~ 2-200 m in
length and 3-50 m in thickness with a resource of ~30 Mt at ~34% Fe,
8% TiO,, and 0.26% V,05) (Mikisalo, 2019). The 16 km? Kevitsa
intrusion (~ 2058 + 4 Ma) hosts Finland’s largest Ni deposit. Some of
the sulphides are extremely Ni-rich (Yang et al., 2013; Luolavirta et al.,
2018), possibly resulting from assimilation of Ni-rich komatiite by the
basaltic parent magma (Yang et al., 2013). Lastly, several tectonised
layered intrusions (or magma conduits) occur in the 1.88 Ga Kotalahti
and Vammala Ni belts of southern Finland, which produced a total of 45
Mt at 0.7% Ni (Peltonen, 1995; Makkonen, 2015). The intrusions were
emplaced into an orogenic setting, analogous to the intrusions in the
Appalachians and the CAOB.

Pilgujarvi is the largest (~ 3 km in length and 700 m in thickness)
differentiated intrusion in the ferropicritic Pechenga greenstone belt of
the ~1.98 Ga Pechanga-Onega LIP (e.g., Lubnina et al., 2016) and also
the largest sill complex of the Kola peninsula, NW Russia (Hanski et al_,
1990; Hanski, 1992). Hanski et al. suggested that the incompatible and
isotopic geochemistry of the ferropicritic units is consistent with deri-
vation from the partial melting of a mantle plume, yet derivation from
metasomatized SCLM could not be excluded. The intrusions host
Europe’s largest Ni deposits constituted by disseminated to massive Ni-
Cu sulphides concentrated near the base of the sills (Barnes et al., 2001;
Maier and Hanski, 2017).

The 550 km? Monchegorsk Complex (~ 2054 + 2 Ma) comprises the
ultramatic-mafic Monchepluton (~ 65 km?) and the largely gabbroic to
anorthositic Main Ridge intrusion (485 km?). This economically
important Complex comprises dunite-hosted Cr seams (Chashchin et al.,
1999), marginal contact-style PGE-Cu mineralisation (Grokhovskaya
et al., 2003; Karykowski et al., 2018a), massive Ni-Cu sulphide veins
(Bekker et al., 2016; Karykowski et al., 2018a), PGE reef deposits
(Sopcha and Vuruchuaivench; Grokhovskaya et al., 2000; Karykowsld
et al, 2018b), and Fe-Ti-V mineralisation in the Gabbro-10 massif
(Pripachkin etal., 2020). The 2.45 Ga lopolithic Burakovsky complex is
among the largest layered intrusion in Europe (~ 700 km?). It has a
thickness ranging from 2 to 8 km (Bailly et al., 201 1) and contains PGE-
rich chromitites (12-40% Cr,05 and < 0.4 g/t Pt + Pt at 3-4 m) located at
several stratigraphic positions in the central and lower portions of the
intrusion (Sharkov et al., 1995). No economic Ni-Cu sulphides have been
discovered to date.

Amongst the most intensely studied intrusions in Europe is the Rum
intrusion (~ 60.5 + 0.08 Ma) of the North Atlantic Igneous Province
(NAIP or NA-LIP, which also includes mafic-ultramafic complexes of
Cuillin and Centre 3), which is located in the Inner Hebrides of Scotland.
The intrusion is relatively small (~ 25 km?) but exceptionally well
exposed (~ 600 m thick). As a result, it has been highly influential in our
understanding of the formation of igneous layering, including the
development of the ‘cumulus theory” (Wager et al., 1960), providing
evidence for layering in response to out-of-sequence emplacement of
sills (Bedard et al., 1988), evidence for infiltration metasomatism, in the
form of the Wavy Horizon (Holness et al., 2007), and the formation of
enigmatic finger structures (Butcher et al., 1985). The latter are found
along the contacts between peridotite and troctolite layers, or between
different types of peridotites (granular and poikilitic). The fingers cut
across layering, laminae, and lamination without any disruption of
planar structures. Butcher et al. (1985) suggest that the fingers formed
through replacement of troctolite by peridotite, achieved by pore
magma from the peridotite migrating into the overlying troctolite, in
response to compaction. The pore magma resorbed plagioclase but
crystallized olivine and pyroxene. The intrusion also contains PGE-rich
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chromitite stringers (~ 2.5 g/t PGE at 3 m; Butcher et al., 1999;
Upton et al., 2002; O’ Driscoll et al., 2009, 2010; Hepworth et al., 2020).

The Aguablanca (~ 10 km? ~ 341 + 1.5 Ma) and Beja (~ 265 km?;
~ 342 + 9 Ma) layered intrusions in the Ossa Morena Zone of southern
Spain and Portugal, respectively, are of the syn-orogenic type (Pina
et al., 2006; Jesus et al, 2016). The Ni-Cu-PGE mineralisation at
Aguablanca occurs as disseminated sulphides within sub-vertical
magmatic breccia (~ 16 Mt at 0.66% Ni, 0.46% Cu, and 0.47 g/t Pt
| Pd; Pina et al., 2010). In contrast, sub-economic Fe-Ti-V oxide ag-
gregates (up to 10% TiO; and 0.99 V,05) and disseminated Ni-Cu sul-
phides are reported in the lower olivine gabbro and pyroxenite of the
Beja layered sequence (Jesus et al., 2003, 2005).

3.5. North America and Greenland

Our compilation contains 85 layered intrusions (15.1% of the
compilation) from North America, ranging in age from 3811 to 48 Ma, in
extent from 0.1 to 5,000 km?, and in thickness from 0.06 to 8.4 km
(Fig. 6).

The economically most important igneous body in North America is
the ~1.85 Ga Sudbury igneous complex (~ 1,650 km?). It is seemingly
unique amongst igneous complexes in that it represents a differentiated
crustal melt sheet that formed in response to a meteorite impact (the
bolide is estimated to have been ~10 km in diameter; Grieve, 1994;
Lightfoot, 2016). Flash melting of the crust occurred during decom-
pression and crustal rebound milliseconds after the impact, which pro-
duced a voluminous melt sheet below the fall-back breccia (see
Lightfoot, 2016 and references therein). The melt sheet differentiated
into norite and leuconorite (~ 40% of the intrusion) overlain by
granophyre (~ 60% of the intrusion). The complex hosts some of the
world’s largest and most intensely studied Ni-Cu-(PGE) deposits (total
resource of 1,648 Mt at 1.66% Ni and 0.88% Cu), the origin of which has
been heavily debated since its discovery in 1883 during the construction
of the Canadian Pacific Railway (Lesher and Thurston, 2002). The
currently favoured explanation for ore formation is that the bolide
struck crust that contained magmatic proto-ores, possibly located in
members of the Nipissing mafic suite or layered intrusions of the East
Bull Lake suite (James et al., 2002; Darling et al., 2010). The molten
sulphides became further metal enriched during equilibration with the
vigorously convecting superheated melt-sheet (Lightfoot, 2016). After
deposition along the base of the melt-sheet, the sulphide melt underwent
fractionation, during which Cu-(PGE)-rich sulphides infiltrated for
several 100 s of metres into the brecciated basement rocks (Rousell
et al., 2003).

The ~2.7 Ga Stillwater Complex of Montana is a ~ 6.5-km-thick
intrusion which, from base to top, is characterised by: (i) a 60-400-m-
thick basal series consisting of orthopyroxenite and norite, (ii) an 840-
2000-m-thick ultramafic series that comprises >20 cyclic units of
olivine-orthopyroxene cumulates, and (iii) a ~ 1900-4500-m-thick
banded series that comprises norite, gabbronorite, troctolite, and anor-
thosite (Hess, 1939; McCallum, 1996; Bames et al., 2020a). The Earth’s
thickest anorthosite layers (up to 600 m) occur in the Middle Banded
Series (Haskjn and Salpas, 1992). Much of the intrusion is poorly
exposed and its true extent is likely >1,500 km?®. Several stratiform
chromitites (named A to K from the bottom upwards) occur in the
peridotite zone of the ultramafic series. They were discovered during the
first world war, but not exploited until the second world war. In contrast,
stratiform PGE reefs (notably the JM Howland Reef) were not discov-
ered until the 1970s and are now actively mined at the East Boulder and
Stillwater mines (Zientek et al., 2002; Keays et al., 2012; Christopher
Jenkins et al., 2020). The Stillwater Complex has also been an important
laboratory for theories of reactive porous flow and infiltration meta-
somatism (see Boudreau, 2019 and references therein).

The largest layered Complex of North America is Duluth (~ 5,000
km2), which comprises a suite of troctolitic to anorthositic intrusions (e.
&, South Kawishiwi, Partridge River, and Bald Eagle) associated with the
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Fig. 6. Enhanced area of Fig. 1 showing the distribution of layered intrusions in North America coloured by their age and sized by their arial extent (km?). The spatial
distribution of cratons is that of Blecker (2003), which have been buffered to 500 km. Giant > 10,000 km?, large > 1,000 km?, medium > 100 km?, and small <
100 km®.

