and they will you be supplying the second of the state of the second state of the seco

Datations U-Pb effectuées dans les provinces du Supérieur et de Churchill en 2011-2012

RP 2014-05

Donald W. Davis, Martin Simard, Hanafi Hammouche, Daniel Bandyayera, Jean Goutier, Pierre Pilote, François Leclerc et Claude Dion

Coordonnateurs : Claude Dion et Francis Talla Takam

Datations U-Pb effectuées dans les provinces du Supérieur et de Churchill en 2011-2012

Donald W. Davis¹, Martin Simard, Hanafi Hammouche, Daniel Bandyayera, Jean Goutier, Pierre Pilote, François Leclerc et Claude Dion²

Coordonnateurs : Claude Dion et Francis Talla Takam

RP 2014-05

Mots-clés : géochronologie, U-Pb, zircon, monazite, La Grande, Abitibi, Churchill, Supérieur, Archéen, Protérozoïque

Résumé

Ce rapport présente les résultats de géochronologie U-Pb sur des zircons analysés en 2011 pour 19 échantillons en provenance des provinces géologiques du Supérieur et de Churchill. Les échantillons du Supérieur proviennent des sous-provinces de La Grande (cinq échantillons) et de l'Abitibi (sept échantillons). Sept échantillons ont été prélevés dans le secteur de Kuujjuaq et de la baie d'Ungava dans la partie sud-est de la Province de Churchill. Les analyses ont été effectuées par deux méthodes, soit par dilution isotopique (ID-TIMS) ou ablation laser (LA-ICPMS).

Partie sud-est de la Province de Churchill, secteur de Kuujjuaq et de la baie d'Ungava

La Zone noyau de la partie sud-est de la Province de Churchill correspond à un ancien craton archéen déformé et métamorphisé au Paléoprotérozoïque. Elle est constituée de gneiss à protolite archéen, assignés au Complexe d'Ungava, recoupés par des intrusions d'âge protérozoïque. Quatre échantillons ont été prélevés dans différents faciès de gneiss. Tous ces échantillons ont donné des âges archéens, considérés comme l'âge du protolite, et des âges métamorphiques paléoprotérozoïques. La variété des âges de cristallisation et d'héritage dans quatre échantillons de gneiss rubané du Complexe d'Ungava (3154 à 2723 Ma), témoigne d'une histoire complexe qui s'est échelonnée sur une longue période à l'Archéen. La majorité des âges paléoprotérozoïques obtenus dans les gneiss suggère une déformation et un métamorphisme associés aux événements de l'Orogène du Nouveau-Québec (1840 à 1770 Ma), quoique dans la partie est de la région, un âge plus ancien semble associé à l'Orogène des Torngat (1870 à 1850 Ma). Le développement de la gneissosité dans les roches archéennes est relié aux événements paléoprotérozoïques.

Les gneiss archéens ont subi un événement de fusion majeur au Paléoprotérozoïque qui a produit une quantité importante de migmatites assignées au Complexe de Qurlutuq. Un échantillon de tonalite blanchâtre partiellement migmatitisée (2011-LP-2115A, SNRC 24J07) assignée au Complexe de Qurlutuq, a donné un âge de mise en place autour de 2660 Ma. L'âge de 1818 Ma obtenu est un âge métamorphique qui correspondrait possiblement à l'âge de l'évènement de fusion partielle qui a affecté les gneiss environnants. Le granite homogène à grain fin de la Suite d'Aveneau (2011-IL-3141A, SNRC 24K09) a donné un âge de cristallisation de 1817±10 Ma. Cet âge, qui s'apparente à l'âge métamorphique obtenu dans le Complexe de Qurlutuq, supporte l'hypothèse que les roches intrusives blanchâtres de la Suite d'Aveneau pourraient correspondre à un matériel évolué relié au phénomène de fusion à l'origine des migmatites du Qurlutuq. L'âge de 2697±18 Ma, obtenu dans cet échantillon, proviendrait des roches archéennes de ce secteur qui auraient subi la fusion partielle pour produire le matériel granitique blanchâtre de la Suite d'Aveneau.

La tonalite très déformée à orthopyroxène-grenat (2011-PL-6182A, SNRC 24K07) du Complexe de Kaslac donne un âge de mise en place protérozoïque de 1835 Ma, correspondant au début de l'Orogène du Nouveau-Québec.

Province du Supérieur, Sous-province de La Grande

La Formation de Keyano est une nouvelle unité métasédimentaire et métavolcanique de la Sous-province de La Grande. Un échantillon de conglomérat polygénique (2011-QD-7509A, SNRC 33H13) de cette formation montre une distribution des âges suivant deux modes à 2710 Ma et 2735 Ma. Ces âges sont comparables à ceux des roches plutoniques, de compositions et d'âges similaires aux fragments du conglomérat, qui se trouvent au nord dans la Suite de Coates (Sous-province de Minto), datées de 2743 à 2710 Ma. De plus, le mode de 2710 Ma indique que les roches sédimentaires de la Formation de Keyano sont plus jeunes que les séquences volcaniques de la région, soit la Formation de Mintisch et le Complexe de Laforge (2847 à 2841 Ma), et le Groupe de Guyer (2820 à 2806 Ma). La distribution des âges dans le conglomérat polygénique (SGNO-2000-05, SNRC 33F06) de la Formation d'Ekomiak suggère que le matériel détritique provient de l'érosion des roches de la région du lac Yasinski où l'on trouve ce conglomérat. Le mode principal à 2735 Ma correspond à l'âge des volcanites du Groupe de Yasinski et du Pluton de La-Grande-Sud

(2751 à 2732 Ma). L'échantillon de tuf à lapillis (2011-JG-1187A, SNRC 33H05) de la Formation de Corvette a donné un âge de 2742 ±28 Ma, qui indique que la Formation de Corvette est clairement plus jeune que le Groupe de Guyer (2820 à 2806 Ma).

Deux gneiss du Complexe de Langelier ont donné des âges archéens. L'échantillon de gneiss tonalitique (2011-JG-1242A, SNRC 33H12) présente un âge maximal de 2713 Ma. C'est probablement le gneiss le plus jeune de cette unité. Cette datation indique que ce gneiss est nettement plus jeune, près de 700 Ma, que le gneiss granitique (2011-JG-1592 M1, SNRC 33F03) daté paléoarchéen (3452 ±16 Ma). Il s'agit de la plus vieille roche datée de la Baie-James et du deuxième secteur avec les plus vielles roches du Québec. Ces âges confirment que les épisodes de déformation et de métamorphisme dans la Sous-province de La Grande sont étalés sur une grande période de temps.

Province du Supérieur, Sous-province de l'Abitibi, secteur de Chibougamau-Chapais

Deux échantillons de tuf à lapillis ont été datés. L'âge moyen de $2724,0\pm1,2$ Ma pour l'échantillon 2006-FL-6129C (SNRC 32G16) de la Formation de Bruneau correspond à une période de volcanisme explosif suivie d'une pause dans le volcanisme, survenue de 2 à 3 Ma suivant le dépôt des roches volcaniques felsiques de la Formation de Waconichi. Par contre, l'âge de cristallisation de 2798,7 ±0,7 Ma obtenu pour l'échantillon 2011-FL-5270A (SNRC 32G10) du Membre des Vents permet de lever l'ambigüité concernant l'âge des roches volcaniques felsiques du Membre des Vents. Compte tenu qu'il y a plus de 60 Ma d'écart entre le dépôt des roches volcaniques felsiques du Membre des Vents et celles de la Formation de Waconichi, son rang pourrait être rehaussé de Membre à Formation des Vents.

L'intrusion porphyrique à phénocristaux de quartz et de feldspath (2011-FL-5283A, SNRC 32J01) a donné un âge de cristallisation de $2710,2\pm0,8$ Ma.

Province du Supérieur, Sous-province de l'Abitibi, secteur de Matagami

L'échantillon de tuf à lapillis et à blocs rhyolitiques (2010-PP-0014A, SNRC 32F13) du site SW de la mine du lac Garon, dans la Formation de la rivière Allard, a donné un âge de 2724,6 \pm 0,8 Ma. Cet âge indique que les rhyolites du flanc nord du camp minier de Matagami, assignées à la Formation de la rivière Allard, présentent le même âge que celles du Groupe du lac Watson sur le flanc sud. Ces deux formations seraient donc contemporaines ou les unités rhyolitiques du lac Garon pourraient appartenir au Groupe du lac Watson. L'échantillon 2011-JA-0611A (SNRC 32F13) est un tuf à lapillis et à blocs rhyolitiques échantillonné au sud du Pluton de Dunlop dans la Formation de la rivière Bell, qui présente un aspect de cornéenne. Il a produit différentes populations de zircons. L'âge du volcanisme est estimé à 2727 \pm 13 Ma alors que les âges obtenus de 2698 \pm 7 et 2693,5 \pm 1,0 Ma pourraient indiquer l'âge de l'auréole de métamorphisme de contact, produite par la mise en place du Pluton de Dunlop. Cette interprétation ferait du Pluton de Dunlop une intrusion d'âge syntectonique.

L'échantillon de rhyolite massive (2011-KW-0221A, SNRC 32F13) de la Formation de Daniel a également produit différentes populations de zircons. L'âge maximal du volcanisme est estimé à 2722,9 ±1,1 Ma. Ce qui indique que l'activité volcanique dans le camp de Matagami se serait poursuivie jusqu'à environ 2723 Ma. L'âge obtenu de 2701 ±7 Ma qui rappelle celui du métamorphisme de contact dans l'échantillon 2011-JA-0611A situé en bordure du Pluton de Dunlop, pourrait possiblement représenter un événement métamorphique ou métasomatique régionalement significatif à l'échelle du camp minier. Un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2724 ±20 Ma est attribué à l'échantillon de rhyolite massive à fragmentaire (BC-11-32, SNRC 32F13) du Groupe du lac Watson, qui provient d'un forage réalisé par la société Xstrata Zinc sur le flanc nord du camp de Matagami. Ce résultat indiquerait que les volcanites felsiques du Groupe du lac Watson situées sur les flancs nord et sud de la région de Matagami sont identiques. La géochimie de ces unités est également quasi identique et soutient favorablement cette comparaison selon des critères d'âges.

¹⁻ Jack Satterly Geochronological Laboratory, Université de Toronto

²⁻ Géologie Québec, ministère de l'Énergie et des Ressources naturelles

INTRODUCTION

Ce rapport présente les résultats des travaux de datation géochronologique effectués sur une série d'échantillons prélevés lors des projets de cartographie géologique et de compilation géoscientifique réalisés par le ministère de l'Énergie et des Ressources naturelles (MERN). Dix-neuf échantillons ont été prélevés et traités en 2011 afin d'en récupérer les minéraux lourds et d'effectuer des travaux de datation isotopique.

Les analyses isotopiques par les méthodes ID-TIMS et LA-ICPMS, ainsi que l'interprétation de l'ensemble des résultats géochronologiques ont été effectuées par le premier auteur (Donald W. Davis). Le choix et la récolte des échantillons, la description du contexte géologique et l'interprétation des données analytiques sont la responsabilité des géologues du MERN.

Quelques analyses géochronologiques effectuées pour le Ministère en 2011 dans la Province du Grenville ont été publiées dernièrement dans Moukhsil *et al.* (2013).

Les résultats des analyses et la localisation des échantillons sont présentées au tableau 1. Les analyses ont été effectuées par dilution isotopique et spectrométrie de masse par ionisation thermique (ID-TIMS) précédée d'une étape d'analyse préliminaire par ablation laser (LA-ICPMS).

La plupart des populations de zircon étudiées sont de nature complexe. Les populations provenant de roches volcaniques contiennent généralement peu de zircons dont l'origine peut être en partie xénocristique. D'autre part, les roches plutoniques contiennent souvent beaucoup de zircons, mais ceux-ci présentent parfois des évidences de croissances multiples. En conséquence, des grains typiques de zircon de chaque échantillon ont d'abord été datés par ablation laser à l'aide d'un spectromètre de masse à quadripôle et à ionisation au plasma (LA-ICPMS). Ces analyses ont été effectuées sur des grains entiers collés sur du ruban gommé à double-face ou sur des grains montés dans de l'époxy puis polis afin de permettre l'observation des diverses phases de croissance sur les images en cathodoluminescence (CL) ou en électrons rétrodiffusés (BSE). La méthode LA-ICPMS permet l'analyse de domaines circonscrits à l'intérieur des grains, mais elle manque de précision par rapport à la méthode ID-TIMS. Toutefois, cette dernière méthode nécessite l'analyse de grains entiers, ce qui a l'inconvénient de donner des âges mixtes à l'analyse si l'échantillon présente plus d'une phase de croissance.

PROCÉDURES ANALYTIQUES

Les échantillons de roche (15 kg au plus) sont réduits à l'état de poudre au moyen d'un concasseur à mâchoires, puis d'un pulvérisateur à disques. Les minéraux lourds sont séparés par passages multiples sur une table à secousses Wilfley, ramenant l'échantillon traité à une portion de quelques grammes. Les zircons sont concentrés à nouveau à l'aide de liqueurs denses (bromoforme et iodure de méthylène). Les minéraux lourds sont séparés en fonction de leur susceptibilité magnétique en utilisant un séparateur isodynamique Frantz. La fraction de zircons la moins paramagnétique est ensuite examinée sous une loupe binoculaire. Les zircons sont sélectionnés sur la base de leur qualité (absence de microfractures, d'évidences d'altération et d'inclusions) pour être ensuite classés en fonction de critères typologiques tels la morphologie, le développement des faces cristallines et la couleur.

Toutes les analyses ont été effectuées aux laboratoires du Jack Satterly Geochronological Laboratory à l'Université de Toronto. Les analyses LA-ICPMS sont effectuées à l'aide d'un système composé d'un laser à 213 nm (New Wave) et d'un spectromètre Plasmaquad ICP-MS (VG Series 2). Les échantillons montrant des populations multiples sont montés dans l'époxy et polis pour obtenir des images en CL et en BSE à l'aide d'un microscope à balayage électronique JEOL JSM6610-Lv. Ces images permettent de choisir les domaines de croissance spécifiques pour l'analyse. Dans le cas des populations provenant de roches volcaniques ou qui peuvent contenir des xénocristaux, les grains sont fixés sur du ruban gommé pour être facilement récupérés après l'analyse LA-ICPMS et être ensuite datés par ID-TIMS.

L'ablation est réalisée avec un faisceau laser d'un diamètre de 20 à 40 µm et une fréquence de 5 à 10 Hz et 65 % de la puissance maximale. Par rapport au zircon, la monazite montre souvent une concentration plus grande en U et beaucoup plus grande en Th (Th/U > 100 typiquement). Dans ce cas, nous avons diminué le diamètre du faisceau à 10 µm et réduit la fréquence. De plus, nous n'avons pas mesuré le Th afin de protéger le détecteur. La portion de l'échantillon vaporisé par le laser est transportée jusqu'à la torche plasma dans un flux gazeux de He. La portion du zircon ciblée pour l'analyse est d'abord soumise à un nettoyage par balayage du faisceau laser pendant 10 s afin d'enlever l'altération et la contamination superficielles. Après un intervalle de 10 s pour mesurer le bruit de fond, le laser est allumé et les données sont acquises pendant 35 s pour les masses ⁸⁸Sr (10 ms), ²⁰⁶Pb (30 ms), ²⁰⁷Pb (70 ms), ²³²Th (10 ms) et ²³⁸U (20 ms). Le laser est ensuite éteint pour une durée de 60 s afin de purger le système. Une analyse représente environ 180 cycles de mesure. Le trou d'ablation a une profondeur d'environ 20 µm, indépendamment du diamètre de celui-ci. Des grains peuvent montrer un signal instable associé à des zonations chimiques des concentrations en U et en Pb. Cette instabilité peut être réduite par le passage du gaz porteur dans une fiole de 75 ml, ce qui permet d'homogénéiser l'analyse sur une plus longue période.

La mise au point et le calcul des données sont effectués à l'aide d'un logiciel VBA conçu par le premier auteur (programme UTILLaz). En général, la plupart des données ²⁰⁷Pb/²⁰⁶Pb peuvent être utilisées pour calculer une moyenne. Les rapports ²⁰⁶Pb/²³⁸U ont tendance à augmenter avec la profondeur du trou, mais pour un zircon typique, cette profondeur est à peu près équivalente au diamètre du faisceau. En conséquence, cette variation est mineure et la plupart des mesures ²⁰⁶Pb/²³⁸U sont utilisables. Aucune correction pour le Pb commun n'est effectuée en raison des signaux du ²⁰⁴Pb trop faibles pour être mesurés avec une précision utile et parce que les zircons frais ne présentent généralement pas une quantité significative de Pb commun. Le signal du ⁸⁸Sr est utilisé comme un indice permettant d'identifier les zones d'altération et permet de savoir si le faisceau laser a traversé les grains. Les données associées à des signaux de ⁸⁸Sr dépassant le bruit de fond sont éliminées. Le rapport Th/U mesuré est utilisé comme un indicateur de l'origine pétrogénétique des zircons. Un zircon d'origine magmatique montre typiquement des rapports Th/U compris entre 0,1 et 1,0, alors que des rapports inférieurs à 0,1 démontrent typiquement une origine métamorphique.

Les étalons de zircon utilisés pour les analyses par LA-ICPMS ont été préalablement datés par ID-TIMS. Ils comprennent l'échantillon DD85-17, une diorite quartzifère de l'Ontario datée à 3002 ± 2 Ma (Tomlinson *et al.*, 2003) et l'échantillon DD91-1 du Pluton de Fournière, une diorite quartzifère datée à 2682 ± 1 Ma (Davis, 2002). Les étalons de monazite ont aussi été datés par ID-TIMS et comprennent l'échantillon DD87-26 du Pluton de Ghost Lake du nord-est de l'Ontario, daté à 2690 ± 1 Ma (résultat inédit).