~1.1 Ga Keweenawan LIP of the Midcontinent Rift of the USA and several strongly tectonised layered intrusions that are host to significant
Ontario (Weiblen and Morey, 1980; Miller Jr and Ripley, 1996; Ernst Cr (e.g, Double Eagle), Fe-Ti-V (e.g, Black Thor, Highbank Lake, and
and Jowitt, 2013; Woodruff et al., 2020). Despite hosting 4,400 Mt of Blackbird), and Ni-Cu sulphide (e.g, Eagle’s Nest; Mungall et al., 2010)
contact-style Ni-Cu ore, the low metal grades (~ 0.2% Ni and 0.6% Cu) mineralisation (see Bleeker and Houlé, 2020 and references therein).
make the deposits currently sub-economic. The magmatic sulphides The chromite-rich layers attain a thickness of several 10s of metres
formed in response to extensive assimilation of sulphidic pelitic rocks of (Houlé et al., 2020). The Cr contents of the Ring of Fire chromites are
the Virginia Formation (Theriault and Barnes, 1998). The Midcontinent relatively high indicating a komatiitic lineage of the parent magmas
Rift contains several other mineralised mafic-ultramafic layered in- (Houlé et al., 2020). Other greenstone belt-hosted intrusions in Canada
trusions, including Lac des Iles (Barnes and Gowne, 2011), Sonju Lake include those of the Abitibi Belt, e.g., Bell River and Dore Lake. The latter
(Maes et al., 2007), Eagle and Eagle East (Ding et al., 2012), Coldwell contains economically important Fe-Ti-V deposits, whereas Bell River
(Good et al., 2017), and Tamarack (Taranovic et al., 2015). has PGE-(Cu) occurrences (Ebay and Dotcom; Munoz Taborda, 2010;
The ~1.27 Ga Muskox intrusion, hosted among the Mackenzie dyke Mathieu, 2019). Several important volcanogenic massive sulphide
swarm (e.g, Barager et al., 1996) of northern Canada, is a relatively (VMS) deposits occur in the vicinity of magmatic rocks of the Bell River
large (— 125 x 11 x 8 km), funnel-shaped body that consists of a keel- Complex, leading previous workers to suggest that the heat flux from the
shaped feeder dyke, an eastern and western marginal zone, a layered Bell River Complex drove the circulation of hydrothermal fluids
sequence of 25 cyclic units of dunite-peridotite-pyroxenite-gabbro, and responsible for VMS mineralisation (Maier et al., 1996).
a granophyric roof zone (Irvine, 1980; Barnes and Francis, 1995; Day Canada also hosts some of the world’s largest anorthositic massifs (e.
et al., 2008). Muskox was an early case study for the model of magmatic g, Sept Iles, Grader, Michikamau, Tigalak, Bridges, Newark Island,
infiltration metasomatism and double-diffusive convection proposed by Hettasch, and Kiglapait; Emslie, 1965; Morse, 1969; Wiebe and Wild,
Irvine (1930). Reef-style chromite horizons with disseminated sulphides 1983; Charlier et al., 2008; Ashwal, 2013), which occur from southern
are documented amongst the olivine-orthopyroxene cumulates of the Québec to northern Labrador (i.e., the Grenville and Nain provinces).
layered series yet have too low metal grades to be economic (Barnes and While most of the large massifs are not noticeably layered, there are
Francis, 1995). numerous intrusions that are. Perhaps most studied is the ~1.3 Ga
The most recent notable discovery of layered intrusions in North largely troctolitic (~ 84%) Kiglapait intrusion (~ 560 km?), which
America comprises the so-called ~2.7-2.6 Ga ‘Ring of fire’ or ‘McFaulds displays spectacular layering on various scales (see Morse, 2015 and
Lake Area’, which represents a mineralised greenstone belt containing references therein). The plumbing systems to some of the Nain layered
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intrusions host important Ni-Cu sulphide deposits, notably at Voisey’s
Bay (~ 125 Mtat 1.66% Ni and 0.88% Cu; Li et al., 2000; Naldrettet al.,
2000).

The ~0.56 Ga Sept Iles intrusion of the Central Iapetus Magmatic
Province (CIMP; Higgins and Van Breemen, 1998; Emst and Bell, 2010)
is a large (~ 5,000 km?) layered body that is characterised by a massif-
type anorthositic upper portion that is underlain by a well-layered
troctolitic-gabbroic portion (Higgins, 1991, 2005). Sept Iles hosts a
potentially economic resource of Fe-Ti-V-P, in the form of twenty-four
~1-m-thick Fe-Ti oxide layers and a ~ 200-m-thick layer of apatite-
rich gabbro (Cimon, 1998; Namur et al., 2012).

Layered intrusions of the Grenville Province have been studied by
Sappin et al. (2009, 2011) notably in the Portneuf-Mauricie Domain.
The intrusions are mostly relatively small (< 50 km?) and may host Ni-
Cu sulphides (e.g, at Lac Edouard and Kennedy) and vanadiferous
titanomagnetite (at Lac Fabien, Maier, 2021).

Several notable layered intrusions occur on the east coast of
Greenland, the most iconic of which being the ~0.55 Ga Skaergaard
intrusion of the NA-LIP (~ 70 km?). This is arguably the birthplace of
modermn academic studies on igneous petrology and layered intrusions
(Wager and Brown, 1968), due to spectacular exposure and preserva-
tion. Features that are particularly noteworthy include: (i) comb layer-
ing along the margins of the intrusion (McBirney and Noyes, 1979), (ii)
rhythmic layering in the marginal border group (Conrad and Naslund,
1989), (iii) deformation of layering by dislodged roof fragments (Irvine
et al., 1998), (iv) trough layering that may reflect magmatic granular
flow (Vukmanovic et al., 2018), (v) an evolved Sandwich Horizon that
represents the boundary between the Upper Border Series and the rocks
that formed through magmatic sedimentation (McBirney, 1996), and
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(vi) Pd-Au-Cu-rich and Ni-Pt-poor sulphide mineralisation of the Plati-
nova Reef, which may represent the best example of sulphide upgrading
via dissolution (Andersen et al., 1998; Godel et al., 2014; Holwell and
Keays, 2014; Nielsen et al., 2015; Mungall et al., 2020).

In addition, Greenland hosts several layered alkaline intrusions in
the Gardar Province. The most studied is the ~1.13 Ga Ilimaussaq
intrusion (~ 136 km? ~ 1160 + 2.3 Ma) that comprises a series of
augite syenite and nepheline syenite (Ferguson, 1964; Marks and Markl,
2001), the origin of which remains debated (see Marks and Markl,
2015). Layered alkaline intrusions comprise relatively exotic rock types,
including lujavrite, kakortokite, naujaite, (Na)-foyaite, and pulaskite,
which are described in detail by Sorensen (2006) and Marks (2015). The
formation of these unusual rock assemblages is thought to reflect the low
silica and water activity of the parent magmas, allowing extremely
differentiated melts to become enriched in alkalis, halogens, and high-
field-strength elements (Marks 2015).

3.6. Oceania and Antarctica

Oceania hosts 86 layered intrusions in our compilation (15.3% of the
total), ranging in age from 3016 to 90 Ma, extent from 0.16 to 6,600
km?, and thickness from 0.1 to 11 km (Fig. 7). Several large layered
intrusions occur in the Yilgarn and Pilbara cratons of western Australia.
Other important clusters of intrusions occur in the Halls Creek Orogen
located along the eastern margin of the Kimberley craton, and in the
Musgrave province of central Australia (namely the intrusions of the
Giles event). Few layered intrusions are reported from Antarctica, the
most important being the Dufek intrusion.

One of the largest and economically most important layered
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Fig. 7. Enhanced area of Fig. 1 showing the distribution of layered intrusions in Oceania coloured by their age and sized by their arial extent (km?). The spatial
distribution of cratons is that of Blecker (2003), which have been buffered to 500 km. Giant > 10,000 km?, large > 1,000 km? medium > 100 km?, and small <

100 km?.
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intrusions of Australia is the ~2.8 Ga Windimurra (2,500 km?) intru-
sion, which is located in the Yilgarn craton together with the adjacent
Namdee, Barramdi, Yalgowra, and Youanmi intrusions (Ivanic et al.,
2010). Windimurra comprises a thick (< 11 km) sequence of mafic-
ultramafic rocks displaying >100-m-thick megacyclic units that
exhibit modal fractionation as well as several compositional reversals
interpreted to reflect multiple magma replenishment (Ahmat, 1986;
Ivanic et al., 2010). The intrusion hosts economically important mag-
netitites at the base of its upper gabbronoritic zone (~ 210 Mt at 0.5%
V,05) and is considered prospective for PGE- and Cr-rich layers in its
mafic-ultramafic lower zone (Ivanic et al., 2010; Langford et al., 2020).
Fe-Ti-V mineralisation has also been identified in the neighbouring
Barrambie (— 40 Mt at 15% TiO, and 0.78% V,0s) and Younami in-
trusions (185 Mt at 0.33% V,0s; Ivanic et al., 2010).