Pour la datation ID-TIMS, les méthodes de trempage thermique et dissolution partielle (« chemical abrasion » -CA-TIMS; Mattinson, 2005) et d'abrasion à l'air (Krogh, 1982) ont été utilisées pour enlever les microdomaines d'altération responsables de la discordance des âges U-Pb. Dans la méthode CA-TIMS, le zircon est d'abord chauffé à 1000 °C dans un four pendant 48 heures, ce qui entraîne une réparation partielle des dommages radiométriques de la structure cristalline associés à la présence d'uranium. Les cristaux sont ensuite soumis à une dissolution partielle dans une solution de HF concentrée-HCl 6 N (1/4) à 200 °C pendant 18 heures dans une capsule de téflon. Pour les grains présentant des dégâts modérés, les domaines altérés se dissolvent plus vite que les domaines sains et disparaissent après une attaque de quelques heures. La portion des grains restant après cette dissolution partielle montre en général une coloration blanchâtre en surface et le long des fractures. Les grains présentant des zones riches en uranium montrent une corrosion en forme de peigne où les zones plus endommagées ont été dissoutes. Les analyses de tels grains peuvent se projeter au-dessus de la courbe concordia à cause de l'implantation du Pb radiogénique dans les zones de fortes concentrations en U à la suite d'un phénomène de recul du noyau associé à l'émission de particules alpha. Théoriquement, les âges ²⁰⁷Pb/²⁰⁶Pb sont peu influencés par ce phénomène si les analyses sont situées à proximité de la courbe concordia (Rohmer, 2003).

Pour les grains montrant de fortes concentrations en uranium (200 ppm), la réparation des dommages radiométriques par trempage n'est pas suffisante pour ralentir le taux de dissolution (Das et Davis, 2010). Dans ce cas et dans les situations où l'on cherche à éliminer des surcroissances minces, on utilise la méthode d'abrasion à l'air en présence de pyrite. Cette méthode permet d'éliminer la surface des grains par abrasion dans une chambre à pression d'air. La pyrite sert alors d'agent de polissage.

En général, les analyses sont effectuées sur des zircons uniques (« monozircons »). Le poids des grains sélectionnés pour l'analyse est estimé par une analyse stéréographique des images numériques en utilisant la méthode de Matthews et Davis (1999). Cette donnée n'affecte que les concentrations en U et Pb des grains de zircon et non les âges qui dépendent uniquement des rapports isotopiques, lesquels sont insensibles au poids.

La dissolution finale des grains s'effectue avec du HF à 200 °C à haute pression dans une capsule de téflon, après un lavage au HNO₃ et l'addition d'un étalon isotopique de ²⁰⁵Pb-²³³U-²³⁵U (« Earthtime ET535 »). Les produits de décomposition sont traités avec du HCl pour assurer une dissolution totale. Les solutions provenant de la dissolution des grains de zircon sont traitées dans des colonnes à échange anionique avec du HCl afin de purifier le plomb et l'uranium. Le procédé suit la méthode de Krogh (1973) avec des capsules et des colonnes de taille réduite pour minimiser la contamination de laboratoire (le « blanc »).

Le plomb et l'uranium sont déposés sur un même filament de rhénium avec du gel de silice et de l'acide phosphorique. Le filament est ensuite monté dans un spectromètre de masse VG354. Les analyses s'effectuent au moyen d'un compteur d'ions Daly ou en mode « statique » avec des détecteurs Faraday multiples. Les corrections pour la discrimination de masse et le biais du détecteur Daly sont respectivement de 0,10 %/AMU et 0,03 %/AMU. La correction pour le temps mort du détecteur est de 15,5 ns pour le plomb et 14 ns pour l'uranium. La mise au point de l'instrument est faite en utilisant l'étalon isotopique SRM982. Un contrôle quotidien est fait sur les facteurs d'amplification électroniques des détecteurs Faraday.

Les diagrammes concordia et les calculs des âges sont faits en utilisant le programme « Isoplot » de Ludwig (1998, 2003). Les erreurs sur les âges dans le texte et les diagrammes sont données à un niveau de confiance de 95 %. Les ellipses des erreurs sur les diagrammes sont données à 2σ . Pour les échantillons précambriens, les âges ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ sont généralement plus précis et exacts que les âges ${}^{207}\text{Pb}/{}^{235}\text{U}$ ou ${}^{206}\text{Pb}/{}^{238}\text{U}$. Dans les cas où les données proviennent d'une population montrant deux âges distincts, chacun de ces âges est calculé à partir des intersections de la courbe concordia et d'une ligne de mélange. Lorsque la plupart des données se positionnent sur la courbe concordia, un âge moyen est calculé en prenant soit la moyenne des âges ²⁰⁷Pb/²⁰⁶Pb (ce qui équivaut à calculer l'intersection de la concordia avec une ligne fixée à l'origine et qui passe par les données), soit en utilisant le calcul du « concordia age » de Ludwig (1998). Les deux procédés donnent à peu près les mêmes résultats pour les données quasi-concordantes archéennes. La composition du Pb commun de l'analyse est considérée comme étant celle du blanc de laboratoire (voir notes du tableau 3).

PRÉSENTATION DES RÉSULTATS

Le tableau 1 résume les résultats des analyses isotopiques et donne la localisation des échantillons, laquelle est également illustrée aux figures 2, 3, 4, 5 et 6. Les résultats des analyses LA-ICPMS sont donnés au tableau 2 (erreurs à 1 σ). Les résultats des analyses ID-TIMS sont présentés au tableau 3 (erreurs à 2 σ). Les résultats sont illustrés sous la forme de diagrammes concordia et d'histogrammes (figures 7, 8 et 9). L'annexe 1 présente les diagrammes concordia des analyses du zircon standard, l'annexe 2 expose les photographies des zircons extraits des différents échantillons, alors que les images en cathodoluminescence ou en électrons rétrodiffusés de certains zircons sont montrées à l'annexe 3.

La partie sud-est de la Province de Churchill, secteur de Kuujjuaq et de la baie d'Ungava

La partie sud-est de la Province de Churchill comprend trois parties distinctes. La partie centrale, la Zone noyau, correspond à un craton archéen déformé et remobilisé au Protérozoïque. La Zone noyau est bordée à l'est et à l'ouest par des séquences volcano-sédimentaires protérozoïques appartenant respectivement aux orogènes des Torngat et à la Fosse du Labrador (figure 1). Les travaux de l'été 2011 ont été concentrés principalement dans la partie ouest de la Zone noyau d'où proviennent les sept échantillons prélevés pour les analyses isotopiques.

La Zone noyau est constituée principalement de grandes séquences de gneiss qui ont été assignés au Complexe d'Ungava (Simard *et al.*, 2013). Des datations U/Pb réalisées antérieurement dans la région (Isnard *et al.*, 1998; Machado *et al.*, 1989) avaient permis d'attribuer un âge archéen au protolite des gneiss. Au cours de l'été 2011, quatre nouveaux échantillons de gneiss ont été prélevés sur les gros affleurements en bordure de la baie d'Ungava pour confirmer l'âge archéen du protolite et pour comparer différents faciès de gneiss. Les gneiss de la Zone noyau sont recoupés par de grandes intrusions granitoïdes d'âge protérozoïque. Les trois autres échantillons prélevés dans cette région pour l'analyse isotopique proviennent de différentes intrusions qui recoupent les gneiss.

2011-MS-0106A : Gneiss tonalitique rubané, feuillet SNRC 24J06

Géologie

Un échantillon de gneiss tonalitique rubané assigné au Complexe d'Ungava été prélevé sur un gros affleurement bien exposé localisé en bordure de la baie d'Ungava (figure 2). Le gneiss est constitué de rubans centimétriques à décimétriques de tonalite et de diorite quartzifère montrant des teintes variant de gris clair à gris foncé en fonction du pourcentage de minéraux mafiques. La roche renferme aussi de nombreux rubans centimétriques blanchâtres qui pourraient représenter des rubans d'un mobilisat ancien parallélisé dans la gneissosité. Ce faciès est le plus répandu et correspond à l'unité 2 du Complexe d'Ungava (ApPung2).

Géochronologie

Cet échantillon a donné une petite quantité de grains de zircon, pour la plupart des prismes très fracturés (photo 1, annexe 2). Les images en BSE des zircons polis montrent des zones internes caractérisées par une luminescence uniforme entourées de zones oscillatoires endommagées (photo 1, annexe 3). La plupart des analyses se positionnent autour de la courbe concordia avec des âges 207Pb/206Pb néoarchéens (figure 7a). On reconnaît deux modes autour de 2760 Ma et 2860 Ma (figure 7b). Plusieurs analyses donnent des âges paléoprotérozoïques. Les trois analyses les plus jeunes parmi ce groupe montrent des âges 207Pb/206Pb qui s'accordent avec une moyenne de 1813 ±11 Ma (MSWD de 0,6; figure 7c). Ces analyses se signalent par une concentration d'uranium beaucoup plus grande que les autres, ainsi que par des rapports Th/U très bas, suggérant donc qu'elles proviennent probablement de surcroissances métamorphiques. Un groupe de six analyses concordantes (figure 7d) montre une dispersion moins importante et un âge 207 Pb/ 206 Pb moyen de 2803 ±7 Ma (MSWD de 1,1). Ces analyses proviennent de l'intérieur de grains moins endommagés. Cet âge représente la meilleure estimation de l'âge du protolite. Toutefois, il est possible que cette population de zircons comprenne une composante détritique (c'est-àdire des xénocristaux).

De la monazite fraîche a été trouvée en abondance dans les fractions magnétiques de cet échantillon (photo 2, annexe 2). Les images en BSE de la monazite ne montrent aucune évidence d'hétérogénéité pouvant indiquer l'existence de plusieurs évènements de cristallisation. Les analyses U-Pb s'accordent sur la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 1803 ±23 Ma (MSWD de 0,2; figure 7e). Cet âge correspond, dans la marge d'erreur, à celui des zircons métamorphiques.

Interprétation

L'âge de 2803 ±7 Ma confirme que le protolite du gneiss est d'âge archéen. L'âge de 1803 à 1813 Ma correspond à la déformation et au métamorphisme reliés à l'Orogène du Nouveau-Québec. Donc les tonalites et diorites quartzifères archéennes ont subi une forte déformation lors de l'Orogène du Nouveau-Québec qui est probablement à l'origine de la texture gneissique des roches.

2011-MS-0070A : Gneiss tonalitique rubané, feuillet SNRC 24J10

Géologie

Cet échantillon de gneiss tonalitique rubané présente un faciès identique à celui de l'échantillon 2011-MS-0106A décrit précédemment. Il a été assigné à la même unité ApPung2 du Complexe d'Ungava. L'échantillon provient d'un gros affleurement bien exposé en bordure de la baie d'Ungava dans la partie nord-est de la région (figure 2).

Géochronologie

Le rendement en zircons de cet échantillon est assez bon. Les grains sont grands et idiomorphes et forment des cristaux trapus et brunâtres (photo 3, annexe 2). Les images en BSE et en CL montrent quelques grains avec des secteurs présentant un petit noyau visible (photo 2, annexe 3).

Toutes les analyses LA-ICPMS (montage de grains polis) montrent une forte discordance, ce qui est surprenant compte tenu de la fraîcheur et de l'uniformité des grains. La plupart des données sont dispersées sous la courbe concordia le long d'une droite joignant un âge néoarchéen et un âge paléoprotérozoïque. Deux analyses de noyaux sont plus discordantes, ce qui suggère que les noyaux sont en partie altérés. L'analyse la plus jeune provient d'une zone recristallisée autour du grain 8 (photo 2, annexe 3). Une ligne de régression des données (noyaux omis) donne des âges d'intersection de 2991 ±29 Ma et 1896 ±75 Ma (MSWD de 1,3; figure 7f). Toutefois, les âges 207 Pb/²⁰⁶Pb des neuf analyses les plus vieilles s'accordent à peu près avec une moyenne de 2842 ±10 Ma (MSDW de 1,5), qui représente peut-être l'âge de cristallisation de la tonalite.

Quatre grains qui ont été fortement abrasés pour réduire l'effet du métamorphisme ont été choisis pour les analyses ID-TIMS (photo 4, annexe 2). Trois de ces analyses sont discordantes et forment presque une droite (figure 7g). La quatrième se trouve au-dessus de la courbe concordia avec un âge 207 Pb/ 206 Pb de 2805 ±1 Ma. Nous avons poursuivi en analysant trois autres grains polis ne montrant presque aucune évidence de recristallisation (grains 1, 2 et 4; photo 2, annexe 3). Ces analyses sont encore discordantes et donnent de plus grands âges, sauf pour une analyse qui se situe au-dessus de la courbe concordia. Cinq analyses ID-TIMS discordantes se distribuent le long d'une ligne avec des intersections indiquant des âges de 2861 ± 11 Ma et 1874 ± 31 Ma, mais elles ne s'accordent pas dans la limite des erreurs (MSDW de 12; figure 7g).

La discordance inverse est difficile à expliquer à moins d'impliquer une dissolution incomplète de l'échantillon au cours de l'analyse. Ceci est peu probable puisque les grains montrent tous une assez grande concentration en U, ce qui implique qu'ils auraient dû se dissoudre rapidement lors de l'attaque. Le métamorphisme paléoprotérozoïque a fort probablement provoqué une perte de Pb par diffusion de tous les secteurs des grains. Il n'est pas possible d'identifier des domaines qui préservent l'âge de cristallisation magmatique. Celle-ci doit donc être interprétée à partir de l'intersection supérieure à 2861 ±11 Ma. L'âge de métamorphisme devrait correspondre à l'intersection inférieure à 1874 ±31 Ma.

Interprétation

L'âge de 2861±11 Ma correspond à l'âge du protolite archéen du gneiss. Donc les deux échantillons de gneiss de l'unité ApPung2 du Complexe d'Ungava proviendraient originellement de roches intrusives tonalitiques à dioritiques archéennes relativement anciennes, plus vieilles que 2800 Ma. L'âge de métamorphisme de 1874 ±31 Ma correspond davantage à la déformation reliée à l'Orogène des Torngat (1870 à 1850 Ma) qu'à celle reliée à l'Orogène du Nouveau-Québec (1840 à 1770 Ma). Il est probable que les roches de la partie est de la région ont enregistré davantage les effets de l'Orogène des Torngat dont la frontière se trouve plus à l'est.

2011-CL-5255A : Gneiss rubané, tonalitique à dioritique, feuillet SNRC 24J05

Géologie

Cet échantillon provient d'une séquence de gneiss très bien rubanés constitués d'une alternance de bandes centimétriques à décimétriques de teintes très contrastées variant du blanc au noir. Les rubans grisâtres sont constitués de tonalite et de diorite quartzifère et les rubans foncés à noirâtres sont formés de diorite et d'amphibolite. Ces séquences de gneiss très bien rubanés ont été assignées à l'unité 1 du Complexe d'Ungava (ApPung1; Simard *et al.*, 2013). Elles forment des horizons kilométriques à l'intérieur de l'unité 2 (ApPung2) dans la moitié ouest de la région. L'échantillon provient d'un vaste affleurement bien exposé sur une île de la baie d'Ungava (figure 2).

Géochronologie

On a récupéré une petite quantité de zircons de couleurs et de morphologies diverses (photo 5, annexe 2). Les images en BSE montrent plusieurs grains avec de petits noyaux et d'autres avec de minces surcroissances (photo 3, annexe 3). Les analyses de huit grains polis montrent des groupements d'âges divers (figure 7h). La plupart des données se groupent autour d'un âge imprécis de 2734 ±21 Ma (MSWD de 4,6; figure 7i). Un sous-groupe de six données s'accordent avec un âge 207 Pb/ 206 Pb moyen de 2739 ±10 Ma (MSWD de 0,7), qui représente la meilleure estimation de l'âge du protolite. Un noyau a donné une analyse discordante avec un âge 207 Pb/ 206 Pb beaucoup plus vieux de 3154 ±20 Ma. Deux analyses de surcroissances montrant un rapport Th/U faible, dont l'une est discordante, présentent un âge 207 Pb/ 206 Pb moyen de 1786 ±15 Ma (MSWD de 1,1). La roche provient donc d'un pluton néoarchéen montrant un héritage mésoarchéen qui a été remobilisé au cours de l'orogène transhudsonienne.

Interprétation

L'âge de 2739 ±10 Ma confirme l'âge archéen du protolite du gneiss. La variété des âges de cristallisation et d'héritage dans les gneiss du Complexe d'Ungava témoigne d'une histoire complexe qui s'est échelonnée sur une longue période à l'archéen. Il est probable que l'histoire du craton archéen de la Zone noyau s'apparente à celle du craton du nord-est de la Province du Supérieur, juste à l'ouest de la Fosse du Labrador. Ce dernier a connu une histoire complexe qui fait intervenir plusieurs épisodes de croissance et de recyclage de la croûte archéenne entre 4,2 et 2,65 Ga (Simard *et al.*, 2008). L'âge de métamorphisme de 1786 ±15 Ma est conforme avec l'âge de l'Orogène du Nouveau-Québec qui a affecté les roches archéennes.

2011-HH-4084A : Gneiss granitique rubané, feuillet SNRC 24K15

Géologie

Cet échantillon provient d'une séquence de gneiss rubané de composition granitique qui a été assignée à l'unité 4 du Complexe d'Ungava (ApPung4). Cette unité est concentrée exclusivement dans la partie nord-ouest de la Zone noyau de la région. Contrairement aux autres unités de gneiss du complexe, tous les rubans qui composent le gneiss de l'unité 4 contiennent des feldspaths potassiques et ont une composition granitique ou granodioritique. L'échantillon provient d'un vaste affleurement localisé en bordure de la baie d'Ungava (figure 2).

Géochronologie

Cet échantillon a donné une quantité abondante de zircons frais sous la forme de grains équidimensionnels brunâtres (photo 6, annexe 2). Les images en CL des zircons montrent des zonations en secteurs avec des surcroissances minces à faibles teneurs en U, lesquelles sont parfois entourées d'une deuxième surcroissance à forte concentration en U (photo 4, annexe 3). Les analyses U-Pb de la partie centrale des zircons polis sont regroupées près de la courbe concordia avec un âge ${}^{207}Pb/{}^{206}Pb$ moyen de 2723 ±9 Ma (MSWD de 2,3; figure 7j). On peut distinguer deux groupes pour lesquels les données s'accordent dans la limite des erreurs avec des âges ${}^{207}Pb/{}^{206}Pb$ moyens de 2715 ±6 Ma (10 données, MSWD de 0,9) et 2741 ±9 Ma (six données, MSWD de 0,9). Toutefois, il se peut que cette distinction n'ait pas de signification géologique.

Des analyses de deux surcroissances à forte concentration en U (grains 14 et 15; photo 4, annexe 3) s'accordent dans la limite des erreurs avec un âge 207 Pb/ 206 Pb moyen de 1864 ±17 Ma (MSWD de 0,2; figure 7k). Ces analyses montrent des rapports Th/U < 0,1, typiques des zircons d'origine métamorphique.

L'échantillon contenait aussi une quantité abondante de monazite fraîche. Les analyses de monazite polie (photo 7, annexe 2) s'accordent sur la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 1792 ±9 Ma (MSWD de 0,6; figure 7l), nettement plus jeune que les zircons métamorphiques. On peut donc conclure de ces différentes analyses que le protolite de ce gneiss est un pluton néoarchéen qui a été remobilisé au moins deux fois, à 1864 ±17 Ma et à 1792 ±9 Ma.

Interprétation

L'âge de 2723 ±9 Ma confirme l'âge archéen du protolite du gneiss granitique. On peut donc considérer que le gneiss provient d'une intrusion granitique à granodioritique qui se serait mise en place autour de 2723 Ma et qui aurait été déformée par la suite au Protérozoïque. Si on considère les deux groupes d'âges archéens obtenus (2715 et 2741 Ma), on peut interpréter l'âge de mise en place de l'intrusion autour de 2715 Ma. L'âge de 2741 Ma représenterait un âge d'héritage obtenu des unités tonalitiques ou volcano-sédimentaires plus anciennes. Dans le craton du Supérieur, immédiatement à l'ouest de la Fosse du Labrador, les grandes unités potassiques ont des âges très répandus entre 2725 et 2700 Ma alors que les unités tonalitiques sont toutes plus anciennes que 2740 Ma, dont plusieurs ont des âges compris entre 2840 et 2775 Ma (Simard et al., 2008). Wardle et al. (2002) considèrent la Zone novau comme une partie du craton du Supérieur qui se serait détachée lors de l'ouverture du rift à l'origine des séquences volcano-sédimentaires de la Fosse du Labrador. Les âges archéens obtenus dans les gneiss du Complexe d'Ungava appuient cette hypothèse, du moins dans la moitié ouest de la région, puisqu'ils se comparent aux âges des unités équivalentes non gneissiques de la Province du Supérieur. L'origine de l'âge métamorphique paléoprotérozoïque de 1864 ±17 Ma est inconnu. Celui de 1792 ±9 Ma correspond à l'orogenèse du Nouveau-Québec.

2011-LP-2151A : Tonalite blanchâtre, feuillet SNRC 24J07

Géologie

L'échantillon correspond à une tonalite blanchâtre homogène, foliée et de granulométrie moyenne. L'aspect peu déformé de cette tonalite comparativement aux gneiss archéens suggérait un âge protérozoïque pour cette tonalite. Cette unité de tonalite se trouve dans le secteur est de la région (figure 2), en bonne partie occupé par les intrusions potassiques du Batholite de De Pas (1840 à 1805 Ma). L'échantillon a été prélevé sur un affleurement de ce secteur, au milieu de la toundra, pour vérifier si cette tonalite correspond à une phase tonalitique du batholite. Des phases tonalitiques ont été incluses dans le Batholite de De Pas par plusieurs auteurs dans le sud de la partie sud-est du Chuchill.

Géochronologie

Cet échantillon a donné une faible quantité de zircons avec des cristaux formant des petits prismes dont la plupart sont fracturés (photo 8, annexe 2). Pour les analyses LA-ICPMS sur les grains entiers, les rapports Pb/U et Th/U augmentent rapidement avec la profondeur des trous faits par le laser, ce qui indique la présence de surcroissances métamorphiques. Les données sont dispersées sur la courbe concordia avec deux groupements autour de 2650 Ma et 1800 Ma (figure 7m). L'analyse la plus jeune donne un âge 207 Pb/ 206 Pb de 1736 ±64 Ma, mais les cinq analyses de ce groupe ne s'accordent pas dans la limite des erreurs. Les neuf analyses les plus vieilles s'accordent avec un âge 207 Pb/ 206 Pb moyen de 2654 ±11 Ma (MSDW de 0,7; figure 7m).

L'échantillon DD91-1 a été utilisé comme étalon secondaire par rapport à l'étalon primaire DD85-17 au cours de ces analyses. Les résultats montrent une légère discordance inverse, avec un âge 207 Pb/ 206 Pb moyen de 2678 ±14 Ma (MSDW de 0,6 pour six données, annexe 1). Cet âge s'accorde dans la limite des erreurs avec l'âge ID-TIMS de 2682 ±1 Ma. Des zircons présentant plus de dommages, tel DD91-1, montrent évidemment un peu moins de fractionnement du rapport Pb/U au cours de l'ablation.

Un montage de grains polis a été préparé en complément de ces premières analyses. Dans les images en BSE (photo 5, annexe 3), on observe beaucoup de grains montrant une partie interne foncée idiomorphe ou arrondie entourée par des zones de teintes variables. Il n'existe cependant pas une bonne correspondance entre les zones ainsi identifiées et les âges obtenus lors de l'analyse. Plusieurs grains montrant des zones de teintes variables ont des âges archéens en bordure (par ex. les grains 1, 4, 7 et 8; photo 5, annexe 3), alors que l'on retrouve plusieurs grains paléoprotérozoïques associés à des zones uniformes (par ex. les grains 15, 17 et 25; photo 5, annexe 3).

Les analyses de grains polis présentent une distribution d'âges similaire à celles de grains entiers, sauf que les regroupements ainsi obtenus sont mieux circonscrits (figure 7n). Le groupe archéen est bien défini avec un âge moyen de 2663 \pm 7 Ma (MSWD de 0,9 pour neuf données; figure 70), alors que le groupement protérozoïque donne un âge moyen de 1818 \pm 13 Ma (MSWD de 0,03 pour cinq données; figure 7p).

Des grains entiers datés par LA-ICPMS ont été sélectionnés pour des analyses ID-TIMS. Quatre grains du groupement archéen ont subi une forte abrasion pour enlever toute surcroissance (photo 9, annexe 2). Les grains du groupement protérozoïque ont subi une dissolution partielle (méthode CA, photo 9, annexe 2). Ils ont été fortement attaqués le long des zones endommagées. Les données sont encore toutes discordantes et donnent une ligne de régression avec des intersections à 2659 ±10 Ma et 1792 ±23 Ma (MSDW de 4,3; figure 7q).

Interprétation

L'intrusion tonalitique est d'âge archéen et se serait mise en place autour de 2660 Ma. Il s'agit d'un âge archéen relativement jeune par rapport aux âges obtenus dans les tonalites et gneiss tonalitiques de la Zone noyau. Cette tonalite a été assignée au Complexe de Qurlutuq (ApPqur, Simard et al., 2013), constitué principalement de roches migmatitiques qui proviendraient de la fusion partielle des gneiss archéens. A plusieurs endroits, le Complexe de Qurlutuq comprend des intrusions tonalitiques d'aspect homogène semblables à celles datées à 2660 Ma. Ces tonalites homogènes correspondent probablement à des noyaux plus résistants qui ont été moins affectés par la fusion partielle que les roches rubanées environnantes. D'ailleurs, les tonalites homogènes renferment des petits rubans de mobilisat blanchâtre indiquant qu'elles ont également été affectées par la fusion partielle. Le matériel de fusion (mobilisat) des migmatites du Complexe de Qurlutuq est peu déformé et non recristallisé suggérant que la fusion se serait produite au Protérozoïque et aurait été peu affectée par des déformations ultérieures. L'âge protérozoïque autour de 1818 Ma obtenu dans la tonalite correspondrait à l'âge du métamorphisme et possiblement à l'âge de l'événement de fusion partielle qui a affecté les gneiss archéens pour produire les migmatites du Complexe de Qurlutuq. Cet événement pourrait être contemporain à la mise en place du Batholite de De Pas.

2011-IL-3141A : Granite homogène à grain fin, feuillet SNRC 24K09

Géologie

Cet échantillon provient d'une unité constituée de roches intrusives blanchâtres de composition tonalitique à granitique, homogènes, non déformées et très pauvres en minéraux mafiques. Ces roches ont l'apparence de mobilisat et pourraient représenter le produit le plus évolué de la fusion des gneiss archéens à l'origine des migmatites du Complexe de Qurlutuq. Ces roches blanchâtres couvrent une superficie importante dans la partie ouest de la Zone noyau (figure 2). Elles se présentent régulièrement sous forme d'injections métriques à plurimétriques à pendage faible, parallèles à la foliation des gneiss dans ce secteur. Ces roches intrusives ont été assignées à la Suite d'Aveneau (Simard *et al.*, 2013). L'échantillon daté correspond à un granite homogène prélevé sur un gros affleurement plat bien dégagé.

Géochronologie

Comme pour l'échantillon précédent, cet échantillon n'a fourni qu'une faible quantité de zircons prismatiques fracturés (photo 10, annexe 2). Les fractions magnétiques contenaient cependant une quantité abondante de monazites fraîches. Les images en BSE des zircons polis sont similaires à celles de l'échantillon précédent avec des portions intérieures homogènes et des bordures montrant des zonations oscillatoires (photo 6, annexe 3).

Les analyses de zircons entiers forment deux groupes d'âge paléoprotérozoïque (environ 1,8 Ga) et néoarchéen (environ 2,7 Ma, figure 7r). Le groupement le plus jeune donne un âge 207 Pb/ 206 Pb moyen de 1834 ±23 Ma (MSWD de 2,7), mais il ne s'accorde pas dans la limite des erreurs.

Les analyses de grains polis donnent une distribution similaire (figure 7s). Le groupement archéen donne un âge de 2697 ±18 Ma (MSWD de 3,0) pour neuf données (figure 7t), mais celles-ci ne s'accordent pas tout à fait dans la limite des erreurs. Les données protérozoïques sont plus homogènes avec un âge 207 Pb/ 206 Pb moyen de 1817 ±10 Ma (MSWD de 1,1; figure 7u). Les rapports Th/U de ces grains semblent indiquer une origine magmatique. Il n'y a pas de différence évidente sur les images en BSE entre les grains protérozoïques et néoarchéens.

La monazite (photo 11, annexe 2) ne montre aucune indication d'âges multiples, bien que l'on observe des zones subtiles visibles sur les images en BSE (photo 7, annexe 3). Les analyses des grains de monazite s'accordent sur la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 1848 ±13 Ma (MSWD de 1,2; figure 7v).

L'âge du plus jeune zircon (1817 ± 10 Ma) représente probablement la meilleure estimation pour la cristallisation de cette roche. Le magma provient de la remobilisation de roches néoarchéennes. La monazite est souvent présente dans les granites peralumineux et sa présence pourrait indiquer une composante sédimentaire dans la source.

Interprétation

L'âge de cristallisation de la roche granitique blanchâtre, interprété à 1817 ± 10 Ma, est semblable à l'âge du métamorphisme obtenu dans l'échantillon précédent de composition tonalitique (1818 Ma) assigné au Complexe de Qurlutuq. Cette concordance d'âge soutient l'hypothèse que les roches intrusives blanchâtres de la Suite d'Aveneau pourraient correspondre à un matériel évolué relié au phénomène de fusion à l'origine des migmatites du Complexe de Qurlutuq. L'âge de 2697 ±18 Ma proviendrait des roches archéennes de ce secteur qui auraient subi la fusion partielle pour produire le matériel granitique blanchâtre de la Suite d'Aveneau.

2011-PL-6182A : Tonalite très déformée à orthopyroxène-grenat, feuillet SNRC 24K07

Géologie

Un échantillon de tonalite très déformée à orthopyroxènegrenat a été prélevé dans la partie ouest de la Zone noyau (figure 2). Les roches de ce secteur ont été assignées au Complexe de Kaslac (Simard *et al.*, 2013). Ce complexe regroupe des roches intrusives de composition intermédiaire à felsique, fortement déformées à mylonitiques, localisées entre deux failles de chevauchement régionales majeures. L'origine ignée ou métamorphique de l'orthopyroxène contenu dans ces roches n'a pu être déterminée en raison de la forte déformation, de la recristallisation intense et d'un métamorphisme rétrograde omniprésent dans ce secteur. L'échantillon a été prélevé sur un gros affleurement bien dégagé pour déterminer l'âge archéen ou protérozoïque de ces roches déformées.

Géochronologie

Les zircons sont assez abondants et forment des prismes et des cristaux trapus très frais (photo 12, annexe 2). Les images en CL montrent des zones sombres avec des surcroissances plus claires (photo 8, annexe 3). Malgré certaines évidences indiquant une hétérogénéité des grains, la plupart des âges LA-ICPMS tombent sur la courbe concordia et indiquent un âge 207 Pb/ 206 Pb moyen de 1843 ±12 Ma. En omettant une analyse montrant une forte concentration en U, les résultats s'accordent dans la limite des erreurs à 1836 ±7 Ma (MSDW de 1,3; figure 7w). Les rapports Th/U sont typiques des zircons d'origine magmatique ou associés au métamorphisme granulitique caractérisé par des conditions anhydres.

Les analyses par ID-TIMS ont été réalisées sur trois grains qui ont subi une forte abrasion (photo 13, annexe 2). Ces analyses sont concordantes, mais seulement deux analyses s'accordent à 1835 \pm 2 Ma, tandis que la troisième donne un âge un peu plus vieux à 1839 \pm 3 Ma (figure 7x). Ceci souligne que la croissance du zircon s'est déroulée sur un intervalle de plusieurs millions d'années.

Interprétation

L'âge autour de 1835 Ma indique clairement que cette roche intrusive a été mise en place au Protérozoïque, au début de l'Orogène du Nouveau-Québec (1840 à 1770 Ma), ce qui explique la forte déformation de ces roches. Cet âge se compare à des âges obtenus dans des roches charnockitiques associées au Batholithe de De Pas dans le sud de la partie sud-est du Churchill (1831 \pm 5 Ma, James *et al.*, 1996; 1836 \pm 10 Ma, James et Dunning, 2000; 1837,3 \pm 4,5 Ma, David *et al.*, 2011).

Province du Supérieur, Sous-province de La Grande

2011-QD-7509A : Conglomérat polygénique, Formation de Keyano, feuillet SNRC 33H13

Géologie

La Formation de Keyano est une nouvelle unité métasédimentaire et métavolcanique de la Sous-province de La Grande, située dans la région du village de Keyano, entre les réservoirs La Grande 3 et La Grande 4 (figure 3). Elle a été définie lors des travaux de cartographie géologique de l'été 2011 (Goutier *et al.*, en préparation). Cette unité est principalement composée de paragneiss dérivés de wackes et de mudrocks. Elle comprend aussi des niveaux de formation de fer, de conglomérat polygénique et d'amphibolite dérivée de volcanites mafiques.

L'échantillon 2011-QD-7509A provient d'un grand affleurement de conglomérat polygénique et de métawacke, cartographié en détail par Duparc et al. (2012). Cet affleurement s'étend sur près de 145 m sur la rive sud de la rivière La Grande. La stratification est presque perpendiculaire au rivage. Elle a une attitude moyenne de 315° 84'. La polarité stratigraphique est normale vers le nord-est. L'échantillon a été pris dans un niveau de 2 m d'épaisseur de conglomérat polygénique, à cailloux jointifs. Les clastes sont mal triés. Les plus gros sont arrondis, tandis que les plus petits sont subanguleux. Ils sont de composition variée : tonalite foliée à biotite, gneiss tonalitique, intrusion felsique à grain fin, amphibolite grenue à hornblende, veine de quartz, paragneiss et rares fragments de formation de fer à magnétite et de chert à magnétite et pyrite. Ce secteur a subi une déformation caractérisée par de l'étirement et un métamorphisme régional variant du faciès des schistes verts à celui des amphibolites puisqu'on note la présence de biotite, de hornblende et de rares grenats dans le métawacke.

Géochronologie

Cet échantillon a donné une petite quantité de zircons. La plupart des grains sont frais, idiomorphes ou subarrondis avec des faces multiples (photo 14, annexe 2). Les analyses ont été réalisées sur des grains entiers. Toutes les analyses donnent des âges ²⁰⁷Pb/²⁰⁶Pb néoarchéens (figure 8a). La distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb indique l'existence de deux modes autour de 2710 Ma et 2735 Ma pour les composantes détritiques (figure 8b).