Other mafic-ultramafic layered intrusions of the Yilgam craton
include the ~2.4 Ga Jimberlana and Nova-Bollinger intrusions. The
Jimberlana intrusion is part of the Widgiemooltha swarm/LIP (e.g.,
Pirajno and Hoatson, 2012; Emst et al., 2019) and hosts several macro-
rhythmic ultramafic layers in its lower portion, each of which display
basal whole-rock and mineral compositional reversals as well as sul-
phide accumulation at their base (Campbell, 1977; Keays and Campbell,
1981). The model of in situ crystallisation of cumulates (Campbell, 1977)
was largely developed at Jimberlana and subsequently applied by the
author to Bushveld and Stillwater. The recently discovered Nova-
Bollinger intrusive suite belongs to the ~1.3-1.2 Ma Recherche Super-
suite (Bennett et al., 2014; Maier et al., 2016b, that is located within the
Albany Fraser orogen along the southern margin of the Yilgam craton. It
hosts a significant Ni-Cu deposit (13.1 Mt at 2.0% Ni and 0.8% Cu;
Bamnes et al., 2020a) formed in response to extensive replacement of
country rocks during high-grade metamorphism, analogous to Savannah
(Barnes et al., 2020a; Le Vaillant et al., 2020). The Nova discovery
triggered a boom in exploration along the margins of the Yilgarn craton,
contributing to the discovery of several now discoveries (eg Plato,
Octagonal, Chalice).

The largest cluster of layered intrusions (> 20 bodies; few km? to
>3000 km?) in Australia belongs to the ~1.09-1.04 Ga Giles Event of the
Warakurna LIP in the Musgrave Province of central Australia (Pirajno
and Hoatson, 2012). Amongst the intrusions are well-known bodies such
as the PGE mineralised Wingellina Hills (Ballhaus and Glikson, 1989)
and the Ni-Cu mineralised Nebo Babel in Western Australia (392 Mt at
0.3% Ni and 0.33% Cu; Seat et al., 2007), as well as Kalka, Ewarara and
Gosse Pile in South Australia (Goode, 1970; 1977; Goode and Moore,
1975). Mantamaru is one of the largest intrusions on the planet (~
3,400 km?), preserved in the form of three distinct fragments named
Jameson, Blackstone and Bell Rock, all of which contain vanadiferous
titanomagnetite layers, locally with elevated PGE and apatite (Maier
et al., 201 5a; Karykowski et al., 2017b). Other notable intrusions of the
Giles event include the Cu-Au enriched Halleys intrusion, as well as
Pimtirri Mulari, Cavenagh Range, Morgan Range, and Saturn (Maier
et al., 2015¢). The Giles Event is of considerable petrological interest
because although much of the rifting, intrusion emplacement, and uplift
occurred between ~1078-1075 Ma, magmatism lasted for >50 million
years, which led Smithies et al. (2015) to propose that magmatism was
the result of plate-driven rather than plume-driven magmatism.

Other important clusters of intrusions occur along the western
margin of the Pilbara craton, including Dingo, Sherlock, Andover, Radio
Hill, and, most notably, the ~2.9Ga Munni Munni Complex. Munni
Munni is a large (~ 225 km?) and thick (> 5.5 km) layered body,
comparable in igneous stratigraphy to the Great Dyke of Zimbabwe
(Barnes and Hoatson, 1994). Both contain so-called offset PGE reefs
(Great Dyke: Prendergast and Keays, 1989; Munni Munni: Barnes,
1993), which are characterised by a ~ 5 m offset between peak PGE
grades from peak S, Ni, and Cu values.

Another economically important intrusion is the ~1.84 Ga Savannah
(formerly Sally Malay) intrusion (~ 2 km?) that comprises five
(Savannah, Savannah North, Subchamber-D, Dave Hill, and Wilson’s

15

Earth-Science Reviews 220 (2021) 103736

Creek) layered bodies (Hoatson and Blake, 2000; Le Vaillant et al., 2020)
hosted in the Halls Creek Orogen along the eastern margin of the Kim-
berly craton. This intrusion is interesting in that it is one of few known
mineralised intrusions of bladed dyke morphology (e.g., Eagle’s Nest of
Ontario and the Expo Intrusive Suite of Cape Smith; Barnes and Mungall,
2018).

An unusual layered intrusion in central Australia is the ~1.13 Ga
Mordor alkaline igneous complex (~ 35 km?) that is composed of a
coarse-grained syenite (~ 60% of the complex) enveloping a mafic-
ultramafic layered intrusion (~ 40% of the complex; Bames et al,
2008). The latter consists predominantly of phlogopite-rich pyroxenites
and syenites with subordinate pyroxenites and wehrlites thought to have
crystallised from a hydrous alkalic magma of lamprophyric affinity
(Langworthy and Black, 1978; Barnes et al., 2008). Stratiform PGE reef-
style mineralisation in the ultramafic portions has been described in
detail by Barnes et al. (2008) whereas blebby Cu-(Au-PGE-Ni) sulphides
in mafic syenites (or ‘shonkinite’) are described in detail in Holwell and
Blanks (2020). The latter authors proposed that the metals are derived
from the SCLM, analogous to the model for the Okiep intrusions of South
Africa (Maier et al., 2012).

New Zealand hosts several arc-related Triassic layered intrusions (e.
&, Riwaka, Otu, Pahia, Greenhills, Knobs, and Lone Stag) that tend to
contain amphibole as a primary cumulate phase and thus appear to have
crystallised from a relatively hydrous basaltic magma (~ 11-13 wt%
MgO) of calc-alkaline affinity (Spandler et al., 2005). The Riwaka
Complex consists of out-of-sequence intrusive sheets characterised by
sharp and cross-cutting boundaries, with subordinate evidence for
crystal accumulation and modal layering (Turnbull et al., 2017). The
intrusion contains Ni-Cu-PGE sulphides that occur predominantly in
hornblende-bearing clinopyroxenite (2.2% Ni, 2.1% Cu, and 1 g/t PGE
from grab samples; Turnbull et al., 2017). Localised enrichments in PGE
have also been reported in the lower units of the Greenhills (Spandler
et al., 2000) and Pahia (Ashley et al., 2012) intrusions. Spandler et al.
(2000) proposed that the PGM in the basal dunite at Greenhills precip-
itated directly from a low-K island-arc tholeiite. Several placer PGE
deposits (e.g., Orepuki) are proximal to the Greenhills and Pahia in-
trusions (Spandler et al., 2000; Ashley et al., 2012) suggesting the PGM
likely derived from the intrusions and that further PGE reefs may be
discovered in the area.

Only few layered intrusions have been reported in Antarctica, the
largest of which being the ~1.8 Ga Dufek intrusion (> 6,600 km?) of the
Ferrar Province (Ford, 1983; Kistler et al., 2000; Ferris et al., 2003).
Discovered in 1957, the ~7-8-km-thick Dufek intrusion consists of sub-
horizontal and alternating layers (~ few mm to 10s of metres in thick-
ness) of gabbro, gabbronorite, anorthosite, titanomagnetite gabbronor-
ite, gabbroanorthosite, and pyroxenite (Semenov et al., 2014). Despite
its size, no economic Ni, Cu, PGE, Ti, V, and Cr concentrations are known
(Ford, 1983). Other intrusions belonging to the Karoo LIP are much (e.g.,
Muran and Utpostane).

3.7. South America

South America has 37 known layered intrusions (6.4% of the
compilation), ranging in age from 3100 to 501 Ma, extent from 0.55 to
800 km?, and thickness from 0.1 to 5 km (Fig. 8). The relative paucity of
intrusions is likely related to lack of exposure and access in the
Amazonian and other cratons and the relatively recent onset of sys-
tematic academic study of these systems, from the early 1990s. Among
the most studied intrusions are Niquelandia and neighbouring intrusions
(e.g., Cana Brava and Barro Alto), as well as Rio Jacaré, Mirabela and
Palestina in eastern Brazil, and Rincon del Tigre in Bolivia.

Niquelandia is the largest (— 800 km2; -~ 765 + 8 Ma) of three
layered igneous complexes (the others being Cana Brava and Barro Alto)
exposed in the Neoproterozoic Brasilia Belt (Ferreira-Filho et al., 1994;
Ferreira Filho et al., 1995; Pimentel et al., 2004). The intrusion is un-
usual since it represents two layered complexes that have been
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Fig. 8. Enhanced area of Fig. 1 showing the distribution of layered intrusions in South America coloured by their age and sized by their arial extent (km?). The spatial
distribution of cratons is that of Blecker (2003), which have been buffered to 500 km. Giant > 10,000 km?, large > 1,000 km? medium > 100 km?, and small <

100 km?.

tectonically juxtaposed along a major shear zone: the ~1.25 Ga Upper
Layered Series (interlayered leucotroctolite, anorthosite, gabbro, and
pyroxenite) and the ~0.79 Ga Lower Layered Series (cyclic dunite,
harzburgite, websterite, and gabbronorite; Pimentel et al., 2004).
Layered peridotites in the lower series host cm-scale chromite layers that
are enriched in PGE (Garuti et al., 2012). Moreover, Garuti et al. (2012)
report on the occurrence of secondary PGM that re-precipitated during
post-magmatic serpentinization and lateritic weathering.