Interprétation

La distribution des âges avec des modes à 2710 Ma et 2735 Ma est comparable à celle des roches ignées et des populations détritiques de la portion orientale de la Province du Supérieur. Des roches plutoniques, de composition et d'âge similaires aux fragments du conglomérat, se trouvent au nord dans la Suite de Coates (Sous-province de Minto) datée de 2743 à 2710 Ma (David *et al.*, 2011, 2012). Le mode de 2710 Ma indique en plus que les roches sédimentaires de la Formation de Keyano sont plus jeunes que les séquences volcaniques de la région qui sont datées de 2847 à 2841 Ma (Mintisch et Laforge, David *et al.*, 2012); de 2820 à 2806 Ma (Groupe de Guyer, David *et al.*, 2012); ~2742 \pm 28 Ma (échantillon 2011-JG-1187A, cette étude).

L'âge le plus ancien à 3013 ± 24 Ma obtenu de ce conglomérat est comparable à l'un des modes du conglomérat de la Formation de Brune, situé à 80 km à l'ouest-sud-ouest, déterminé à 2898 ± 2 Ma (David *et al.*, 2011). Cet âge est plus jeune que celui des roches les plus vieilles de la partie orientale de la Province du Supérieur qui ont été datée à 3452 ± 16 Ma (échantillon 1997-JG-1592 M1, cette étude).

Une analyse concordante donne un âge nettement plus jeune à 2618 \pm 22 Ma avec un rapport Th/U bas, typique des zircons métamorphiques et des intrusions granitiques tardives datées à 2618 Ma (Goutier *et al.*, 1999b, 2000; Parent, 2011).

SGNO-2000-05 (1996-JG-1390) : Conglomérat polygénique, Formation d'Ekomiak, feuillet SNRC 33F06

Géologie

Un échantillon de conglomérat polygénique, peu déformé, de la Formation d'Ekomiak avait été prélevé en 1999 dans la partie ouest de la Sous-province de La Grande, à 920 m au nord du lac Menarik. Il provient du centre-nord de l'unité Aek2, dominée par le conglomérat polygénique avec quelques lentilles de wacke lithique (figure 3). Cette unité repose en discordance d'érosion sur les roches du Groupe de Yasinski.

Ce conglomérat est composé principalement de cailloux et de galets de tonalite peu déformée et de basalte, avec des clastes de rhyolite, d'intrusions felsiques à grain fin et de chert gris et noir (Goutier *et al.*, 2002). L'intérêt de réanalyser les zircons de ce conglomérat est de comparer les résultats de la méthode d'ablation laser avec ceux des autres conglomérats polygéniques récemment réalisés (formations de Brune, de Marbot, de Magin et de Keyano).

Géochronologie

Nous avons procédé à la réanalyse par l'ablation laser (LA-ICPMS) des zircons d'un échantillon de conglomérat polygénique traité en 2000-2001 par la méthode de dilution isotopique (ID-TIMS) (Goutier *et al.*, 2002). Cet échantillon a donné de petits zircons trapus, idiomorphes ou subarrondis de qualités diverses (photo 15, annexe 2). Les analyses de grains entiers ont donné des âges ²⁰⁷Pb/²⁰⁶Pb néoarchéens (figure 8c). La distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb pour les composantes détritiques montre un mode principal autour de 2735 Ma, avec des modes secondaires à 2810 Ma et 2855 Ma (figure 8d).

Interprétation

Cette distribution d'âges spécifiques suggère que le matériel détritique provient typiquement de l'érosion des roches de la région du lac Yasinski où l'on trouve ce conglomérat. Le mode principal à 2735 Ma correspond à l'âge des volcanites du Groupe de Yasinski et du Pluton de La-Grande-Sud, datées à 2740,4 \pm 1,2 (Davis *et al.*, 2005), 2732 +8/-6 Ma (Goutier *et al.*, 1998) et 2734 \pm 2 Ma (Goutier *et al.*, 2001). Les modes secondaires peuvent provenir de l'érosion des roches du Complexe de Langelier, du Groupe de Guyer ou de la Suite de Brésolles, qui se trouvent plus au nord-est, dont certaines unités ont été datées entre 2880 et 2806 Ma (Mortensen et Ciesielski, 1987; Goutier *et al.*, 2002; David *et al.*, 2009a, 2010, 2011).

2011-JG-1187A : Tuf à lapillis, Formation de Corvette, feuillet SNRC 33H05

Géologie

La Formation de Corvette est une nouvelle unité métavolcanique de la Sous-province de La Grande, située dans la région du lac de la Corvette (figure 3). Elle a été définie lors des travaux de cartographie géologique de l'été 2011 (Goutier *et al.*, en préparation). Cette unité est principalement composée d'amphibolites foliées et dérivées de volcanites intermédiaires à mafiques, ainsi que de niveaux de métavolcanoclastites de compositions intermédiaire et felsique. Ces roches sont adjacentes à la zone tectonique séparant les sous-provinces de La Grande et d'Opinaca.

Pour déterminer l'âge de la Formation de Corvette, un échantillon a été prélevé dans la partie sud du décapage TR-CE-018 de la zone Marco (Aucoin, 2008; Aucoin et al., 2012). Cet affleurement a été choisi en raison des teneurs élevées en Zr de la Formation de Corvette (228 ppm de Zr, échantillon 2011053240, SIGÉOM; 238 ppm de Zr, échantillon 55345, 267 ppm de Zr, échantillon 55350, Aucoin et al., 2012) et d'une faible quantité de sulfures en comparaison aux décapages au sud-est. Une série d'échantillons a été prélevée à la scie dans le niveau de métavolcanoclastite dacitique, interprété comme un « tuf à lapillis ». Cette roche est composée de lapillis et de blocs polygéniques, de composition dacitique à intermédiaire et en forme de fuseau. Les clastes sont mal triés et ont subi un fort aplatissement et un fort étirement. La roche présente une cristallisation métamorphique importante où apparaissent le grenat et la hornblende, ainsi que des bandes centimétriques migmatitisées. De plus, la roche est affectée par un métamorphisme rétrograde, caractérisé par la présence de chlorite, de carbonates, de séricite et de sulfures.

Géochronologie

La séparation des minéraux lourds a permis de récupérer de la pyrite et un peu de titanite, mais aucun zircon. Plusieurs petits grains de zircon prismatiques ont été obtenus après dissolution de la pyrite à l'acide nitrique (photo 16, annexe 2), mais ces grains sont trop petits et trop endommagés pour l'analyse par ID-TIMS. Ils sont également trop petits pour l'analyse LA-ICPMS sur grains polis. Presque toutes les analyses LA-ICPMS de grains entiers montrent des signaux élevés de ⁸⁸Sr et des rapports Th/U élevés, ce qui indique que la plupart des zircons sont altérés. La majorité des données sont discordantes, mais leur distribution indique un âge néoarchéen (figure 8e). Les analyses les plus fiables (grains 5, 14 et 18) sont parmi les plus concordantes. Les grains 14 et 18 montrent des rapports Th/U normaux pour des zircons magmatiques et leurs âges 207Pb/206Pb s'accordent dans la limite des erreurs avec une moyenne de 2742 ±28 Ma (MSWD de 0,8). Il est toutefois possible qu'il s'agisse de xénocristaux. Le grain 5 montre un rapport Th/U très bas et un âge quasi-concordant à 2525 ±24 Ma. Cet âge est plus jeune que tous les évènements magmatiques connus dans la Province du Supérieur, mais il pourrait correspondre à un évènement hydrothermal (Jemielita et al., 1990). L'échantillon 2011-FL-6129C, en provenance de la région de Chibougamau, a donné un zircon avec un âge similaire (cette étude). Ce zircon était également en inclusion dans la pyrite.

Interprétation

Cette datation de 2742 \pm 28 Ma est importante même si elle n'est pas précise ou qu'il s'agisse de l'âge de xénocristaux. Elle indique que la Formation de Corvette est clairement plus jeune que le Groupe de Guyer qui a été daté de 2820 Ma à 2806 Ma (David *et al.*, 2012). La Formation de Corvette pourrait être contemporaine au Groupe de Yasinski dont l'âge varie de <2751 Ma à 2732 Ma (Goutier *et al.*, 1998; Goutier *et al.*, 2003; Davis *et al.*, 2005). Ce groupe est présent dans la partie ouest de la Sous-province de La Grande et en partie en contact avec les roches du Groupe de Laguiche. En 2012, un nouvel échantillon a été prélevé plus à l'est pour préciser l'âge de la Formation de Corvette.

2011-JG-1592 M1 : Gneiss granitique, Complexe de Langelier, feuillet SNRC 33F03

Géologie

L'échantillon 2011-JG-1592 M1 (figure 3) a été prélevé au même endroit qu'un échantillon précédemment daté à 3360 +7/-5 Ma, de façon préliminaire, par Nuno Machado (communication personnelle, 2000). Il s'agit d'un gneiss granitique provenant de l'affleurement de la discordance entre les roches du Complexe de Langelier et de la Formation d'Apple, à l'ouest du lac Sakami (figure 4). Ce gneiss granitique est un niveau d'une vingtaine de mètres d'épaisseur, sous-jacent au gneiss tonalitique typique de l'unité Algl1 du Complexe de Langelier. Le gneiss granitique à biotite et muscovite est blanchâtre à brunâtre, de granulométrie fine à moyenne, avec des rubans centimétriques à décimétriques, parfois plus déformés.

Géochronologie

Cet échantillon a donné une quantité abondante de grains de zircon. Ces grains sont toutefois presque tous très altérés avec un blanchissement typiquement associé à la présence d'une discordance (photo 17, annexe 2). Des grains relativement frais ont été sélectionnés et analysés par LA-ICPMS. Les données montrent un fort étalement autour de la courbe concordia avec des âges ²⁰⁷Pb/²⁰⁶Pb qui varient de 3460 Ma à 2280 Ma (figure 8f). Les analyses ID-TIMS donnent une distribution des données similaires (Davis et Dion, 2012).

Le caractère uniforme du zircon, qui montre une concentration en U exceptionnellement élevée, suggère qu'il s'agit d'une population unique, bien que très perturbée, avec un âge unique de cristallisation. Les images en BSE des grains polis (photo 9, annexe 3) montrent l'état de dommage de ces grains qui auraient accumulé les dégâts et subi des pertes de Pb significatives durant le Paléoprotérozoïque. Des analyses LA-ICPMS de grains polis sont encore plus dispersées avec plusieurs données situées au-dessus de la courbe concordia. Ce phénomène est probablement associé à la faible correspondance entre l'état structural de l'échantillon et de l'étalon (figure 8g). Ceci a toutefois peu d'effets sur les rapports $^{207}Pb/^{206}Pb$ et les cinq analyses les plus vieilles s'accordent dans la limite des erreurs avec un âge $^{207}Pb/^{206}Pb$ moyen de 3452 ±16 Ma (MSWD de 0,71; figure 8h).

En raison de l'état des zircons, trois grains les plus transparents ont été sélectionnés et traités par l'abrasion à l'air pour des analyses par ID-TIMS (photo 18, annexe 2). Deux grains ne montrent aucune indication visible de blanchissement, tandis que le troisième montre un blanchissement léger. Ces trois grains ont encore donné des analyses discordantes et ne s'accordent pas en âge. La droite de régression passant par les analyses donne des âges d'intersection avec la concordia d'environ 3560 Ma et 2240 Ma (figure 8i), une droite semblable à celle définie par les analyses LA-ICPMS. L'analyse ID-TIMS la plus vielle indique un âge ²⁰⁷Pb/²⁰⁶Pb de 3431 ± 1.2 Ma avec une discordance de 4 %, tandis que l'analyse la plus jeune, également discordante, donne un âge de 2422 ± 1.5 Ma. Cette analyse montre une concentration extraordinaire en U d'environ 15 000 ppm (tableau 3). L'âge de 3452 ± 16 Ma représente la meilleure estimation de l'âge de cristallisation de ce gneiss granitique.

Interprétation

Cette nouvelle datation à 3452 ± 16 Ma confirme qu'il s'agit de la plus vieille roche datée de la Baie-James et du deuxième secteur renfermant les plus vielles roches du Québec. Les plus vieilles roches se situent dans la Ceinture de Nuvvuagittuq en bordure de la baie d'Hudson (4,2 Ga à 3,65 Ga, O'Neil *et al.*, 2008; David *et al.*, 2009b; David, 2012). Les roches datées du Paléoarchéen (3,6 Ga à 3,2 Ga) sont très rares. Pour l'instant, il n'y a pas d'autres roches datées de cette ère à la Baie-James et, au nord, seuls des zircons hérités ont été datés. Il y a probablement d'autres roches de cet âge dans la région du lac Yasinski puisqu'on trouve des zircons paléoarchéens (~3,34 à 3,55 Ga, Machado, communication personnelle, 2000; Davis *et al.*, en préparation) dans l'arénite quartzitique (97-JG-1592 S2) de l'affleurement de la discordance (figure 4).

2011-JG-1242A : Gneiss tonalitique, Complexe de Langelier, feuillet SNRC 33H12

Géologie

L'échantillon provient d'une unité de tonalite à biotite et hornblende, foliée et de gneiss tonalitique, située entre la rivière La Grande et la route Transtaïga entre les réservoirs La Grande 3 et La Grande 4 (figure 3). Elle est structuralement sous-jacente aux roches du Groupe de Guyer datées de 2820 à 2806 Ma (David *et al.*, 2012). La partie ouest contient plus de gneiss et la partie est contient plus de tonalite foliée. Les caractéristiques lithologiques suggèrent que ces roches appartiennent au Complexe de Langelier qui est daté de 3452 Ma à 2788 Ma (cette étude et Parent, 2011).

L'échantillon est un gneiss tonalitique, à hornblende et biotite, avec des niveaux centimétriques d'amphibolite dioritique et de granodiorite. L'ensemble est plissé. Il a été prélevé sur la rive sud de la rivière La Grande.

Géochronologie

Cet échantillon a fourni une quantité modérée de grains de zircon sous la forme de petits grains subarrondis et typiquement altérés (photo 19, annexe 2). Les analyses LA-ICPMS de 16 grains relativement frais se situent à proximité de la courbe concordia, mais quelques-uns donnent des âges nettement plus vieux, ce qui montre que la population contient des xénocristaux (figure 8j). Un groupe de 12 analyses s'accordant à peu près dans la limite des erreurs (MSDW de 2,1), a donné un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2762 ±20 Ma (figure 8j).

Les grains du groupe le plus jeune ont été récupérés du montage utilisé pour les analyses LA-ICPMS et traités par la méthode CA. Les trois grains les plus transparents ont été datés par ID-TIMS (photo 20, annexe 2), mais ces analyses ne s'accordent pas dans la limite des erreurs avec des âges ²⁰⁷Pb/²⁰⁶Pb variant entre 2713 Ma et 2728 Ma (figure 8k).

Les analyses sont aussi toutes situées un peu au-dessus de la courbe concordia, ce qui s'explique peut-être par l'implantation du Pb provenant des zones riches en U. Il semble que ce gneiss contienne une population mixte de grains néoarchéens associée peut-être à un héritage ou à un métamorphisme précoce. Le grain le plus jeune daté à 2713 ± 2 Ma donne un âge maximal pour la formation du gneiss.

Interprétation

Cette datation indique que ce gneiss est nettement plus jeune, de près de 700 Ma, que celui de l'affleurement de la discordance (2011-JG-1592 M1, cette étude). Si cette roche appartient au Complexe de Langelier, elle représente le plus jeune gneiss de cette unité. Cette datation confirme que les épisodes de déformation et de métamorphisme dans la Sous-province de La Grande s'étendent sur une grande période de temps. Il est probablement nécessaire de rediviser le Complexe de Langelier en sous-unités pour refléter la formation des différentes unités de tonalites et gneiss.

L'âge maximal de 2713 Ma correspond aussi à l'un des épisodes de déformation affectant les roches du Groupe de Yasinski et la mise en place des Intrusions syntectoniques de Duncan (2716 Ma à 2709 Ma, Goutier *et al.*, 1998, 1999a, 2003; Davis *et al.*, 2005) dans la partie ouest de la Sous-Province de La Grande. Cet âge est aussi comparable à celui des gneiss du Massif de Lapparent en Abitibi (2713 Ma à 2711 Ma, Mortensen, 1993b) indiquant qu'il y a la formation de gneiss à plusieurs endroits en même temps dans la Province du Supérieur.

Province du Supérieur, Sous-province de l'Abitibi, secteur de Chibougamau-Chapais

2011-FL-5270A : Tuf à lapillis, Membre des Vents, Formation d'Obatogamau, feuillet SNRC 32G10

Géologie

L'échantillon 2011-FL-5270A (figure 5) est un tuf à lapillis moyens avec une matrice de chlorite à grain très fin, de couleur vert-gris en surface altérée et vert foncé en surface fraîche. La majorité des lapillis visibles sont de couleur beige foncé à beige pâle et gris. Ils sont anguleux et ont une taille qui varie de quelques millimètres à plus de deux centimètres. La surface de l'affleurement est caractérisée par le relief positif des lapillis comparativement à la matrice chloriteuse. Le tuf à lapillis est en contact irrégulier ondulant avec une roche volcanique mafique et massive de couleur vert foncé. Les deux unités possèdent une schistosité (030/89) ainsi qu'une fracturation régulière plus tardive (333/85).

Géochronologie

Cet échantillon contenait très peu de zircons avec des cristaux assez fracturés (photo 21, annexe 2). Des analyses LA-ICPMS ont été réalisées sur des grains entiers à identifier et éviter les xénocristaux. Les âges 207 Pb/ 206 Pb de 14 grains s'accordent dans la limite des erreurs avec une moyenne de 2800 ±6 Ma (MSDW de 0,5; figure 9a). Quatre grains montrent des concentrations en U plus basses et des âges plus grands.

Les grains dont les analyses LA-ICPMS s'accordent ont subi un traitement CA. Les cinq grains les plus transparents ont été analysés par ID-TIMS (photo 22, annexe 2) et donnent des résultats qui tombent sur la courbe concordia dans la limite des erreurs. Le calcul d'un « âge concordia » (Ludwig, 1998) permet d'estimer la mise en place de cette unité à 2798,7 ±0,7 Ma (MSDW de 1,0; figure 9b).

Interprétation

Mortensen (1993a) a déjà tenté de dater le Membre des Vents à l'aide de deux échantillons. Le premier échantillon provenant d'une rhyodacite à phénocristaux de feldspath a livré des zircons qui ont permis de déterminer des âges variant de 2787,5 à 2756,9 Ma. Le deuxième échantillon est une brèche volcanique felsique incluant des fragments à phénocristaux de quartz et feldspath mesurant jusqu'à 30 cm. Les populations de zircons provenant de ce second échantillon ont permis de déterminer des âges compris entre 2805 et 2802 Ma ainsi que 2790,8 et 2761,9 Ma. Mortensen (1993a) affirme que ces résultats ne peuvent être interprétés avec clarté, mais mentionne tout de même un âge maximal de cristallisation de 2759 Ma pour les roches volcaniques felsique du Membre des Vents, avec des xénocristaux de zircons donnant des âges jusqu'à 2805 Ma. L'âge de cristallisation de 2798,7 ±0,7 Ma obtenu pour l'échantillon de tuf à lapillis moyens 2011-FL-5270A permet de lever l'ambiguïté concernant l'âge des roches volcaniques felsiques du Membre des Vents (Sharma et al. 1987; Mueller et al., 1989). Ce résultat remet également en question l'appartenance du Membre des Vents au Groupe de Roy et son inclusion dans la Formation d'Obatogamau, considérant qu'il y a plus de 60 Ma d'écart entre le dépôt des roches volcaniques felsiques du Membre des Vents et celles de la Formation de Waconichi (2730 à 2726 Ma; Mortensen, 1993a; Legault, 2003; Leclerc et al., 2011; David et al., 2012). À cet effet, il est proposé de hausser le rang du Membre des Vents à celui de la Formation des vents.

2006-FL-6129C : Tuf à lapillis, Formation de Bruneau, feuillet SNRC 32G16

Géologie

L'échantillon 2006-FL-6129C (figure 5) a été recueilli à la sortie d'urgence de la mine Bruneau. Cette roche est un tuf à

lapillis moyens à grossiers avec une matrice à grain très fin et chloriteuse de couleur gris foncé en surface fraîche. La majorité des lapillis visibles sont de couleur beige foncé à beige pâle et gris. Ils sont anguleux et ont une taille qui varie de quelques millimètres à plus de dix centimètres. Cette unité est recoupée à la base par un gabbro subophitique et recouverte au sommet par une mince unité de formation de fer à magnétite-pyrite \pm chalcopyrite et de chert lité (trois mètres) et d'andésite coussinée. Les formations de fer et les cherts suggèrent une pause dans le volcanisme, concomitante avec le dépôt d'amas sulfurés volcanogènes, lesquels ont été en partie exploités à la mine Bruneau (minéralisation de type A; Prochnau, 1968).

Géochronologie

De la pyrite a été récupérée dans la fraction lourde et non magnétique de cet échantillon. La dissolution de la pyrite à l'acide nitrique a révélé quelques petits cristaux trapus de zircon (photo 23, annexe 2). Les analyses LA-ICPMS de 18 grains montés sur ruban sont situées à proximité de la courbe concordia. À une exception près, elles s'accordent dans la limite des erreurs avec un âge 207Pb/206Pb moyen de 2720 ±14 Ma (MSDW de 2,3; figure 9c). Une analyse est concordante à 2505 ±32 Ma.

Quelques grains datés par LA-ICPMS ont subi le traitement par CA (chemical abrasion) (photo 24, annexe 2). Ils ont ensuite été analysés par ID-TIMS, ce qui a produit en général des résultats concordants. Les analyses de cinq grains donnent des âges 207Pb/206Pb qui s'accordent bien avec un âge moyen de 2724,4 \pm 1,2 Ma (MSDW de 1,2; figure 9d). Une analyse montre une discordance inverse qui peut résulter de l'implantation du Pb par recul alpha. Le grain « jeune » reconnu par LA-ICPMS donne un âge ²⁰⁷Pb/²⁰⁶Pb plus précis par ID-TIMS de 2498 ±3 Ma. Ce grain présente une concentration de U et un rapport Th/U semblable aux autres. Il est peu probable qu'il s'agisse d'un grain provenant d'un autre échantillon (c-à-d. d'une contamination), puisque des roches de cet âge sont rares et qu'aucun échantillon de ce type n'a été analysé récemment par le laboratoire. Il pourrait s'agir d'un zircon hydrothermal ayant cristallisé en même temps que la pyrite, mais dans ce cas, on s'attendrait à un rapport Th/U très bas puisque le Th n'est pas facilement transporté par les fluides aqueux.

Interprétation

La contrainte inférieure d'âge de la Formation de Bruneau est fixée par l'âge du Membre d'Allard dans la Formation de Waconichi sous-jacente. Les zircons des tufs à lapillis moyens au parc Allard et sur la route 167 à l'ouest de la baie Proulx (sud de la mine Bruneau) ont livré respectivement des âges de 2726.6 \pm 0.7 Ma et 2726.7 \pm 0.7 Ma (Leclerc *et al.*, 2011). La contrainte supérieure d'âge est donnée par l'âge maximum des grès feldspathiques de la Formation de Blondeau (2721 \pm 3 Ma; Leclerc *et al.*, 2012). L'âge moyen

de 2724,4±1,2 Ma pour l'échantillon de tuf à lapillis moyens 2006-FL-6129C correspond à une période de volcanisme explosif suivie d'une pause dans le volcanisme, survenue de 2 à 3 Ma suivant le dépôt des roches volcaniques felsiques de la Formation de Waconichi. D'autres unités de roches volcanoclastiques localement associées à des exhalites de chert-pyrite-pyrrhotite ± chalcopyrite ont également été identifiées à des niveaux stratigraphiques équivalents de la Formation de Bruneau. De plus, le contenu en MgO des basaltes recouvrant ces dépôts est localement plus élevé (jusqu'à 10 % MgO), ce qui suggère le développement d'un cycle volcanique distinct à l'intérieur de la Formation de Bruneau (Leclerc et al., 2011). Paradoxalement, la durée de la pause dans le volcanisme n'a pu être de longue durée, considérant l'épaisseur importante des coulées de basaltes tholéiitiques sus-jacentes attribuées à la Formation de Bruneau et l'intervalle de 3 Ma avec l'âge maximum de dépôt des grès feldspathiques de la Formation de Blondeau (2721±3 Ma; Leclerc et al., 2012).

2011-FL-5283A : Intrusion porphyrique à phénocristaux de quartz et de feldspath, feuillet SNRC 32J01

Géologie

L'échantillon 2011-FL-5283A (figure 5) est une intrusion felsique porphyrique à phénocristaux de quartz et feldspath dans une matrice foliée de chlorite-séricite (260/85). La roche apparaît blanche en surface altérée et grise en surface fraîche. Les phénocristaux de quartz mesurant jusqu'à 5 mm de diamètre ont une couleur grise à bleutée. Le contact du filon-couche avec son encaissant, un basalte de la Formation de Bruneau, est visible sur l'affleurement où il apparaît ondulant.

Géochronologie

Une bonne population de grains de zircon a été obtenue pour cet échantillon. Les phénocristaux de quartz dans les roches felsiques constituent un bon indicateur de la présence de cristaux de zircon bien développés puisqu'ils indiquent une résidence prolongée dans une chambre magmatique.

Des analyses LA-ICPMS ont été réalisées sur des grains entiers des plus grands cristaux (photo 25, annexe 2). Les analyses de 21 grains se regroupent autour de la courbe concordia et s'accordent avec des âges 207 Pb/ 206 Pb moyens de 2713 ±5 Ma (MSDW de 0,45; figure 9e). Ces mêmes grains ont subi le traitement CA et les trois grains les plus transparents ont été choisis pour analyses par ID-TIMS (photo 26, annexe 2). Ces données se positionnent sur la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 2710,2 ±0,8 Ma (MSDW de 0,05; figure 9f), ce qui représente la meilleure estimation de l'âge de cristallisation du porphyre.

Interprétation

Mortensen (1993a) avait déjà daté un dyke porphyrique à phénocristaux de feldspath et de quartz (QFP) recoupant les roches volcaniques mafiques de la Formation de Bruneau dans ce secteur (2711,7 +9,4/-7,0 Ma; Mortensen, 1993a). L'analyse de l'échantillon 2011-FL-5283A a permis d'obtenir un âge de cristallisation de 2710,2 \pm 0,8 Ma avec une marge d'erreur plus précise. Les intrusions felsiques à phénocristaux de quartz et feldspath analysées dans ce secteur sont recoupées par des veines de quartz aurifères (jusqu'à 19.6 g/t et 45.6g/t; Evans, 1991) et sont elles-mêmes anomalement enrichies en Au (jusqu'à 2920 ppb; Evans, 1991). Ces intrusions felsiques sont reconnues régionalement dans la portion supérieure de la Formation de Bruneau où d'autres indices similaires ont été identifiés (indices Monexco, MC-Gold, Mine Gwillim-Croteau).

Province du Supérieur, Sous-province de l'Abitibi, secteur de Matagami

La région de Matagami appartient principalement à la Sous-province de l'Abitibi (SPA). Plusieurs campagnes de cartographie importantes et études ont été réalisées dans cette région au cours des ans. Mentionnons, de façon sommaire, les travaux de Sharpe (1968), Roberts (1975), MacGeehan (1979), MacLean (1984), Beaudry et Gaucher (1986), Piché (1991), Rhéaume (2010) et Pilote *et al.* (2011). Le canevas stratigraphique original a été établi par Sharpe (1968).

Cette région contient des roches volcaniques et plutoniques variées, dont le Complexe de la rivière Bell (CRB) - une vaste intrusion ultramafique à mafique litée subconcordante (âge U-Pb sur zircons du sommet granophyrique à 2724,6 ±2,5 Ma et âge sur titanite de 2721,2 $\pm 2,0$ Ma; Mortensen, 1993a), et une étroite bande de roches sédimentaires (le Groupe de Matagami - GMa, <2700 Ma; Goutier et al., 2004). Cette bande sédimentaire est en contact de faille avec la Sous-province d'Opatica (SPO) au nord et des volcanites au sud. Ces lithologies sont recoupées par des dykes de gabbro d'âge protérozoïque. Deux groupes volcaniques sont présents : le Groupe du lac Watson (GWat, 2725-2723 ± 2 Ma; Mortensen, 1993a, Ross et al., 2014), lequel est surmonté par le Groupe de Wabassee (GWab). Le GWat est composé essentiellement de rhyolite, de rhyodacite et de dacite. Ce groupe renferme la majorité des gisements de sulfures massifs volcanogènes du camp. La tuffite clé, située au-dessus des rhyolites du GWat, représente un niveau repère important pour les minéralisations de SMV du camp minier. Le Groupe de Wabassee est dominé par des andésites et des basaltes coussinés, massifs et/ou bréchiques. Ce groupe renferme les Volcanites de la rivière Bell (affinité tholéiitique) et les Volcanites de la rivière Allard (affinité calco-alcaline à transitionnelle). Le GWat est recoupé par le CRB.

2010-PP-0014A : Tuf à lapillis et à blocs rhyolitiques, site SW de la mine du lac Garon, Formation de la rivière Allard, Groupe de Wabassee, feuillet SNRC 32F13

Géologie

Cette unité rhyolitique (figure 6) a été désignée « GLR » («Garon Lake Rhyolite») par MacGeehan (1979). Cette unité se trouve dans l'éponte inférieure du gisement de sulfures massifs volcanogènes du lac Garon, exploité par Noranda dans les années 70. Elle constitue la principale lithologie encaissant la séquence des mines du Flanc Nord du camp de Matagami (une bande d'environ 1500 m d'épaisseur, recoupée et disséquée par plusieurs failles E-W(Pilote 2010; Pilote *et al.*, 2011). Cette rhyolite a également été nommée « rhyolite de Norita » par MacGeehan (1979) et « rhyolite de Dumagami » par Piché (1991). MacGeehan (1979) situe la rhyolite du lac Garon au sommet du Groupe du lac Watson. Cette rhyolite a par contre été assignée à la Formation de la rivière Allard (Groupe de Wabassee) dans la cartographie de Pilote (2010). Cette rhyolite se situe à l'intérieur du halo de métamorphisme de contact (faciès cornéenne) produit par le pluton d'Olga (âge de $2693 \pm 1,6$ Ma, Mortensen, 1993a).

Mortensen (1993a) a également daté une rhyolite (échantillon 15–«Dumagami Rhyolite», âge U-Pb de 2723,1±1,0 Ma) située à 2,6 km à l'ouest du site d'échantillonnage et qui pourrait se retrouver dans la continuité stratigraphique de la rhyolite du lac Garon, si on néglige l'importance de grandes failles E-W observées sur le terrain. Ce dernier âge est par contre légèrement trop jeune (de 2 à 3 Ma) si on considère l'âge du Complexe de la rivière Bell (2724,6±2,5 Ma) qui recoupe ce flanc.

Géochronologie

Cet échantillon contenait des zircons en quantité assez limitée sous la forme de grains frais, trapus, arrondis ou subarrondis (photo 27, annexe 2). Les données LA-ICPMS de 21 grains entiers se regroupent autour de la courbe concordia et s'accordent avec des âges 207 Pb/ 206 Pb moyens de 2727 ±5 Ma (MSDW de 1,0; figure 9g). Ces grains ont été traités par la méthode CA et les trois grains les plus transparents ont été choisis pour analyse par ID-TIMS (photo 28, annexe 2). Les résultats s'accordent bien sur la courbe concordia avec un « âge concordia » de 2724,6 ±0,8 Ma (MSDW de 0,1; figure 9h).

Interprétation

L'âge de 2724,6 \pm 0,8 Ma est retenu pour ce tuf à lapillis et à blocs rhyolitiques. Il indique que les rhyolites du flanc nord du camp minier de Matagami, assignées à la Formation de la rivière Allard (Pilote, 2010), présentent le même âge que celles du Groupe du lac Watson sur le flanc Sud. Ceci tend à montrer que ces deux formations sont contemporaines, ou encore que les unités rhyolitiques du lac Garon pourraient bien appartenir au Groupe du lac Watson, comme le suggère MacGeehan (1979).

2011-JA-0611A : Tuf à lapillis et à blocs rhyolitiques, site au sud du Pluton de Dunlop, Formation de la rivière Bell, Groupe de Wabassee, feuillet SNRC 32F13

Géologie

L'échantillon 2011-JA-0611A (figure 6) provient d'une unité volcanoclastique située immédiatement sur le flanc sud du Pluton de Dunlop, une intrusion multiphasée définissant une suite diorite-tonalite. Elle est affectée par l'auréole de métamorphisme de contact générée par ce pluton et présente un aspect de cornéenne. L'âge précis de ce pluton nous est inconnu. La datation de cette roche permettra d'évaluer l'âge de la Formation de la rivière Bell, laquelle est interprétée comme étant située au sommet du Groupe de Wabassee (Pilote, 2010).

Géochronologie

Une quantité minime de zircons a été obtenue pour cet échantillon sous la forme de fragments fracturés et de petits grains trapus (photo 29, annexe 2). Nous avons analysé 15 grains entiers par LA-ICPMS. Les données se regroupent autour de la courbe concordia, à l'exception d'une analyse nettement plus jeune qui peut avoir été affectée par l'altération (figure 9i). Les autres analyses donnent un âge 207 Pb/ 206 Pb moyen de 2704 ±10 Ma, mais ne s'accordent pas dans la limite des erreurs (MSDW de 2,0). Si les trois analyses les plus vieilles sont omises, les données qui restent s'accordent avec un âge moyen de 2698 ±7 Ma (MSDW de 1,3). Les trois analyses les plus vieilles s'accordent également avec un âge moyen de 2727 ±13 Ma (MSDW de 0,2). Si ce regroupement est réel, ces grains pourraient représenter des xénocristaux.

Les zircons du regroupement le plus jeune ont été traités par CA, ce qui a produit en général des grains très fracturés et opaques. Nous avons choisi les zircons les plus transparents pour analyses ID-TIMS (photo 30, annexe 2). Les résultats de quatre grains montrent des discordances variables, mais ils se rangent selon une ligne qui présente une intersection supérieure avec la concordia à 2693,5 ±1,0 Ma (MSDW de 0,3; figure 9j). L'intersection inférieure n'a pas de signification géologique et représente probablement l'âge moyen de perte de Pb associée à une altération progressive à basse température.

Interprétation

L'âge de cette roche est particulièrement difficile à interpréter, en raison de la présence de différentes populations de zircons, de leur faible nombre et de leurs aspects fracturés. Selon ces données, l'âge de la population la plus vieille (trois analyses) représenterait l'âge du volcanisme : 2727 ± 13 Ma (MSDW de 0,2). Les données restantes pourraient alors indiquer l'âge de l'auréole de métamorphisme de contact, variant de 2698 ± 7 Ma (MSDW de 1,3) à 2693,5 $\pm 1,0$ Ma (MSDW de 0,3; la population de zircons les plus transparents), produite par la mise en place du Pluton de Dunlop. Cette interprétation suggère que le Pluton de Dunlop est une intrusion d'âge syntectonique. Les marges d'erreur demeurent toutefois très importantes.

2011-KW-0221A : Rhyolite massive, Formation de Daniel, Groupe de Wabassee, feuillet SNRC 32F13

Géologie

L'échantillon 2011-KW-0221A est une rhyolite massive, peu altérée, située dans la partie ouest de la région de Matagami (figure 6). Cette rhyolite fait partie de la Formation de Daniel, pour laquelle il n'existait aucune datation auparavant. Cette formation se compose principalement d'andésite et localement de basalte; la composante volcanique felsique y est marginale.