The ~2.1 Ga Jacurici Complex (~ 3.5 km?) is a heavily meta-
morphosed layered intrusion located in the Sao Francisco craton and
contains the largest chromite deposit in Brazil (~ 4.5 Mt at 30-40%
Cr,03; Marques et al., 2017; Friedrich et al., 2020). The main chromite
seam is 5-8 m thick, which is remarkable in view of the relatively modest
thickness of the intrusion (~ 300 m). It has been proposed that chromite
crystallised from a high-MgO parent magma in response to contamina-
tion with country rock marble and calc-silicate. Chromite was further
concentrated by granular flow (Marques et al., 2017).

Three further examples of economically important layered intrusions
are Rio Jacaré (~ 84 km?; ~ 2640 + 5 Ma), Mirabela (~ 7 km?; ~ 2065
Ma), and Luanga (~ 21 km?; ~ 2763 + 6 Ma). Rio Jacaré contains three
<23-m-thick V-rich magnetite bodies, one of which being located in
pyroxenite of the lower portion of the intrusion (Gulcari A; 0.08 Mt at
2.2% V5,05 and 1.6% TiO,) and two in layered gabbros of the upper
portion (Gulcari B and Novo Amparo; 54 et al., 2005). These magnetite
bodies also show elevated Pt (160 ppb), and Pd (120 ppb) contents,
hosted in disseminated sulphides, bismuthides, and antimonides that are
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interpreted to have co-precipitated with Fe-Ti oxides (Sa et al., 2005;
Barkov et al., 2015). The funnel-shaped Mirabela intrusion comprises a
lower ultramafic zone of dunite, harzburgite, and pyroxenite (—~800 m
thick) and an upper mafic zone of gabbronorite and norite (> 1 km thick;
Barnes et al., 2011; Knight et al., 2011; Ferreira Filho et al., 2013).
Disseminated sulphides with unusually high Ni tenors (~15-25%) are
located at the contact between the ultramafic and mafic zones (Barnes
etal., 2011). Luanga is one of several layered intrusions (others include
Lago Grande and Vermelho) hosted in the Carajas greenstone belt,
eastern Amazonia craton (Mansur and Ferreira Filho, 2016). The
medium-sized intrusion (~ 21 km?) comprises an ~800-m-thick ultra-
matfic zone of serpentinised peridotite, a ~ 750-m-thick transition zone
of orthopyroxenite, norite, harzburgite and several <60-cm-thick chro-
mitites, and a ~ 2-km-thick mafic zone comprised largely of noritic
rocks (Mansur and Ferreira Filho, 2016). Several PGE-rich mineralised
horizons are documented in the transition zone, including the so-called
sulphide zone (142 Mt at 0.11% Ni and 1.24 g/t Pt -+ Pd + Au), which
represents a 10-50-m-thick interval of disseminated sulphide located at
the top of the ultramafic zone (Mansur et al., 2020).

The ~1.1 Ga Rincon del Tigre intrusion, part of the Rincén del Tigre-
Huanchaca LIP of Bolivia, is a relatively large (~ 720 km?) and thick (~
4.6 km?) layered sill that is surrounded by several smaller mafic-
ultramafic bodies (Teixeira et al., 2015; Choudhary et al., 2019). A
geophysical survey delineated a significant gravitational anomaly to the
north of the intrusion, which is interpreted to represent a feeder conduit
(Litherland et al., 1986). Although no economic mineralisation has been
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identified, an 80-185-m-thick zone of sub-economic disseminated sul-
phides has been recorded in gabbro and magnetite gabbro of the upper
portion of the intrusion (Prendergast, 2000; Teixeira et al., 2015).

4. Intrusion size and morphology

The average surface area of layered intrusions in our compilation is
~444 km?, but in almost all cases the original size and morphology of
intrusions is obscured by late- to post-magmatic subsidence, tectonism,
and/or erosion, to the point where intrusions may be fragmented into
several blocks (e.g, Mantamaru, Australia; Portimo and Koillismaaa,
Finland; Monts de Cristal, Gabon). In this compilation, the surface area
(km?) of known intrusions ranges from the giant Bushveld Complex (>
100.000 km?) to numerous small intrusions measuring <1 km?. Some of
the largest layered intrusions are annotated in Fig. 1, which in addition
to the Bushveld Complex, include Molopo Farms in Botswana (~ 13,000
km?), Chilas in Pakistan (~ 12,000 km?), Dufek in Antarctica (> 6,600
km?), Duluth in Canada (~ 5,000 km?), and Sept Iles in Canada (~
5,000 km?).

The stratigraphic thickness of intrusions ranges from a few 10s of
meters to 12 km (Kabye of Benin, Jijal of Pakistan, and Windimurra of
Australia being amongst the thickest). Again, deformation and incom-
plete exposure make determining the original thickness of intrusions
challenging. Cruden et al. (2018) proposed that large layered intrusions
appear to be capped at a thickness of ~10 km (i.e., a third to a quarter of
the continental crust) and that their growth adheres to a lengthening-
dominated regime, whereby their length/thickness ratio (L/T) in-
creases with increasing volume.

The Skaergaard intrusion of Greenland is an example of a layered
intrusion for which a putatively broadly representative cross section and
stratigraphy can be deduced from outcrop exposure (McBirney, 1996).
Another example is Kemi, which has been exposed by drilling, revealing
a remarkable thickening of chromitite seams from the margins to the
centre (Alapieti et al., 1939). However, the upper contact of Kemi is
defined by an erosional unconformity, so its most evolved portion is
missing.

The size distribution of the layered intrusions adheres to an expo-
nential function (Fig. 9), analogous to some ore deposit classes, e.g., gold
(Bierlein et al., 2006; Groves and Bierlein, 2007). The unusually large
size of the Bushveld Complex could be related to an unusually large
mantle plume (referred to as the ‘Bushveld superplume’; Fiorentini
et al., 2020 and references therein). Altemnatively, the large size could
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result from magma emplacement into the sub-horizontal Transvaal
sedimentary basin, including into and above one of the world’s largest
dolomite platforms. Emplacement caused crustal subsidence accompa-
nied by syn-magmatic devolatilization and volume reduction of the
sediments (Wallmach et al., 1989), potentially facilitating progression
and expansion of sills. Most other intrusions face a more severe ‘space
problem’ requiring displacement (ie., uplift and lateral compression),
removal (ie., ejection in impact craters), and/or ingestion (Le., assimi-
lation and stoping) of crustal rocks during the emplacement of the
magma (O'Hara, 1998).

5. Composition of parent magmal(s)

Magmas parental to layered intrusions include komatiite (e.g.,
Bushveld, Bravo and other intrusions in the Raglan belt, intrusions in the
Barberton greenstone belt), magnesian basalt (e.g, Great Dyke, Penikat,
Koitelainen, Akanvaara), picrite (e.g, Pilgujarvi, Yoko-Dovyren),
tholeiite (e.g., Windimurra, Chilas, Kap Edvard Holm), (ferro)basalt (e.
&, Kabye, Sept Iles, Fongen-Hyllingen, Panzhihua), and alkali basalt (e.
&, Coldwell, Mordor). Mantle sources considered include the astheno-
sphere (e.g, Koitelainen and Akanvaara, Hanski et al., 2001) and the
SCLM (e.g., CAOB intrusions, Zhang et al., 2011; Zhang et al., 2012b).
The geochemical signals of SCLM and crustally contaminated astheno-
spheric magma are difficult to distinguish, and thus for some intrusions
(e.g, Bushveld Complex), both have been suggested (Maier et al., 2000;
Maier and Barnes, 2004; Maier et al., 201 6a). Knowing the composition
of the parent magma to layered intrusions is important as it may provide
constraints on tectonic setting and prospectivity. For example, if the
parent magma is relatively S-rich (and thus close to saturation in sul-
phide melt), PGE reefs may be expected at stratigraphically lower por-
tions of intrusions than if the parent magma is S-poor. If the magma is
relatively PGE poor (possibly due to small degree mantle melting, or
equilibration of the magma with sulphide melt during crustal ascent, or
because the magmatism is early Archean in age), economic PGE reefs are
unlikely. If the magma is relatively evolved, it is unlikely to be pro-
spective for chromite (but see the Akanvaara and Koitelainen chromi-
tites hosted by relatively evolved rocks; Mutanen, 1997). The nature of
the parent magma may be assessed through: (i) the composition of fine-
grained chilled margins (e.g., Bushveld Complex, Wilson, 2012; Maier
et al., 2016a), (ii) the composition of comagmatic extrusive rocks, sills,
or dykes (e.g., Bushveld Complex; Bames et al., 2010), (iii) reverse
modelling of cumulate rocks (e.g, Godel etal., 2011; Tanner et al., 2014;
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YVang et al., 2019), and/or (iv) calculation of the average composition of
the intrusion through addition of all layers (e.g., Akanvaara; Mutanen
1997).