Géochronologie

Cet échantillon a donné une quantité minime de zircons formant de petits grains trapus et des prismes courts subarrondis (photo 31, annexe 2). Les analyses par LA- ICPMS de 21 grains montés sur ruban se regroupent autour de la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 2720 ±7 Ma. Elles ne s'accordent toutefois pas dans la limite des erreurs (MSDW de 2,9), ce qui suggère qu'il y a au moins deux composantes d'âge. Les huit analyses les plus jeunes s'accordent avec un âge de 2701 ±7 Ma (MSDW de 0,8; figure 9k), tandis que les autres treize analyses s'accordent avec un âge de 2731 ±5 Ma (MSDW de 0,4; figure 9k).

Les zircons du groupement le plus jeune ont été traités par CA et cinq analyses ont été effectuées par ID-TIMS (photo 32, annexe 2). Les résultats sont concordants avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2722 ±2 Ma, mais ces âges ne s'accordent pas dans la limite des erreurs (MSWD de 2,3), bien que l'erreur sur l'une de ces analyses est relativement haute en raison du contenu minime en Pb. Les trois analyses les plus vieilles s'accordent bien avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2722,9 ±1,1 Ma (MSDW de 0,1; figure 9l). Il est possible que cet échantillon contienne des grains de zircon plus jeunes, mais l'âge de 2722,9 ±1,1 Ma représente une composante majeure interprétée comme l'âge maximal du volcanisme.

Interprétation

Comme précédemment, cette roche contient un petit nombre de zircons, distribués en différentes populations. L'âge de 2722,9 \pm 1,1 Ma (MSDW de 0,1) pourrait représenter l'âge maximal du volcanisme. Ceci indiquerait que l'activité volcanique dans le camp de Matagami se serait poursuivie jusqu'à environ 2722,9 Ma, avec l'effusion d'une séquence volcanique principalement mafique. La population de huit zircons les plus jeunes a donné un âge de 2701 \pm 7 Ma (MSDW de 0,8), qui n'est pas sans rappeler une des valeurs estimée représenter le métamorphisme de contact dans l'échantillon précédent 2011-JA-0611A (2698 \pm 7 Ma), situé en bordure du Pluton de Dunlop. Ce dernier âge pourrait ainsi possiblement représenter un événement métamorphique ou métasomatique régionalement significatif à l'échelle du camp minier.

BC-11-32 : Rhyolite massive à fragmentaire, Groupe du lac Watson, feuillet SNRC 32F13

Géologie

Cette roche provient d'un forage réalisé par la société Xstrata Zinc sur le Flanc Nord du camp de Matagami (figure 6). L'échantillon a été prélevé entre 564,5 et 591,4 m et la coordonnée présentée au tableau 1 correspond au collet du forage BC-11-32. La cible était originalement l'évaluation de la continuité des minéralisations en sulfures massifs de la zone « Bell Channel ». Le but de cette datation était de tester l'hypothèse que les rhyolites assumées appartenir au Groupe du lac Watson, sur les flancs Nord et Sud de la région de Matagami, représentent effectivement ce même groupe.

Géochronologie

Aucun zircon n'est visible dans le concentré de minéraux lourds formé principalement de pyrite et d'un minéral gris, insoluble à l'acide nitrique, qui est peut-être de la sphalérite. Un seul petit prisme allongé de zircon (prisme court idiomorphe; photo 33, annexe 2) a été observé après la digestion de la pyrite à l'acide nitrique. Malgré la faible dimension de ce grain, nous avons pu réaliser quatre analyses LA-ICPMS avec un faisceau laser de diamètre réduit. Les analyses montrent des rapports Th/U élevés et des signaux modérés en ⁸⁸Sr, mais les données sont quasi concordantes avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2724 ±20 Ma (MSWD de 1,6; figure 9m). Il s'agit de la meilleure estimation de l'âge de cristallisation du grain. Il est toutefois très possible que ce grain soit d'origine xénocristique. Dans ce cas, il représenterait l'âge maximal du volcanisme.

3.4.4.3 Interprétation

L'âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2724 ±20 Ma (MSWD de 1,6) est retenu, à noter toutefois l'importante marge d'erreur. Ce résultat indiquerait que les volcanites felsiques du Groupe du lac Watson situées sur les flancs Nord et Sud de la région de Matagami sont les mêmes, selon des critères d'âges. La géochimie de ces unités est également quasi identique et soutient favorablement cette comparaison. Il est intéressant de noter qu'historiquement, Mortensen (1993a) a pratiquement daté la même rhyolite (« Bell Channel rhyolite »), soit son échantillon 16 – âge U-Pb de 2719,9 \pm 1,4 Ma. Mortensen avait rencontré les mêmes difficultés, au niveau de la quantité et de la qualité des zircons. Cet âge s'avère toutefois légèrement trop jeune (4 à 5 Ma), par rapport à celui que nous avons interprété.

RÉFÉRENCES

- AUCOIN, M., 2008 Métallogénie de la zone Marco, gîte aurifère Corvet Est, Baie James, Québec, Canada. Mémoire de maîtrise, Université Laval, Québec, Canada; 85 pages.
- AUCOIN, M. BEAUDOIN, G. CREASER, R.A. ARCHER, P., 2012 – Metallogeny of the Marco zone, Corvet Est, disseminated gold deposit, James Bay, Quebec, Canada. Canadian Journal of Earth Sciences; pages 1154-1176.
- BEAUDRY, C. GAUCHER, E., 1986 Cartographie géologique dans la région de Matagami: Québec. Ministère de l'Énergie et des Ressources, Québec; MB 86-32, 147 pages, 6 cartes.
- DAS, A. DAVIS, D.W., 2010 Response of Precambrian zircon to the chemical abrasion (CA-TIMS) method and implications for improvement of age determinations. Geochimica et Cosmochimica Acta, volume 74, pages 5333-5348.
- DAVID, J., 2012 Datations isotopiques effectuées dans le nordouest de la Province du Supérieur - Travaux de 2001, 2002 et 2003. Ministère des Ressources naturelles et de la Faune, Québec; DV 2012-05, 84 pages.
- DAVID, J. DAVIS, D.W. BANDYAYERA, D. PILOTE, P. DION, C., 2009a – Datations U-Pb effectuées dans les sous-provinces de l'Abitibi et de La Grande en 2006-2007. Ministère des Ressources naturelles et de la Faune, Québec; RP 2009-02, 17 pages.
- DAVID, J. GODIN, L. STEVENSON, R. O'NEIL, J. FRANCIS, D., 2009b – U-Pb ages (3.8-2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton, Canada. Geological Society of America Bulletin; volume 121, pages 150-163.
- DAVID, J. DAVIS, D.W. BANDYAYERA, D. SIMARD, M. MOUKHSIL, A. – DION, C., 2010 – Datations U-Pb effectuées dans les sous-provinces d'Ashuanipi, de Minto et de La Grande en 2007-2008. Ministère des Ressources naturelles et de la Faune, Québec; RP 2010-03, 28 pages.
- DAVID, J. McNICOLL, V. SIMARD, M. BANDYAYERA,
 D. HAMMOUCHE, H. GOUTIER, J. PILOTE, P. RHÉAUME, P. – LECLERC, F. – DION, C., 2011 – Datations
 U-Pb effectuées dans les provinces du Supérieur et de Churchill en 2009-2010. Ministère des Ressources naturelles et de la Faune, Québec; RP 2011-02, 37 pages.
- DAVID, J. SIMARD, M. BANDYAYERA, D. GOUTIER, J. –
 HAMMOUCHE, H. PILOTE, P. LECLERC, F. DION, C.,
 2012 Datations U-Pb effectuées dans les provinces du Supérieur et de Churchill en 2010-2011. Ministère des Ressources naturelles et de la Faune, Québec; RP 2012-01,
 33 pages.

- DAVIS, D.W., 2002 U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Research; volume 115, pages 97-117.
- DAVIS, D.W. DION, C., 2012 Datations ID-TIMS d'échantillons recueillis en 2011-2012 par Géologie Québec. Ministère des Ressources naturelles, Québec; GM 66443, 41 pages.
- DAVIS, D.W. DAVID, J. DION, C. GOUTIER, J. BANDY-AYERA, D. – RHÉAUME, P. – ROY, P., 2005 – Datations U-Pb effectuées en support aux travaux de cartographie géologique et de compilation géoscientifique du SGNO (2003-2004). Ministère des Ressources naturelles et de la Faune, Québec; RP 2005-02, 20 pages.
- DAVIS, D.W. MOUKHSIL, A. LAFRANCE, I. HAM-MOUCHE, H. – GOUTIER, J. – PILOTE, P. – TAKAM, T.F., en préparation – Datations U-Pb effectuées dans les provinces du Supérieur, de Churchill et de Grenville en 2012-2013. Ministère de l'Énergie et des Ressources naturelles, Québec.
- DUPARC, Q. COUSINEAU, P. BANDYAYERA, D., 2012 Corrélation des bassins sédimentaires du nord-est de la Sousprovince de La Grande (Baie-James), à l'aide de la géochimie lithologique et minérale. Ministère de l'Énergie et des Ressources naturelles, Québec; GM 66440, 37 pages.
- EVANS, L., 1991 Report on the October, 1990 stripping, mapping and sampling program on the lake Waconichi south property; Westminer Canada Limited Exploration Division, Chibougamau. Ministère de l'Énergie et des Ressources naturelles, Québec; GM 50431, 6 pages.
- GOUTIER, J. DOUCET, P. DION, C. BEAUSOLEIL, C. DAVID, J. – PARENT, M. – DION, D.-J., 1998 – Géologie de la région du lac Kowskatehkakmow (33F/06). Ministère des Ressources naturelles, Québec; RG 98-16, 48 pages, 1 carte.
- GOUTIER, J. DION, C. DAVID, J. DION, D.-J., 1999a Géologie de la région de la passe Shimusuminu et du lac Vion (33F/11 et 33F12). Ministère des Ressources naturelles, Québec; RG 98-17, 42 pages, 2 cartes.
- GOUTIER, J. DION, C. LAFRANCE, I. DAVID, J. PARENT, M. – DION, D.-J., 1999b – Géologie de la région des lacs Langelier et Threefold (33F/03 et 33F/04). Ministère des Ressources naturelles, Québec; RG 98-18, 52 pages, 2 cartes.
- GOUTIER, J. DION, C. OUELLET, M.C. DAVID, J. PARENT, M., 2000 – Géologie de la région des lacs Guillaumat et Sakami (33F/02 et 33F/07). Ministère des Ressources naturelles, Québec; RG 99-15, 41 pages, 2 cartes.
- GOUTIER, J. DION, C. OUELLET, M.C. MERCIER-LANGEVIN, P. – DAVIS, D.W., 2001 – Géologie de la région de la colline Masson (33F/09), de la passe Awapakamich (33F/10), de la baie Carbillet (33F/15) et de la passe Pikwahipanan (33F/16). Ministère des Ressources naturelles, Québec; RG 2000-10, 68 pages, 4 cartes.
- GOUTIER, J. DION, C. OUELLET, M.C. DAVIS, D.W. DAVID, J. – PARENT, M., 2002 – Géologie de la région du lac Guyer (33G/05, 33G/06 et 33G/11). Ministère des Ressources naturelles, Québec; RG 2001-15, 53 pages, 3 cartes.
- GOUTIER, J. OUELLET, M.C. DION, C. HOULÉ, M. BOILY, M., 2003 – Synthèse géologique de la région des lacs Sakami (33F) et Guyer (33G), Baie-James. *Dans* : Études en cours 2001-2002. Ministère des Ressources naturelles, Québec, DV 2002-12, pages 11-13.

- GOUTIER, J. RHÉAUME, P. DAVIS, D.W., 2004 Géologie de la région du lac Olga (32F/14). Ministère des Ressources naturelles de la Faune et des Parcs, Québec; RG 2003-09, 42 pages, 4 cartes.
- GOUTIER, J. BURNIAUX, P. DION, C. GIGON, J. TALLA TAKAM, F. – CHARTIER-MONTREUIL, W. – BANDYAYERA, D., en préparation – Géologie de la région du lac de la Corvette, Baie-James. Ministère de l'Énergie et des Ressources naturelles, Québec.
- ISNARD, H. PARENT, M. BARDOUX, M. DAVID, J. GARIÉPY, C. – STEVENSON, R.K., 1998 – U-Pb, Sm-Nd and Pb-Pb isotope geochemistry of the high-grade gneiss assemblages along the southern shore of Ungava Bay. *In*: Wardle R.J., Hall, J. (Eds.), Eastern Canadian Shield Onshore–Offshore (ECSOOT), Transect Meeting, 1998. The University of British Columbia, Lithoprobe Secretariat, Report 68, pages 67-77.
- JAMES, D.T. DUNNING, G.R., 2000 –U-Pb geochronological constraints for Paleoproterozoic evolution of the Core Zone, southeastern Churchill Province, northeastern Laurentia. Precambrian Research; volume 103, pages 31-54.
- JAMES, D.T. CONNELLY, J.N. WASTENEYS, H.A. KILFOIL, G.J., 1996 – Paleoproterozoic lithotectonic divisions of the southeastern Churchill Province, western Labrador. Canadian Journal of Earth Sciences; volume 33, pages 216-230.
- JEMIELITA, R.A. DAVIS, D.W. KROGH, T.E., 1990 U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature; volume 346, pages 831-834.
- KROGH, T.E., 1973 A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta, volume 37, pages 485-494.
- KROGH, T.E., 1982 Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, volume 46(4), pages 637–649.
- LECLERC, F. BÉDARD, J.H. HARRIS, L.B. MCNICOLL, V. GOULET, N. – ROY, P. – HOULE, P., 2011 – Tholeiitic to calcalkaline cyclic volcanism in the Roy Group, Chibougamau area, Abitibi Greenstone Belt – Revised stratigraphy and implications for VHMS exploration. Revue canadienne des Sciences de la Terre; volume 48, pages 661-694.
- LECLERC, F. HARRIS, L.B. BÉDARD, J.H. VAN BREEMEN, O. – GOULET, N., 2012 – Structural and stratigraphic controls on magmatic, volcanogenic and syn-tectonic mineralization in the Chapais-Chibougamau mining camp, northeastern Abitibi, Canada. Economic Geology; volume 107, pages 963-989.
- LEGAULT, M., 2003 Environnement métallogénique du couloir de Fancamp avec emphase sur les gisements aurifères de Chevrier, région de Chibougamau, Québec. Université du Québec à Chiboutimi; thèse de doctorat, 488 pages.
- LUDWIG, K.R., 1998 On the treatment of concordant uraniumlead ages. Geochimica et Cosmochimica Acta, volume 62, pages 665-676.
- LUDWIG, K.R., 2003 –User's manual for Isoplot 3.00 a geochronological toolkit for Excel. Berkeley Geochronological Center Special Publication, volume 4, 71 pages.

- MacGEEHAN, P.J., 1979 The petrology and geochemistery of volcanic rocks at Matagami, Québec, and their relationship to massive sulphide mineralization. Université McGill, Montréal; thèse de doctorat, 414 pages.
- MACHADO, N. GOULET, N. GARIÉPY, C., 1989 U-Pb geochronology of reactivated Archean basement and of Hudsonian metamorphism in the northern Labrador Trough. Canadian Journal of Earth Sciences; volume 26, pages 1-15.
- MacLEAN, W.H., 1984 Geology and ore deposits of the Matagami district. Dans: J. Guya et E.H. Chown, éditeurs, Chibougamau -Stratigraphy and Mineralisation. Canadian Institute of Mining and Metallurgy, Special Volume 34, pages 483-495.
- MATTHEWS, W. DAVIS, W.J., 1999 A practical image analysis technique for estimating the weight of abraded mineral fractions used in U-Pb dating. In Radiogenic Age and Isotopic Studie : Report 12; Geological Survey of Canada, Current Research 1999-F, pages 1-7.
- MATTINSON, J., 2005 Zircon U-Pb chemical abrasion (CA-TIMS) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, volume 220, pages 47-66.
- MORTENSEN, J.K., 1993a U-Pb geochronology of the eastern Abitibi subprovince. Part 1: Chibougamau – Matagami – Joutel region. Canadian Journal of Earth Sciences; volume 30, pages 11-28.
- MORTENSEN, J.K., 1993b U-Pb geochronology of the Lapparent Massif, northeastern Abitibi belt: basement or synvolcanic pluton? Canadian Journal of Earth Sciences; volume 30, pages 42-47.
- MORTENSEN, J.K. CIESIELSKI, A., 1987 U-Pb zircon and sphene geochronology of Archean plutonic and orthogneissic rocks of the James Bay region and Bienville Domain, Quebec. *In*: Radiogenic Age and Isotopic Studies : Report 1. Geological Survey of Canada; Paper 87-2, pages 129-134.
- MOUKHSIL, A. SOLGADI, F. INDARES, A. BELKACIM, S., 2013 – Géologie de la région septentrionale du réservoir aux Outardes 4, Côte-Nord. Ministère des Ressources naturelles, Québec; RG 2013-03, 31 pages.
- MUELLER, W. CHOWN, E.H. SHARMA, K.N.M. TAIT, L. – ROCHELEAU, M., 1989 – Paleogeographic and paleotectonic evolution of a basement-controlled Archean supracrustal sequence, Chibougamau-Caopatina, Quebec. Journal of Geology; volume 97, pages 399-420.
- O'NEIL, J. CARLSON, R.W. FRANCIS, D. STEVENSON, R.K., 2008 – Neodymium-142 evidence for Hadean mafic crust. Science; volume 321, pages 1828-1831.
- PARENT, M., 2011 Compilation géochronologique U-Pb des sous-provinces d'Ashuanipi, d'Opinaca, d'Opatica et de La Grande. Ministère de l'Énergie et des Ressources naturelles, Québec; GM 65524, 13 pages et un tableau.
- PICHÉ, M., 1991 Synthèse géologique et métallogénique du camp minier de Matagami, Québec. Université du Québec à Chicoutimi, Chicoutimi; thèse de doctorat, 269 pages.