6. Ore deposits of layered intrusions

The bulk of the world’s PGE resources are extracted from stratiform
mineralised horizons (known as ‘reefs’) typically located near the
transition from mafic to ultramafic rocks of layered intrusions (Naldrett,
2004; Maier, 2005; Mungall and Naldrett, 2008; Godel, 2015). In
addition, layered mafic-ultramafic intrusions can host economically
important concentrations of base metal sulphides (Ni-Cu-Co), typically
but not exclusively near the basal contact, chromite (Cr-V), typically in
the lower portion of intrusions, vanadiferous titanomagnetite and
ilmenite (Fe-Ti-V) and/or phosphates (P) in the upper portion, whereas
layered alkaline intrusions (such as those in the Gardar Province) can be
host to significant REE-HFSE resources (Schonenberger et al., 2008;
Marks et al., 2011). Moreover, some intrusions host non-magmatic re-
sources, including (i) Ni laterites (e.g., Kapalagulu, Musongati, Wing-
ellina Hills), (ii) asbestos in serpentinised ultramafic cumulates (e.g,
many of the intrusions in the Barberton greenstone belt), (iii) andalusite
in metamorphic aureoles (e.g, Bushveld Complex at Thabazimbi and
Lydenburg), and (iv) building stone (e.g, Bushveld Black Granite).

In the following sections, we briefly outline the petrogenesis of
important ore deposits present in layered intrusions. The global and
temporal distribution of layered igneous intrusions are presented in
Figs. 10 to 17. For a more in-depth discussion, the reader is referred to
reviews by Naldrett (2004), Maier (2005), and Godel (2015).
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6.1. PGE reefs

Prior to the discovery of PGE reefs in layered igneous intrusions
(Merensky Reef of the Bushveld Complex in 1924 and JM reef of Still-
water in 1974), the world’s PGE production was sourced from placer
deposits associated with Ural-Alaskan-type intrusions (Tolstykh et al.,
2005). Today, PGE are mined as the principal product in just four
layered intrusions (Bushveld Complex, Great Dyke, Stillwater, and Lac
des Iles). Most of the remainder of global PGE production comes from
numerous Ni-Cu mines where the PGE are by-products (notably Nor-
il’sk-Talnakh in Siberia which supplies the bulk of global Pd). In view of
the importance of PGE in autocatalysts and hydrogen fuel cells, amongst
other uses, this dependency on relatively few sources makes the PGE
critical metals (e.g, European Union).

In the Earth’s mantle, Pd and Cu are predominantly concentrated in
trace sulphides and will be liberated once all the sulphides have been
dissolved, requiring a minimum of 15-20% partial melting (Naldrett,
2004; Arndt et al., 2005; Bames and Lightfoot, 2005). The fact that Pd/
Pt and Pd/IPGE ratios in mantle-derived magmas are much higher than
in chondrites indicates that IPGE and Pt are more compatible than Pd
during asthenospheric melting, likely due to sequestration with spinel
and metal alloys (e.g, Barnes et al., 2015). This is reflected in the
complementary composition of SCLM derived xenoliths which have
average Pd/Pt and Pd/IPGE <1 (Pearson et al., 2004). Bushveld magmas
appear to be somewhat of an anomality, in that they have lower Pd/Pt
(~ 0.7) than most other magmas (Barnes et al. 2015). It has been sug-
gested that this is the result of melting of SCLM (Maier and Barnes, 2004;
Mungall and Brenan, 2014), but the komatiitic chilled margin of the
complex also shows elevated Pt/Pd yet cannot be modelled by SCLM

Fig. 10. Global distribution of layered igneous intrusions coloured by their mineral occurrences and sized by their arial extent (km?). The spatial distribution of

cratons is that of Bleeker (2003), which have been buffered to 500 km.
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melting as it has too low Si0O, and K,O (Maier et al., 2016a). to attain saturation in sulphide melt it must be compositionally moditied

Experimental data have shown that the sulphide melt solubility of through processes such as fractional crystallisation, magma mixing,
basalt is inversely correlated with pressure (Mavrogenes and O'Neill, and/or crustal contamination (e.g.,Keays and Lightfoot, 2010; Ripley
1999). As a result, basaltic melts are typically undersaturated in sul- and Li, 2013). Once saturation in sulphide melt has been attained, the
phide melt during emplacement in the upper crust. For a basaltic magma melt may segregate and interact with the silicate magma, where the
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mass ratio of these two phases is denoted as the R factor (Campbell and
Naldrett, 1979). The chalcophile elements, and particularly the PGE
have extremely high partition coefficients with regard to the sulphide
melt (possibly >10°, Mungall and Brenan, 2014) and hence, systems
with high R factors (high ratios of silicate:sulphide melt) are favourable
for the formation of PGE-rich deposits. Lastly, to create an economically
important PGE reef, PGE-enriched sulphide droplets must concentrate
into a narrow horizon, such that they can be effectively mined at a low
stripping ratio.

Most PGE reefs show little evidence for contamination. For example,
S isotopes are in the mantle range at most Bushveld reefs (Sharman et al.,
2013), Great Dyke (Maier et al., 2015a) and Stillwater (Ripley et al.,
2017). Some of the earliest models for the formation of PGE reefs invoke
the gravitational settling of sulphide melt that exsolved in response to
the mixing of resident magma with a relatively more primitive,

20

replenishing magma (Campbell et al., 1983; Eales et al., 1990). The
turbulence associated with replenishment resulted in high R factors and
thus, PGE-enriched sulphides. However, Li and Ripley (2005) showed
that magma mixing can only trigger sulphide melt saturation if the
mixing partners are nearly saturated in sulphide melt. This likely makes
the model of magma mixing inappropriate for the Bushveld PGE reefs as
Bushveld parent melts are strongly sulphide undersaturated (Barnes
et al., 2010). Altematively, sulphide melt saturation could have been
achieved by fractionation. This model is consistent with the location of
most PGE reefs near the transition from ultramafic to mafic rocks. Some
PGE reefs occur in the upper portions of intrusions (e.g., Stella, Koite-
lainen and Akanvaara, Skaergaard), implying that the parent magmas
were initially highly undersaturated in sulphide melt, or that sulphide
melt saturation was delayed, perhaps due to Fe enrichment of the
magma (Ripley and Li, 2003) or high oxygen fugacity favouring S
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speciation as sulphate (Jugo, 2009). However, if sulphide melt satura-
tion were triggered by fractionation the question arises why the sul-
phides are typically concentrated near the ultramafic base of cyclic
units. As a possible solution, Maier et al. (2013a) suggested that sul-
phide- (and chromite-rich) layers may form by hydrodynamic sorting,
kinetic sieving and percolation of dense sulphide melt in a mobilised
crystal slurry.

Several authors have proposed that layered intrusions may represent
stacks of out-of-sequence sills and that PGE reefs may derive from the
emplacement of sulphide-bearing and/or PGE-enriched magmas onto
(or into) a pre-existing cumulate pile (Lee and Butcher, 1990; Scoon and
Teigler, 1994; Manyeruke et al., 2005; Mitchell and Scoon, 2007;
Mungall et al., 2016).

Some studies have suggested that PGE in the reefs were transported
by volatiles (e.g., Schiffries, 1982; Ballhaus and Stumpfl, 1986). Bou-
dreau etal. (1986) showed that PGE Reefs at the Bushveld and Stillwater
complexes are spatially associated with chloroapatite and Cl-bearing
phlogopite. They hypothesised that PGE were transported as chloride
complexes in magmatic-hydrothermal fluids exsolved from underlying
crystallising cumulates that were redissolved in stratigraphically higher
and fluid-undersaturated interstitial melt, resulting in the precipitation
of PGE-sulphides and/or PGM (Boudreau, 1988, 2019). Barnes and Liu
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(2012) have shown that Pd and, less so, Pt may be transported in hy-
drothermal fluids as bisulphide or chloride complexes under certain
conditions. Holwell et al. (2017) suggested that PGE may be mobile
following extreme desulphurisation of primary magmatic sulphides.
Examples for hydrothermal PGE enrichment occur at Salt Chuck, Alaska,
which isa small (~ 11 km?) body that is considered a Ural-Alaskan-type
mafic-ultramafic complex (Watkinson and Melling, 1992). Sulphides at
this locality are typical of those precipitated from hydrothermal fluids in
that they comprise extremely low Ni and IPGE concentrations, high Cu
and Au concentrations, and high Pd/Pt values (Watkinson and Melling,
1992; Loney and Himmelberg, 1992; Thakurta and Findlay, 201 3).

A problem with the hydrothermal model of PGE reef formation is
that the reefs are typically not only enriched in Pt and Pd, but also in
IPGE, yet most of the available data indicate that the IPGE are immobile
in fluids (Barnes and Ripley, 2016). An alternative scenario may be the
one proposed by Nicholson and Mathez (1991) and Mathez (1995)
whereby upwelling magmatic vapour/fluid/melt reacted with partially
molten, sulphide and PGE bearing, cumulates triggering recrystallisa-
tion and the formation of pegmatoid bracketed by chromitites and
anorthosite.

Latypov and colleagues have proposed that the PGE reefs (and their
often spatially associated chromitites; discussed below) of the Bushveld,
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Rum, and Lukkulaisvaara intrusions formed via in situ crystallisation
along the temporary floor of the intrusions (Latypov et al.,, 2013, 2015,
2017). The required high R factors were achieved when sulphides that
precipitated at the top of the cumulate pile (perhaps due to erosion of the
substrate) sequestered PGE from magmas streaming past the crystal-
lisation front. The key evidence proposed is the persistence of PGE-rich
chromitite seams of broadly uniform thickness in potholes (including
their inclined and overhanging walls and undercuttings), which cannot
be explained by traditional models of gravitational settling.

6.2. Magmatic Ni-Cu-(PGE) sulphides

While layered intrusions are best known for their PGE, chromite and
magnetite reefs, many also host disseminated, net-textured, and/or
massive sulphides. The deposits occur most commonly at or near the
base of the intrusions and thus, are commonly referred to as contact-
style mineralisation (Naldrett, 2004; Bames and Lightfoot, 2005;
MecDonald and Holwell, 2011). The reason for the basal setting of the
deposits is two-fold: First, the formation of significant magmatic sul-
phides requires addition of external S to the magma which is most
readily achieved at the contacts of intrusions (Keays and Lightfoot,
2010; Ripley and Li, 2013; Robertson et al., 2015). Second, the basal
portions of intrusions usually erystallise from relatively unevolved, Ni-
rich magma.

Many of the largest Ni-Cu-(PGE) deposits are hosted in relatively
small layered intrusions (e.g., Noril’sk-Talnakh, Pilgujérvi and other sills
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in the Pechenga belt, Voisey’s Bay, Uitkomst, Nebo-Babel, Nova, CAOB,
Finnish Ni belt intrusions) that are interpreted to represent magma
feeder conduits. Geochemical and isotopic studies have revealed that in
most of these deposits, addition of external S has played a key role in ore
genesis. The nature of the contaminant can be diverse, including evap-
orates at Noril’sk-Tanakh (Grinenko, 1985), graphitic shales at Duluth
(Theriault and Barnes, 1998), paragneiss at Voisey’s Bay (Ripley et al.,
2002), orthogneiss at Nebo-Babel (Seat et al., 2009), (v) dolomite at
Uitkomst (Li et al., 2002), (vi) granite and shales at Eagle (Thakurta
et al., 2019), and (vii) juvenile crust at Huangshannan (Mao et al,
2016). In the Platreef of the Bushveld Complex, a range of contaminants
has been proposed including carbonates, sulphidic shale, and granitic
gneiss (Barton et al., 1986; Harris and Chaumba, 2001; Maier et al.,
2008; Ihlenfeld and Keays, 2011; McDonald and Holwell, 2011;
Yudovskaya et al., 2017). As significant contamination can resultin low
R factors which are detrimental to high metal tenors, another key
component in the formation of the conduit hosted Ni-Cu deposits is
entrainment of the magmatic sulphides in the flowing magma (e.g.,
Voisey’s Bay; Li and Naldrett, 1999).

A number of magmatic sulphide deposits associated with layered
intrusions possess unusually high metal tenors (e.g., Kevitsa, Yang et al.,
2013, Luolavirta et al., 2018; Mirabela; Barnes et al., 2011). These high
tenors may reflect the assimilation of ‘proto-ore’ left from antecedent
pulses of magma by new fluxes of chalcophile-undepleted magma
(Maier and Groves, 2011). Maier and Barmnes (2010) showed that sul-
phide ores at Kabanga were characterised by crustal-like 5°*S values, yet
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des Iles (Hinchey et al., 2005). the Madagascan intrusions, Kettara of Morocco, and Nurali of the
Russian Urals Belt are <1 Ga in age.

The origin of chromitite seams has been explained by a range of
diverse processes, including (i) fluctuations in intensive parameters (e.g.,
Ulmer, 1969; Cameron, 1980; Lipin, 1993); (ii) crustal contamination
and/or magma mixing (e.g, Irvine, 1976, 1977; Alapieti et al., 1939;
Spandler et al., 2005); (iii) metasomatism and recrystallisation of
pyroxene-rich rocks (e.g, Nicholson and Mathez, 1991; Boudreau.,
2016; Mathez and Kinzler, 2017), (iv) thermochemical erosion and in
situ crystallisation (e.g., O'Driscoll et al, 2010; Latypov et al., 2013,
2017; Friedrich et al, 2020), (v) intrusion of chromite-enriched
magmas/slurry (Voordouw et al., 2009), and (vi) hydrodynamic sort-
ing of chromite bearing crystal slurries (e.g,, Mondal and Mathez, 2007;
Maier et al., 2013a; Forien et al., 2015).

6.3. Chromitites

Chromitite seams in layered intrusions host most of the world’s
chromite resources. The deposits occur as stratiform monomineralic
seams (e.g, Bushveld Complex, Great Dyke, and Stillwater), with Cr,O3
grade ranging from ~20 wt% (e.g, Rum) to ~55 wt% (e.g,, Burakovsky
and Campo Formoso), and thicknesses from <1 cm to several dm. In
some cases, the seams may reach and exceed thicknesses of several
metres (notably at Kemi, Uitkomst, Jacurici, and Ring of Fire). The
seams are usually located in either the lower, ultramafic portions of
layered intrusions and/or near the transition from mafic to ultramafic
rocks. Exceptions include Koitelainen and Akanvaara where the chro-
mitites are in the central to upper portion of the intrusions. Most seams
are enriched in PGE relative to the silicate host rocks and some seams are
mined primarily for PGE, such as the UG2 of the Bushveld Complex
(Mudd et al., 2018).

Most of the layered intrusions that host chromite deposits are >2 Ga,
including the chromite occurrences of Russia (Pados-Tundra, Bur-
akovsky, and Imandra), India (Sukinda and Nuasahi), Finland (Koite-
lainden, Kemi, and Akanvaara), and Brazil (Jacurici, Formoso, and

i. Early studies of the Bushveld chromitites invoked variations in
fO, of the magma as a control on chromite precipitation (e.g.,
Cameron and Desborough, 1969; Ulmer, 1969). Fluctuations in
fO,, perhaps in response to episodic magma influx, has also been
proposed to explain chromitites of the Great Dyke of Zimbabwe
(Wilson, 1982) and Sukinda intrusion of India (Chakraborty and
Chakraborty, 1984). Others have argued that the lateral
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persistence of the chromitites is more consistent with fluctuations
in total pressure exerted on a magma with a composition near the
olivine-chromite phase boundary (Osborn, 1980; Cameron,
1980), e.g., during episodes of replenishment and ejection (Lipin,
1993). More recently, Latypov et al. (2018) proposed that
basaltic magmas may become solely saturated in chromite during
depressurisation upon magma ascent through the upper crust.
The authors performed polybaric crystallisation simulations on
Bushveld melts represented by fine grained sills of Bames et al.
(2010) and Cawthomn (2015) using the MELTS programme
(Ghiorso and Sack, 1995). However, it could be argued that the
approach taken, i.e., the incremental and iterative modification of
the major element contents of a fine-grained rock presumed to
represent a melt, to identify a pressure interval within which
chromite is the sole liquidus phase, is overly speculative.

. Irvine (1976) proposed that a magma crystallising olivine (+
chromite) may be shifted into the chromite-only stability field
during the assimilation of siliceous country rock. This model was
used to explain olivine-chromite-orthopyroxene cumulate as-
semblages of the Muskox intrusion and it has recently been
applied to explain the formation of chromitites in the Ring of Fire
intrusions of Canada (Woods et al., 2019). In a revised model,
Irvine (1977) proposed mixing of fractionated tholeiitic magma
with a more primitive tholeiitic magma. This model has been
used to explain the formation of the Kemi chromitites (Alapieti
et al., 1989) and Stillwater chromitites (Horan et al., 2001;
Spandler et al., 2005). In a related model, O'Driscoll et al. (2010),
Latypov et al. (2013) and Scoon and Costin (2018) argued that
the mixing of relatively unevolved replenishing magma with a

24

iv.

partial melt of feldspathic cumulates in the chamber triggered in
situ formation of chromite stringers in the Rum and Bushveld
intrusions. However, Naldrett et al. (2012) used MELTS model-
ling on Bushveld model magmas to show that neither an increase
in pressure, mixing of primitive and fractionated magma, felsic
contamination of replenishing magma, nor addition of H,O can
promote crystallisation of spinel before orthopyroxene, and thus
are inadequate to explain the formation of the chromite seams.

. Nicholson and Mathez (1991) proposed that the Merensky Reef

chromitites formed via hydration melting of a semi-consolidated,
sulphide-bearing proto-reef. Melting was triggered by magmatic
vapour ascending through the semi-consolidated cumulate pile,
reducing the stability of chromite at the expense of pyroxene and
plagioclase. This model can account for the presence of a
pegmatitic layer bracketed by chromitite stringers, the knife-
sharp contacts observed between the chromitites and the other
rocks and the presence of pyroxenitic and noritic xenoclasts in the
reef that are also rimmed by anorthosite-chromite layers. Mathez
and Kinzler (2017) applied the model to the Rum chromitites.
Boudreau (2019) and Marsh et al. (2021) proposed that Stillwater
and Bushveld chromitite stringers formed due to dissolution of
pyroxene and precipitation of chromite in response to volatiles
ascending through the cumulates. The volatiles become under-
saturated in pyroxene as they infiltrate the relatively hot rocks
near the top of the crystal pile. Key evidence cited includes the Cl-
rich nature of spatially associated apatite and the presence of
volatile-rich polyphase inclusions in chromites.