- PILOTE, P., 2010 Géologie du Flanc Nord de la région de Matagami. Ministère des Ressources naturelles et de la Faune, Québec; Résumé des conférences et des photoprésentations, Québec Exploration 2010, DV 2010-06, page 35.
- PILOTE, P. DEBREIL, J.A. WILLIAMSON, K. RABEAU, O. – LACOSTE, P., 2011 – Révision géologique de la région de Matagami. Ministère des Ressources naturelles et de la Faune, Québec; Résumé des conférences et des photoprésentations, Québec Exploration 2011, DV 2011-03, page 13.
- PROCHNAU, J., 1968 Rosario exploration company report on 1968 exploration program, Bruneau Mine property, McKenzie Township, Quebec. Ministère de l'Énergie et des Richesses naturelles, Québec; GM 23776, 29 pages.
- RHÉAUME, P., 2010 Géologie du feuillet du lac Watson et des portions attenantes des feuillets de la rivière Subercase, lac de la Gauchetière et lac McIvor, Matagami. Ministère de l'Énergie et des Ressources naturelles, Québec; GM 64959, 12 pages, 3 plans.
- ROBERTS, R.G., 1975 The geological setting of the Mattagami Lake mine, Québec - a volcanogenic massive sulphide deposit. Economic Geology, volume 70, pages 115-129.
- ROHMER, R.L., 2003 Alpha-recoil in U-Pb geochronology: Effective sample size matters. Contributions to Mineralogy and Petrology, volume 145, pages 481–491. doi:10.1007/ s00410-003-0463-0.
- ROSS, P.S. McNICOLL, V.J. DEBREIL, J.A. CARR, P. 2014 Precise U-Pb geochronology of the Matagami mining camp, Abitibi Greenstone Belt, Quebec: stratigraphic constraints and implications for volcanogenic massive sulfide exploration. Economic Geology, volume 109, pages 89-101.
- SHARMA, K.N.M. GOBEIL, A. MUELLER, W., 1987 Stratigraphie de la région du lac Caopatina. Ministère de l'Énergie et des Ressources, Québec; MB 87-16, 16 pages.
- SHARPE, J.I., 1968 Géologie et gisements de sulfures de la région de Matagami. Ministère des Richesses naturelles, Québec; RG 137, 130 pages, 5 cartes.
- SIMARD, M. LABBÉ, J.-Y. MAURICE, C. LACOSTE, P. LECLAIR, A. – BOILY, M., 2008 – Synthèse du nord-est de la Province du Supérieur (Simard M., coordonnateur). Ministère des Ressources naturelles et de la Faune, Québec; MM 2008-02, 196 pages, 8 cartes.
- SIMARD, M. LAFRANCE, I. HAMMOUCHE, H. LEGOUIX, C., 2013 – Géologie de la région de Kuujjuaq et de la baie d'Ungava. Ministère des Ressources naturelles, Québec; RG 2013-04, 60 pages.
- TOMLINSON, K.Y. DAVIS, D.W. STONE, D. HART, T.R., 2003 – U-Pb age and Nd isotopic evidence for crustal recycling and Archean terrane development in the south-central Wabigoon subprovince, Canada. Contributions to Mineralogy and Petrology; volume 144, pages 684-702.
- WARDLE, R.J. JAMES, D.T SCOTT, D.J. HALL, J., 2002 The southeastern Churchill Province: synthesis of a Paleoproterozoic transpressional orogen. Canadian Journal of Earth Science; Volume 39, pages 639-663.

FIGURE 1 – Localisation de la région de Kuujjuaq dans la partie sud-est de la Province de Churchill.

FIGURE 3 – Carte géologique simplifiée des trois feuillets SNRC (33F, 33G et 33H), modifiée de la carte géologique de 2012, et localisation des échantillons de datations géochronologiques à la Baie-James, prélevés en 2011.

FIGURE 4 – Carte détaillée de l'affleurement 1997-JG-1592 (SNRC 33F04) où est illustrée la localisation des échantillons prélevés pour la datation d'un gneiss du Complexe de Langelier et des zircons détritiques dans l'arénite quartzitique de la Formation d'Apple. Cet affleurement contient la plus vieille roche de la Baie-James et le deuxième secteur des plus vieilles roches du Québec.

FIGURE 5 – Géologie simplifiée de la région de Chibougamau-Chapais avec la position des échantillons de géochronologie.

FIGURE 7 – Diagrammes concordia (7a-7c à 7e) et histogramme (7b) des analyses des zircons et des monazites pour les échantillons en provenance du secteur de Kuujjuaq et de la baie d'Ungava effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = *Mean Squared Weighted Deviates*.

FIGURE 7 (SUITE) – Diagrammes concordia (7f à 7k) des analyses des zircons et des monazites pour les échantillons en provenance du secteur de Kuujjuaq et de la baie d'Ungava effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = Mean Squared Weighted Deviates.

FIGURE 7 (**SUITE**) – Diagrammes concordia (71 à 7q) des analyses des zircons et des monazites pour les échantillons en provenance du secteur de Kuujjuaq et de la baie d'Ungava effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = Mean Squared Weighted Deviates.

FIGURE 7 (SUITE) – Diagrammes concordia (7r à 7v) des analyses des zircons et des monazites pour les échantillons en provenance du secteur de Kuujjuaq et de la baie d'Ungava effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = Mean Squared Weighted Deviates.

FIGURE 7 (**SUITE ET FIN**) – Diagrammes concordia (7w-7x) des analyses des zircons et des monazites pour les échantillons en provenance du secteur de Kuujjuaq et de la baie d'Ungava effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = *Mean Squared Weighted Deviates*.

b) 2011-QD-7509A Conglomérat polygénique Formation de Keyano Probabilité relative Âges 207Pb/206Pb - 60 données Δ C Millions d'années d) SGNO-2000-05 (1996-JG-1390) Conglomérat polygénique Formation d'Ekomiak Probabilité relative Âges ²⁰⁷Pb/²⁰⁶Pb - 66 données Millions d'années

FIGURE 8 – Diagrammes concordia (8a-8c-8e) et histogrammes (figures 8b et 8d) des analyses des zircons pour les échantillons en provenance de la Baie-James effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = *Mean Squared Weighted Deviates*.

FIGURE 8 (SUITE ET FIN) – Diagrammes concordia (8f à 8k) des analyses des zircons pour les échantillons en provenance de la Baie-James effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = *Mean Squared Weighted Deviates*.

FIGURE 9 – Diagrammes concordia des analyses de zircons pour les échantillons en provenance de Chibougamau-Chapais et de Matagami effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = *Mean Squared Weighted Deviates*.

FIGURE 9 (SUITE) – Diagrammes concordia des analyses de zircons pour les échantillons en provenance de Chibougamau-Chapais et de Matagami effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = Mean Squared Weighted Deviates.

FIGURE 9 (SUITE ET FIN) – Diagramme concordia des analyses de zircons pour les échantillons en provenance de Chibougamau-Chapais et de Matagami effectuées par la méthode LA-ICPMS et ID-TIMS. Les résultats analytiques sont présentés aux tableaux 2 et 3. MSWD = *Mean Squared Weighted Deviates*.

TABLEAU 1 - Résumé des résultats des analyses isotopiques et localisation des échantillons.

Numéro de Iaboratoire	Numéro ď'échantillon	Feuillet SNRC	Zone	Localisation (UTM NAD 83)	Unité stratigraphique/ lithodémique (code)	Lithologie	Méthode d'analyse	Âge de cristallisation	Âge de métamorphisme	Âge d'héritage
2011-MS-0106A	2011-MS-0106A	24J06	19	594489 m E 6460639 m N	Complexe d'Ungava (ApPung2)	Gneiss tonalitique rubané	LA-ICPMS sur zircons et monazites	2803 ±7 Ma	1813 ±11 Ma (zr) 1803 ±23 Ma (mz)	
2011-MS-0070A	2011-MS-0070A	24J10	19	643536 m E 6512186 m N	Complexe d'Ungava (ApPung2)	Gneiss tonalitique rubané	LA-ICPMS ID-TIMS sur zircons	2861 ±11 Ma	1874 ±31 Ma (zr)	
2011-CL-5255A	2011-CL-5255A	24J05	19	577597 m E 6463601 m N	Complexe d'Ungava (ApPung1)	Gneiss rubané, tonalitique à dioritique	LA-ICPMS sur zircons	2739 ±10 Ma	1786 ±15 Ma (zr)	3154 ±20 Ma
2011-HH-4084A	2011-HH-4084A	24K15	19	522871 m E 6530450 m N	Complexe d'Ungava (ApPung4)	Gneiss granitique rubané	LA-ICPMS sur zircons	2723 ±9 Ma	1864 ±17 Ma (zr) 1792 ±9 Ma (mz)	
2011-LP-2151A	2011-LP-2151A	24J07	19	620928 m E 6464967 m N	Complexe de Qurlutuq (ApPqur2)	Tonalite blanchâtre	LA-ICPMS ID-TIMS sur zircons	2663 ±7 Ma	1818 ±13 Ma (zr)	
2011-IL-3141A	2011-IL-3141A	24K09	19	530260 m E 6503289 m N	Suite d'Aveneau (pPavn)	Granite homogène à grain fin	LA-ICPMS sur zircons et monazites	1817 ±10 Ma		2697 ±18 Ma
2011-PL-6182A	2011-PL-6182A	24K07	19	522747 m E 6479931 m N	Complexe de Kaslac (pPkaa1b)	Tonalite très déformée à orthopyroxène-grenat	LA-ICPMS ID-TIMS sur zircons	1835 ±2 Ma		
2011-QD-7509A	2011-QD-7509A	33H13	18	584870 m E 5960922 m N	Formation de Keyano (Aky5)	Conglomérat polygénique	LA-ICPMS sur zircons détritiques	2710 Ma (âge maximal)	2618 ±22 Ma	
SGNO-2000-05	1996-JG-1390	33F06	18	339991 m E 5919330 m N	Formation d'Ekomiak (Aek2)	Conglomérat polygénique	LA-ICPMS sur zircons détritiques	2735 Ma (âge maximal)		
2011-JG-1187A	2011-JG-1187A	33H05	18	571050 m E 5907883 m N	Formation de Corvette (Acv2)	Tuf à lapillis	LA-ICPMS sur zircons	2742 ±28 Ma	2525 ±24 Ma	
2011-JG-1592 M1	1997-JG-1592 M1	33F03	18	364255 m E 5895106 m N	Complexe de Langelier (Algl1)	Gneiss granitique	LA-ICPMS sur zircons	3452 ±16 Ma		
2011-JG-1242A	2011-JG-1242A	33H12	18	575374 m E 5954560 m N	Complexe de Langelier (Algl1)	Gneiss tonalitique	LA-ICPMS ID-TIMS sur zircons	2713 ±2 Ma (âge maximal)		
2011-FL-5270A	2011-FL-5270A	32G10	18	505189 m E 5483704 m N	Membre des Vents (Adv) Formation d'Obatogamau	Tuf à lapillis	LA-ICPMS ID-TIMS sur zircons	2798,7 ±0,7 Ma		
2006-FL-6129C	2006-FL-6129C	32G16	18	553459 m E 5531755 m N	Formation de Bruneau (Abnu2)	Tuf à lapillis	LA-ICPMS ID-TIMS sur zircons	2724,4 ±1,2 Ma		
2011-FL-5283A	2011-FL-5283A	32J01	18	562956 m E 5541090 m N	Ч	Intrusion porphyrique à phénocristaux (Qz-Fp)	LA-ICPMS ID-TIMS sur zircons	2710,2 ±0,8 Ma		
2010-PP-0014A	2010-PP-0014A	32F13	18	314720 m E 5516057 m N	Formation de la rivière Allard (Aw3)	Tuf à lapillis et à blocs rhyolitiques	LA-ICPMS ID-TIMS sur zircons	2724,6 ±0,8 Ma		
2011-JA-0611A	2011-JA-0611A	32F13	18	317753 m E 5521130 m N	Formation de la rivière Bell (Avrb5)	Tuf à lapillis et à blocs rhyolitiques	LA-ICPMS ID-TIMS sur zircons	2727 ±13 Ma (crist. ou héritage)	2693,5 ±1,0 Ma	
2011-KW-0221A	2011-KW-0221A	32F13	18	284339 m E 5519365 m N	Formation de Daniel (Adnl2)	Rhyolite massive	LA-ICPMS ID-TIMS sur zircons	2722,9 ±1,1 Ma (âge maximal)		2731 ±5 Ma
BC-11-32	BC-11-32	32F13	18	311032 m E 5155574 m N	Groupe du lac Watson (Awt1)	Rhyolite massive fragmentaire	LA-ICPMS sur zircons	2724 ±20 Ma		

			Ra	pports isc	otopiques								Âge (Ma)			
N٥	Nº d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
					2011-MS	-0106A Gn	eiss tonal	litique rub	ané, Comp	olexe d'Un	igava					
Zirc	ons entiers															
1	MS106-1	947	536	1,23	16,131	0,184	0,566	0,006	0,854	2879	10	2885	11	2893	23	-1
2	MS106-2	575	318	0,97	15,629	0,205	0,553	0,006	0,877	2867	10	2854	12	2836	26	1
3	MS106-3	567	326	0,71	15,734	0,180	0,575	0,005	0,806	2813	11	2861	11	2929	22	-5
4	MS106-4t	2413	865	0,01	5,487	0,059	0,358	0,003	0,840	1816	11	1899	9	1975	15	-10
5	MS106-5t	966	545	0,55	15,249	0,144	0,564	0,004	0,797	2793	9	2831	9	2885	18	-4
6	MS106-6	998	576	0,76	16,531	0,175	0,577	0,005	0,758	2888	11	2908	10	2937	19	-2
7	MS106-7	469	254	0,54	14,468	0,175	0,542	0,006	0,843	2774	11	2781	11	2790	23	-1
8	MS106-8t	171	107	0,26	16,015	0,212	0,626	0,006	0,777	2702	14	2878	13	3136	26	-20
9	MS106-9	440	235	0,06	14,725	0,205	0,535	0,006	0,756	2823	15	2798	13	2762	24	3
10	MS106-10	169	95	0,55	16,031	0,250	0,565	0,007	0,790	2871	16	2879	15	2889	29	-1
11	MS106-11	420	248	0,22	15,977	0,191	0,591	0,006	0,804	2794	12	2875	11	2993	23	-9
12	MS106-12	187	106	0,84	15,795	0,207	0,568	0,006	0,797	2841	13	2865	13	2899	24	-3
13	MS106-13	504	284	0,95	15,803	0,194	0,564	0,006	0,837	2853	11	2865	12	2882	24	-1
14	MS106-14	633	284	0,43	12,104	0,135	0,449	0,004	0,836	2791	10	2613	10	2389	19	17
15	MS106-15	185	98	0,58	16,093	0,199	0,530	0,005	0,813	2982	12	2882	12	2742	22	10
16	MS106-16	257	135	0,75	13,998	0,159	0,524	0,005	0,802	2773	11	2750	11	2718	20	2
17	MS106-17	1231	435	0,01	5,391	0,058	0,353	0,003	0,890	1812	9	1883	9	1949	16	-9
18	MS106-18	354	187	0,90	15,482	0,160	0,527	0,004	0,752	2928	11	2845	10	2730	17	8
19	MS106-19	448	281	1,10	19,570	0,224	0,628	0,005	0,718	3023	13	3070	11	3143	20	-5
20	MS106-20	1573	546	0,01	5,303	0,053	0,347	0,003	0,844	1811	10	1869	9	1922	14	-7
21	MS106-21	181	98	0,46	14,257	0,163	0,544	0,005	0,814	2744	11	2767	11	2799	21	-2
22	MS106-22	521	288	0,52	15,664	0,168	0,552	0,005	0,816	2871	10	2857	10	2835	20	2
23	MS106-23	240	128	0,43	15,574	0,184	0,534	0,005	0,774	2917	12	2851	11	2758	21	7
24	MS106-24	176	90	0,50	13,608	0,197	0,513	0,006	0,812	2762	14	2723	14	2671	26	4
25	MS106-25	240	127	0,54	14,180	0,195	0,530	0,006	0,806	2777	13	2762	13	2741	25	2
26	MS106-26	366	189	0,30	13,781	0,126	0,516	0,004	0,776	2773	9	2735	9	2683	16	4
27	MS106-27	565	299	0,55	14,541	0,154	0,528	0,005	0,810	2823	10	2786	10	2734	19	4
28	MS106-28t	304	181	1,73	16,962	0,177	0,594	0,005	0,788	2883	10	2933	10	3006	20	-5
29	MS106-29t	1428	467	0,01	5,226	0,048	0,327	0,002	0,757	1892	11	1857	8	1825	11	4
30	MS106-30t	386	229	1,08	16,717	0,164	0,593	0,005	0,837	2863	9	2919	9	3001	20	-6
Zirc	ons polis															
31	MS106-1	279	138	0,35	14,236	0,134	0,495	0,004	0,850	2895	8	2766	9	2592	17	13
32	MS106-3	439	225	0,38	13,762	0,116	0,513	0,004	0,876	2780	7	2733	8	2670	16	5
33	MS106-4	181	93	0,55	13,844	0,132	0,515	0,004	0,824	2784	9	2739	9	2678	17	5
34	MS106-6	202	104	0,36	13,439	0,139	0,512	0,004	0,824	2745	10	2711	10	2665	19	4
35	MS106-7	229	127	0,48	15,073	0,130	0,554	0,004	0,827	2806	8	2820	8	2840	16	-1
36	MS106-8	575	245	0,27	12,929	0,143	0,426	0,003	0,721	2982	12	2675	10	2287	15	28
37	MS106-9	223	122	0,27	14,795	0,151	0,546	0,004	0,804	2799	10	2802	10	2807	19	-0
38	MS106-10	153	85	0,36	15,056	0,172	0,554	0,005	0,813	2802	11	2819	11	2842	21	-2
39	MS106-11	115	67	0,02	16,467	0,215	0,585	0,006	0,766	2860	14	2904	12	2968	24	-5
40	MS106-12c	305	166	0,34	14,635	0,134	0,542	0,004	0,821	2790	9	2792	9	2794	17	-0
41	MS106-13c	351	192	0,42	15,025	0,135	0,549	0,004	0,882	2815	7	2817	9	2819	18	-0
42	MS106-16	114	62	0,71	14,679	0,131	0,541	0,004	0,831	2800	8	2795	8	2787	17	1
43	MS106-17	233	128	0,44	19,328	0,180	0,549	0,003	0,682	3218	11	3058	9	2821	14	15
44	MS106-18	191	105	0,73	15,574	0,180	0,550	0,005	0,857	2871	10	2851	11	2823	23	2