. Mondal and Mathez (2007) proposed that the UG2 chromitite of

the Bushveld Complex may have formed by the settling of
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suspended chromite in batches of injected magma, which re-
quires the pre-emplacement fractionation of chromitite in a
staging chamber. In a related model, Voordouw et al. (2009)
suggested that the Bushveld chromitite seams formed from in-
jections of chromite-rich slurries into a largely solidified crystal
pile. In contrast, Maier et al. (2013a) proposed that Bushveld
chromitites formed via hydrodynamic sorting and sieving of
pyroxene-chromite slurries deposited at the top of the crystal pile.
The slurries locally injected into semi-consolidated footwall cu-
mulates. The effectiveness of density currents for crystal sorting
has been experimentally verified in flume tank experiments
conducted by Forien et al. (2015). In the Kemi intrusion, chro-
mitites can be seen to progressively thicken from the margins to
the centre of the intrusion, consistent with hydrodynamic sorting
during chamber subsidence (Alapieti et al, 1989). Thick chro-
mitite seams in the Jacurici Complex of Brazil are also thought to
have formed during slumping and hydrodynamic sorting of
chromite-rich crystal slurries, facilitated by the presence of vol-
atile phases (Marques et al., 2017; Friedrich et al., 2020).

6.4. Fe-Ti-V-(P) deposits

Stratiform Fe-Ti oxide layers are usually located in the upper, rela-
tively fractionated portions of layered intrusions. Like chromitite seams,
these layers can be near-monomineralic (up to several 10s of metres in
thickness; e.g, Bushveld, Emeishan LIP intrusions, and Chineysky) or
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form thick (up to >100 m) intervals of (titano-)magnetite and ilmenite-
bearing gabbro (e.g., Koillismaa, Koitelainen, Akanvaara). Insome cases,
Fe-Ti-V oxide ores are spatially associated with apatite-rich gabbroic
rocks or nelsonite from which P can be mined as a by-produect, including
Bushveld, Grader, Bjerkreim-Sokndal, and Fedorovka (see Charlier
et al., 2015 and references therein). Only few layered intrusions are
mined with P as the primary product, including Bikilal, Ethiopia (Wol-
demichael and Kimura, 2008), Fanshan, China (Hou et al., 2015), and
the Khibina massif, Russia (Kogarko and Khapaev, 1987).

Several models have been proposed for the formation of Fe-Ti-V-(P)
oxide layers in layered intrusions, including (i) fluctuations in intensive
parameters, (ii) segregation of an immiscible Fe-Ti-(P)-rich melt, (iii)
gravitational concentration augmented by hydrodynamic processes, (iv)
magma mixing and/or recharge, and (v) in situ crystallisation and
compositional convection.

i. It has been experimentally determined that oxygen fugacity and
TiO, content of the residual melt control the stability and
composition of Fe-Ti oxides (Buddington and Lindsley, 1964;
Toplis and Carroll, 1995; Botcharnikov et al., 2008). Klemm et al.
(1985) argued that massive magnetitite layers of the Bushveld
Complex formed in response to periodic increases in oxygen
fugacity driven by wall-rock devolatilization (see also Reynolds,
1985). An increase in oxygen fugacity through assimilation-
fractional crystallisation has been invoked to explain the forma-
tion of massive Fe-Ti oxide layers at Baima (Zhang et al., 2012a),
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Panzhihua (Ganino et al., 2013), and Lac Doré (Mathieu, 2019).
In other intrusions, the formation of oxide layers was linked to
increases in total pressure (Osborn, 1980; Lipin, 1993; Naslund
and McBimey, 1996). Cawthorn and Ashwal (2009) argued that
magnetite-anorthosite layering in the Bushveld Complex may
have formed in response to pressure fluctuation.

ii. During the advanced stages of fractionation, silicate magma may
undergo segregation into dense, Fe-Ti-P-rich magma and buoyant
Si-rich magma (Philpotts, 1967; Reynolds, 1985; Zhou et al.,
2005; Namur et al., 2012; Charlier and Grove, 2012; Fischer
et al., 2016; Hou et al., 2018), e.g, Skaergaard, Jakobsen et al.,
2005; Sept Iles, Namur et al., 2012; Baima, Liu et al., 2016). Fe-
Ti-V-(P) ores may therefore represent the crystalline products of
immiscible Fe-Ti-V-P-rich melts (Zhou et al., 2013) or the ores
may represent a cumulate assemblage crystallised from these
immiscible melts (Namur et al., 2012).

. Residual melts associated with anorthositic rocks are relatively

Fe-Ti-rich, causing ilmenite to be a liquidus phase together with

plagioclase (Toplis and Carroll, 1995). The density contrast be-

tween crystallising Fe-Ti oxides and plagioclase could lead to
plagioclase flotation and Fe-Ti oxide accumulation (e.g, Grader;

Charlier et al., 2008, 2015), perhaps followed by granular flow of

magnetite slurries (Vukmanovic et al., 2019). Similar models of

gravitational fractionation have been proposed for the Fe-Ti-V
deposits of the Emeishan LIP intrusions, such as Panzhihua,

Hongge, and Baima (e.g, Pang et al., 2008a, 2008b; Zhang et al.,

2012a; Song et al., 2013) and for magnetitites in the Jameson

Range intrusion (Karykowski et al., 2017b).

The Main Magnetite Layer of the Bushveld Complex has been

explained through magma mixing between resident and replen-

ishing magma of the same lineage but at a different stage of
fractionation (Molyneux, 1974; Irvine and Sharpe, 1986; Hamey
et al., 1990; Von Gruenewaldt, 1993). However, Cawthom et al.

(2005) disputed that magnetite oversaturation occurs in response

to magma mixing and Cawthorn and Ashwal (2009) argued that

the lack of compositional reversals in cumulate plagioclase above
magnetite seams is inconsistent with mixing of resident and
replenishing magma.

v. Kruger and Latypov (2020) suggested that magnetite crystallises
in situ along the floor of the magma chamber, a model initially
proposed by McCarthy et al. (1985). The key evidence cited
comprises the rapid decrease in Cr (and V) content of magnetite
with height. The authors use a partition coefficient for Cr into
magnetite of 525 (based on Lindstrom, 1976), whereas the
maximum D value reported in Dare et al. (2012) is 340, and the
Geomean is 67.

iv.

6.5. Other notable mineral deposits

In addition to PGE-Cu-Ni-Cr-Ti-V, layered intrusions may host other
types of economically important mineral deposits, including REE and Nb
(in alkaline intrusions of the Gardar and Kola mineral belts), chrysotile
asbestos and magnesite (notably in many of the Archean layered in-
trusions of the Barberton greenstone belt), andalusite as well as building
stone (e.g, in the Bushveld Complex, further discussed below) and Ni-
laterites (e.g, in the Kibaran Fold belt intrusions of Musongati, Kapa-
lugulu, and Waga.

Because the Bushveld Complex is the largest layered intrusion, it is
not surprising that it hosts the greatest range of economically exploit-
able mineral resources. During the emplacement of the Complex, the
country rocks were extensively metamorphosed, leading to the devel-
opment of biotite-chlorite, cordierite-sillimanite, and andalusite horn-
fels (Botha, 2010), the latter hosting the world’s largest reserves of
andalusite, presently exploited at several localities, notably Thabazimbi
(> 59 wt% Al,03), Penge (> 58.5 wt% Al,03), and Lydenburg (> 59 wt
% AlyO3; Oosterhuis, 1998; Botha, 2010). Secondly, Kraubath-type
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magnesite deposits (ie., stockwork magnesite veins in ultramafic
rocks) are reported in hydrothermally altered ultramafic rocks in the
lower zone of the Rustenburg Layered Series (Pohl, 1990). Thirdly,
gabbro and gabbronorite are quarried at several localities in the Main
Zone (Pivko, 2004). In addition, the felsic phase of the Bushveld event
comprises tin-bearing granite plutons (e.g, Mutele et al., 2017). The
Zaaiplaats Tin Field in the northern limb of the Bushveld Complex is host
to the stanniferous Bobbejaankop and Lease granites that were first
discovered in 1908 (Coetzee and Twist, 1989; Vonopartis et al., 2020).
The Phalaborwa Carbonatite Complex is thought to represent the early
phase in the formation of the Bushveld Complex, whereby carbonatite
magmatism formed during partial melting of metasomatized litho-
spheric mantle during plume underplating (Wu et al., 2011). The com-
plex hosts economic deposits of Cu, U, Zr, P, and Ti (e.g, Wu et al.,
2011).

Approximately 85% of the world’s Ni laterite resources occur in
accretionary terranes in the Circum-Pacific Belt and the remainder occur
in serpentinised ultramafic cumulates of layered intrusions, notably
Kapalagulu-Musongati ~ (Tanzania/Burundi), = Wingellina  Hills
(Australia), and Niquelandia and Barro Alto (Brazil; Butt and Cluzel,
201 3). Musongati is one of the largest Ni laterite deposits in the world
formed through alteration of ultramafic cumulates (Bandyayera, 1997).
1t is also characterised by relatively high PGE contents (~ 0.5-2 ppm;
Bandyayera, 1997; Maier et al., 2008).

Most layered alkaline intrusions that are prospective for REE-Nb
mineralisation occur in the Gardar Province of southern Greenland
and the Kola peninsula of NW Russia. Due to their incompatibility, the
REEs concentrate in the peralkaline residual liquid during differentia-
tion, giving rise to mineralised syneitic and/or pegmatitic rocks at the
roof of intrusions (Marks et al., 2011; Paulick et al., 2015). The Gardar
Province represents a Mesoproterozoic failed rift system that is host to
several layered alkaline intrusions that are prospective for REE miner-
alisation, including Illimaussaq (hosting the Kvanefjeld and Kringlerne
deposits) and the Motzfeldt intrusions (Tukiainen, 2014; Paulick et al.,
2015). Mineralised kakortokites and lujavrites of the Kvanefjeld and
Kringlerne deposits formed during the advanced stages of fractional
crystallisation, where the former represents one of the world’s largest
REE and U-Th deposits (Thrane et al., 2014; Paulick et al., 2015). Sig-
nificant REE-U-Th-Ta-Zr-Nb mineralisation (~ 80 Mt at 0.6-1.1% TREO)
is documented at the margins and roof of the Motzfeldt intrusion
(Tukiainen, 2014). Other notable alkaline intrusions include the Khi-
bina, Lovozero, Kurga, and Niva syenitic plutons of the Kola Alkaline
Carbonatite Province, which in turn is part of the Kola-Dnieper LIP
(Puchkov et al., 2016), of Russia and eastern Finland (see Downes et al.,
2005 and references therein). The Khibina massif comprises one of the
world’s largest apatite deposits, which also comprises considerable
amounts of SrO (~ 4.5 wt%) and REE,;O5 (< 8.891 ppm; Arzamastsev
et al., 1987; Kogarko, 2018).

7. Implications and areas for further study

Layered intrusions have been natural laboratories to advance the
understanding of igneous and ore-forming processes, from the early days
of Bushveld research in the 1920s focussing on the origin of the PGE
deposits (Wagner, 1929), through the seminal publication of Layered
Intrusions by Wager and Brown in 1968 highlighting the similarities to
magmatic sediments, to the application of fluid dynamics in the 1980s
(Huppert and Sparks, 1981; Sparks et al., 1984), and the recognition of
the role of magmatic metasomatism and constitutional zone refining
(Irvine, 1980; McBimey, 1987; Boudreau, 1988) and in situ crystal-
lisation (Campbell, 1978). The concept of out-of-sequence sills was
introduced by Beédard et al. (1988) at Rum and subsequently applied to
the Bushveld Complex by authors such as Lee and Butcher (1990), Maier
and Barnes (1998), Manyeruke et al. (2005), Kinnaird (2005), Mitchell
and Scoon (2007), Mungall et al. (2016), Wall et al. (2018), and Scoates
et al. (2021).
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In the present contribution, we highlight that layered intrusions are
volumetrically important components of Earth’s crust. This is particu-
larly evident in regions that have a long history of mineral exploration
and research, such as Fennoscandia, Western Australia. and South Af-
rica. In these areas, the density of layered intrusions is on the order of
100/M km?. If this rule holds for other regions of the globe, 100 s of
intrusions remain to be discovered. Amongst the most recent examples
are well mineralised intrusions, such as in the McFauld’s Lake Area (or
‘Ring of Fire’) and at Sunday Lake in Ontario (Blecker and Houlé, 2020)
as well as Nova in Western Australia (Maier et al., 2016a).

While the scientific advances in understanding the petrogenesis of
the intrusions have been considerable, many questions remain. Amongst
these, the following may be highlighted:

(i) Tectonic setting: It is evident from our compilation that many
notable layered igneous intrusions correlate with episodes of
voluminous magmatism associated with inter- or intra- conti-
nental rift environments, possibly involving slab delamination or
mantle plume impingement at the base of the lithosphere. Many
others occur in magmatic arc environments (e.g, obducted
ophiolite-hosted intrusions, Ural-Alaskan type intrusions, back-
arc extension). Post-collisional intrusions (e.g, Variscan and
CAOB intrusions) appear to commonly host Ni-Cu mineralisation,
seldom Fe-Ti-V (e.g, Bjerkreim-Sokndal, few CAOB intrusions),
and no Cr occurrences. The tectonic setting of the CAOB in-
trusions remains controversial, possibly reflecting the relatively
recent onset of research in this region. Intrusions located in
synorogenic/convergent settings appear to be rare.

(ii) Mantle sources: Are the parent magmas generated in the

asthenosphere, the SCLM, or both? In view of the high PGE

budget of some intrusions, could there be mantle domains that
are relatively PGE enriched, perhaps representing incompletely
dissolved late veneer material, and if so, how can this be tested? Is
the plume model universally applicable, or is there evidence for
plate-driven magmatism in some provinces (e.g., Musgrave/Giles

Complex; Smithies et al., 2015).

Composition of magmas: Examination of fine-grained sills and

dykes in the floor of intrusions (e.g,Barnes et al., 2010) and

chilled margins at their basal contact (Wilson, 2012; Maier et al.,
2016a) as well as the trace element content of cumulate rocks and
minerals (e.g.,Godel et al., 2011) indicates that there are 2 types
of magma (SHMB and Al-tholeiite) in several of the most prom-
inent intrusions (e.g., Bushveld, Stillwater, Finnish 2.45 Ga in-
trusions). Does this reflect contamination of komatiitic parent
magmas with progressively more refractory crust (Maier et al.,

2000) or melting of different mantle sources (Richardson and

Shirey, 2008)

(iv) Magma emplacement: Do the magmas intrude as crystal mushes,
crystal-poor melts, or both? What is the key evidence, and which
factors control the mode of emplacement (e.g., could upper
crustal subsidence, induced by magma emplacement, trigger
magma ascent from mid-crustal staging chambers? Could this
control the size of intrusions in addition to the size of the thermal
mantle anomaly? How common is out-of-sequence sill emplace-
ment, and what is the precision and accuracy of the geochrono-
logical methods on which this idea is largely based?

(v) Origin of layering To what degree is the layering of primary
magmatic origin, resulting ie., from granular flow and sill
emplacement. If it is largely secondary, as argued by Bédard
(2015) and Boudreau (2017), why are there relatively few hy-
drous phases such as magmatic mica and hornblende?

(vi) Origin of sulphide and oxide reefs: While most authors argue that
the reefs are of magmatic origin (but see e.g.Boudreau, 2019), the
mechanism of sulphide melt saturation and the mode of sulphide
concentration remain debated. The most controversial question is
probably whether sulphides and oxides were concentrated within

(iiD)
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the intrusions (e.g., via phase settling, or granular flow and ki-
netic sieving/percolation), or in a staging chamber or feeder
conduit from where they were entrained by the ascending magma
(e.g,Yao and Mungall, 2021).

(vii) Broader implications: Mafic-ultramafic intrusions volumetrically
comprise a significant proportion of Earth’s crust and as such,
their emplacement may have a significant impact on Earth’s at-
mosphere. Many layered igneous intrusions are associated with
the emplacement of large igneous provinces, which in tum
correlate with mass extinetion events (Wignall, 2005; Bond and
Wignall, 2014). The emplacement of LIPs may be most devas-
tating when emplaced amongst carbonate host rocks (e.g., Bush-
veld LIP, Siberian Traps; Ganino and Arndt, 2009; Stordal et al.,
2017; Le Vaillant et al., 2017).

In terms of investigative approach, future advances will likely
depend on combining thermodynamic modelling (e.g., Boudreau, 2008;
Mungall et al., 2015; Schoneveld et al., 2020) and machine leaming (e.
&, Lindsay et al., 2021) with large geochemical databases, analogue
experiments (Forien et al., 2015), microtextural analysis (Holness, 2007;
Vukmanovic et al., 2018), and element mapping techniques such as
microXRF and FESEM (Bames et al., 2020a; Smith et al., 2021; Maier
et al., 2021).

8. Conclusions

Layered igneous intrusions occur across the globe and geological
time, with a clustering in Archean cratons and during supercontinent
rifting and dispersal. Both asthenospheric and lithospheric mantle
sources have been proposed, with the former likely being predominant.
The intrusions are not only natural laboratories for studies of igneous
petrology, but are also invaluable repositories for a wide range of min-
eral deposits, notably PGE reefs, disseminated or massive Ni-Cu-PGE
deposits, stratiform massive or disseminated Fe-Ti-V-(P) layers, and
chromite seams. Additional mineral deposits include REE, Nb, P, Au,
building stone, andalusite, asbestos, magnesite, and, in associated felsic
intrusives, tin and fluorite. Based on the abundance of layered intrusions
in relatively well explored terranes (e.g, Fennoscandia, South Africa,
Western Australia), we propose that many layered intrusions remain to
be discovered on Earth, particularly in poorly explored and relatively
inaccessible regions of Africa, Australia, Russia, Greenland, Antarctica,
South America, and northern Canada.
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