 TABLEAU 2 – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports isc	otopiques								Âge (Ma)			
N°	Nº d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
Mor	azites polies							•	•		•			•	•	
45	MS106A11-1.1r	277	84		4,656	0,119	0,304	0,006	0,766	1815	30	1759	21	1713	30	6
46	MS106-1.2c	627	196		4,710	0,121	0,312	0,007	0,814	1791	27	1769	21	1750	32	3
47	MS106-2.1r	956	298		4,733	0,135	0,312	0,007	0,817	1800	30	1773	24	1750	36	3
48	MS106A11-2.2c	932	305		5,026	0,126	0,328	0,007	0,811	1819	27	1824	21	1828	32	-1
49	MS106-3.1r	1067	339		4,791	0,122	0,318	0,006	0,784	1787	29	1783	21	1780	31	0
50	MS106-3.1c	833	267		4,885	0,130	0,321	0,007	0,786	1807	30	1800	22	1793	33	1
	<u> </u>		1	1	2011-MS	-0070A Gr	eiss tona	litique rub	ané, Com	plexe d'Ur	igava		1	1	1	1
1	MS070A11-1	26	13	1,11	14,621	0,178	0,519	0,005	0,812	2862	12	2791	12	2694	22	7
2	MS070-1.3	59	31	1,56	14,813	0,149	0,528	0,004	0,820	2854	9	2803	10	2734	18	5
3	MS070-1.5	55	29	1,67	14,630	0,152	0,522	0,005	0,833	2851	9	2791	10	2709	19	6
4	MS070-2	50	26	1.39	14.415	0.155	0.517	0.005	0.824	2845	10	2777	10	2686	19	7
5	MS070-6.1m	150	80	0.48	14.837	0.148	0.533	0.005	0.872	2840	8	2805	9	2756	19	4
6	MS070-1.4	56	29	1.59	14,402	0.149	0.518	0.004	0.823	2838	10	2777	10	2692	19	6
7	MS070-4	52	27	1.31	14,240	0.158	0.515	0.004	0.778	2829	11	2766	11	2680	19	6
8	MS070-1 2	38	20	1 17	14 235	0 169	0.516	0.005	0.736	2827	13	2766	11	2682	19	6
9	MS070-7	66	34	1 42	14 314	0 147	0.521	0.004	0.787	2822	10	2771	10	2701	18	5
10	MS070-8 1m	75	38	0.93	13 764	0.150	0.504	0.004	0.807	2809	11	2734	10	2633	19	8
11	MS070-6 27 c	216	97	0.38	11 925	0.097	0.450	0.003	0.848	2759	7	2599	8	2397	14	16
12	MS070-3	47	23	1 14	12 865	0 134	0.487	0.004	0.761	2755	11	2670	10	2559	17	9
13	MS070-5 1m	34	16	1 17	12 178	0.130	0.470	0.004	0.727	2722	12	2618	10	2486	16	10
14	MS070-5 27 c	145	50	0.40	7 668	0.102	0.349	0.004	0.772	2451	14	2193	12	1928	17	25
15	MS070-8.2r	28	10	0.15	6 717	0.109	0.369	0.004	0.612	2126	22	2075	14	2023	17	6
		20		2011	-CI -5255A	Gneiss ri	ubané, tor	alitique à	dioritique	Complex	e d'Ungav	a		2020		-
1	CL 5255-1 1c	313	164	1 09	13 692	0 176	0.524	0.005	0.814	2739	12	2729	12	2714	23	1
2	CL -1 2r	189	100	1.03	14 178	0.172	0.528	0.005	0.763	2784	13	2762	11	2731	21	2
3	CL-2.1c	329	166	1,00	12,886	0.158	0,506	0.005	0.818	2697	12	2671	12	2638	22	3
	CL -2.2r	252	110	0.61	11 667	0,150	0.472	0.005	0.827	2646	13	2578	13	2/03	23	7
5	CL-3	126	64	1.01	12 883	0.188	0,506	0,006	0.788	2695	15	2671	14	2639	25	3
6	CL-4.1c	83	43	1,01	13 386	0,100	0,511	0,006	0 791	2742	15	2707	14	2661	26	4
7		715	235	0.01	1 985	0.061	0.329	0.003	0.829	1796	12	1817	10	1835	16	-2
8	CL-5.1c	1105	655	0.59	20.056	0.225	0.593	0,006	0.834	3154	10	3094	10	3003	22	6
	CL-5.1r	7416	1259	0.01	2 5/18	0.029	0,000	0.002	0.886	1780	10	1286	8	1011	10	47
10	CL-6	151	70	0.84	13.844	0,023	0,170	0,002	0,000	2752	12	2739	12	2722	24	
11	CL-7.1c	77	40	0.78	13 472	0.225	0,510	0,006	0.762	2756	18	2713	16	2657	28	1
12	Cl -7 1r	234	12/	0.40	13 675	0.160	0.527	0.005	0.822	2707	11	2727	11	2728	21	-0
12	CL-8	186	95	0,45	13 240	0,100	0,527	0,005	0,022	2733	11	2607	12	2648	24	-0
15	01-0	100	35	0,90	2011 UU	4084A Gr		itique rub	0,052			2097	12	2040	24	4
Zirc	one nolie				2011-1111		ierss gran	ilique i ub			gava					
1		160	92	0.48	12 196	0.159	0.512	0.005	0.852	2716	10	2603	11	2663	22	2
2	НЦ_2	177	02	0,40	13,100	0,150	0,512	0,005	0,032	2710	10	2093	11	2003	22	2
2	HH-2	109	00	0.47	12 922	0.157	0,009	0.005	0,034	2710	10	2034	11	2607	22	5
3		244	110	0.47	12,023	0,107	0,490	0,005	0,070	2720	10	2007	10	2007	23	2
4 E	пп-4 ци с	244	124	0.41	12,090	0,10/	0,404	0,005	0,044	2130	14	2049	14	2040	24	6
5	с-пп	200	120	0,40	12,749	0,101	0,494	0,005	0,030	2742	11	2001	12	2009	21	0
7	пп-0 цц 7	231	120	0.70	13,382	0,109	0,019	0,005	0,001	2742	11	2121	12	2093	23	
		230	120	0,76	13,101	0,100	0,503	0,005	0,037	2794	11	2091	10	2025	22	5
×	σ-τη	138	64	0,45	12,991	0,162	0,501	0,005	0,853	2724	11	20/9	12	2020	23	о -
10		107	50	0,50	10,000	0,104	0,002	0,005	0,001	2130	11	2003	12	2022	23	3
1 10	01-10	107	53	0,47	12,038	10,101	0,498	0,005	0,004	2091		2003	12	2004	24	4

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)			
N°	N ^o d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
11	HH-11	114	56	0,57	12,541	0,153	0,489	0,005	0,869	2708	10	2646	11	2565	22	6
12	HH-12	96	49	0,48	13,432	0,178	0,511	0,006	0,866	2748	11	2710	12	2661	25	4
13	HH-13	85	45	0,74	13,829	0,190	0,522	0,006	0,811	2762	13	2738	13	2706	25	2
14	HH-14.1	112	58	0,59	13,277	0,174	0,515	0,006	0,898	2717	9	2700	12	2676	26	2
15	HH-14.2	202	62	0,03	4,818	0,078	0,308	0,004	0,830	1858	16	1788	14	1729	20	8
16	HH-15.1	174	89	0,79	13,185	0,166	0,511	0,006	0,884	2716	10	2693	12	2662	24	2
17	HH-15.2	453	148	0,03	5,153	0,060	0,327	0,003	0,881	1867	10	1845	10	1826	16	3
18	HH-16	173	88	0,68	13,166	0,154	0,508	0,005	0,867	2723	10	2692	11	2650	22	3
Mon	azites polies	•									•			•		
1	HH4084A11-1.1r	103	32		4,734	0,099	0,311	0,005	0,747	1805	25	1773	18	1746	24	4
2	HH4084-1.2c	124	38		4,594	0,074	0,308	0,004	0,795	1772	18	1748	13	1729	19	3
3	HH4084-4	184	55		4,547	0,078	0,299	0,004	0,818	1806	18	1740	14	1685	21	8
4	HH4084-2.1r	84	27		4,774	0,103	0,316	0,006	0,810	1790	23	1780	18	1772	27	1
5	HH4084-2.2c	96	32		5,110	0,125	0,336	0,007	0,910	1802	18	1838	21	1869	36	-4
6	HH4084-2.3r	75	27		5,508	0,178	0,357	0,011	0,944	1829	19	1902	28	1970	52	-9
7	HH4084-2.4c	63	25		5,852	0,245	0,391	0,016	0,963	1775	20	1954	37	2128	74	-23
8	HH4084-3	78	23		4,435	0,086	0,292	0,004	0,772	1803	22	1719	16	1650	22	10
9	HH4084-5.1r	203	61		4,535	0,085	0,300	0,005	0,806	1795	20	1737	16	1690	22	7
10	HH4084-5.1c	132	40		4,580	0,088	0,302	0,005	0,802	1801	21	1746	16	1700	23	6
11	HH4084-6.1r	117	36		4,621	0,087	0,309	0,005	0,786	1771	21	1753	16	1738	22	2
12	HH4084-6.2c	152	49		4,829	0,085	0,321	0,004	0,770	1783	20	1790	15	1796	21	-1
13	HH4084-7.1r	158	48		4,607	0,080	0,304	0,004	0,779	1799	20	1751	14	1710	20	6
14	HH4084-7.2c	157	48		4,636	0,087	0,308	0,004	0,778	1784	21	1756	16	1732	22	3
15	HH4084-8.1r	171	53		4,627	0,078	0,310	0,004	0,794	1771	19	1754	14	1740	20	2
16	HH4084-8.2c	204	64		4,696	0,078	0,312	0,004	0,804	1785	18	1766	14	1751	20	2
17	HH4084-12	146	44		4,539	0,086	0,302	0,005	0,816	1784	20	1738	16	1701	23	5
18	HH4084-9.1r	126	38		4,655	0,080	0,305	0,004	0,804	1811	19	1759	14	1716	21	6
19	HH4084-9.2c	139	43		4,676	0,082	0,308	0,004	0,820	1804	18	1763	15	1729	22	5
20	HH4084-10	105	33		4,697	0,083	0,311	0,004	0,795	1794	20	1767	15	1744	22	3
21	HH4084-11	149	47		4,712	0,085	0,314	0,004	0,798	1781	20	1769	15	1760	22	1
					2011-L	P-2151A	Fonalite bl	anchâtre,	Complexe	de Qurlut	uq					
Zirc	ons entiers															
1	LP2151-3	120	62	0,56	12,857	0,174	0,515	0,005	0,745	2661	15	2669	13	2680	22	-1
2	LP2151-4c	949	459	0,05	11,209	0,160	0,484	0,006	0,800	2539	14	2541	13	2543	24	-0
3	LP2151-5c	257	136	0,07	13,316	0,154	0,531	0,004	0,702	2670	14	2702	11	2746	18	-4
4	LP2151-6c	751	388	0,12	12,856	0,170	0,517	0,005	0,731	2656	15	2669	12	2687	21	-1
5	LP2151-7c	372	190	0,27	12,407	0,174	0,510	0,005	0,733	2620	16	2636	13	2656	22	-2
6	LP2151-8c	900	481	0,37	13,123	0,159	0,534	0,005	0,747	2636	13	2689	11	2760	20	-6
7	LP2151-9.1c	1499	494	0,03	4,830	0,139	0,330	0,007	0,785	1736	32	1790	24	1837	36	-7
8	LP2151-9.2r	175	102	1,03	14,531	0,194	0,579	0,005	0,686	2670	16	2785	13	2946	22	-13
9	LP2151-10c	1416	611	0,04	8,532	0,183	0,431	0,007	0,707	2269	26	2289	19	2312	29	-2
10	LP2151-12	189	102	0,15	13,477	0,202	0,543	0,005	0,660	2654	19	2714	14	2794	22	-6
11	LP2151-14	596	242	0,06	7,546	0,132	0,405	0,005	0,683	2165	22	2178	16	2193	22	-2
12	LP2151-15	155	83	0,40	13,216	0,183	0,537	0,005	0,666	2639	17	2695	13	2771	21	-6
13	LP2151-16	602	306	0,25	12,659	0,175	0,508	0,005	0,643	2659	18	2655	13	2649	19	0
14	LP2151-17	304	100	0,10	5,229	0,118	0,329	0,005	0,647	1882	31	1857	19	1835	23	3
15	LP2151-22	172	95	0,34	13,223	0,199	0,549	0,006	0,696	2602	18	2696	14	2823	24	-11
16	LP2151-23c	514	265	0,33	12,704	0,177	0,516	0,005	0,680	2641	17	2658	13	2680	21	-2
17	LP2151-24	193	62	0,59	5,012	0,076	0,322	0.003	0.610	1845	22	1821	13	1800	15	3

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)			
N°	N ^o d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
18	LP2151-32	223	115	0,66	12,214	0,156	0,515	0,004	0,636	2577	16	2621	12	2678	18	-5
19	LP2151-34	241	80	0,42	5,297	0,079	0,330	0,003	0,629	1902	21	1868	13	1838	15	4
20	LP2151-35	537	270	0,14	12,186	0,175	0,502	0,005	0,699	2615	17	2619	13	2624	22	-0
21	LP2151-36	311	107	0,29	5,186	0,068	0,343	0,003	0,642	1791	18	1850	11	1903	14	-7
Zirc	ons polis								-							
22	LP2151-1.1c	18	9	0,45	13,174	0,266	0,525	0,009	0,836	2671	18	2692	19	2721	37	-2
23	LP2151-1.20	155	75	0,07	12,003	0,101	0,483	0,003	0,851	2656	7	2605	8	2539	15	5
24	LP2151-3c	28	15	0,51	13,973	0,182	0,552	0,005	0,761	2687	14	2748	12	2832	23	-7
25	LP2151-4.10	102	59	0,10	14,398	0,120	0,576	0,004	0,817	2664	8	2776	8	2934	16	-13
26	LP2151-4.2c	50	23	0,43	11,087	0,163	0,454	0,005	0,684	2627	18	2530	14	2412	20	10
27	LP2151-7.1c	24	12	0,71	12,715	0,169	0,507	0,006	0,850	2669	12	2659	12	2646	24	1
28	LP2151-7.20	135	65	0,20	12,153	0,116	0,485	0,004	0,866	2668	8	2616	9	2551	17	5
29	LP2151-8.1c	75	32	0,54	9,989	0,139	0,428	0,005	0,800	2549	14	2434	13	2298	21	12
30	LP2151-8.20	140	72	0,05	12,832	0,124	0,517	0,004	0,859	2655	8	2667	9	2684	18	-1
31	LP2151-9c	53	25	0,26	11,174	0,169	0,476	0,006	0,810	2562	15	2538	14	2508	25	3
32	LP2151-10c	88	44	0,72	12,433	0,163	0,496	0,005	0,755	2668	14	2638	12	2598	21	3
33	LP2151-130	294	116	0,34	8,273	0,135	0,395	0,005	0,699	2366	20	2261	15	2147	21	11
34	LP2151-14	132	61	0,47	10,869	0,209	0,468	0,007	0,814	2544	19	2512	18	2473	32	3
35	LP2151-15	292	94	0,40	4,949	0,070	0,323	0,003	0,745	1819	17	1811	12	1804	17	1
36	LP2151-17	482	152	0,32	4,821	0,056	0,315	0,003	0,735	1815	14	1789	10	1766	13	3
37	LP2151-18c	187	91	0,03	11,695	0,151	0,488	0,004	0,711	2594	15	2580	12	2563	19	1
38	LP2151-19c	102	49	0,42	11,893	0,202	0,483	0,006	0,689	2640	20	2596	16	2540	25	5
39	LP2151-190	515	256	0,06	12,045	0,123	0,498	0,004	0,798	2611	10	2608	10	2603	18	0
40	LP2151-20	618	199	0,27	4,936	0,057	0,322	0,003	0,742	1818	14	1808	10	1800	13	1
41	LP2151-23c	99	50	0,47	12,367	0,189	0,505	0,005	0,699	2631	18	2633	14	2634	23	-0
42	LP2151-230	271	88	0,33	5,014	0,072	0,326	0,003	0,718	1822	18	1822	12	1821	16	0
43	LP2151-25	465	179	0,24	5,900	0,065	0,385	0,003	0,753	1818	13	1961	10	2100	15	-18
44	LP2151-24c	80	43	0,40	13,175	0,254	0,540	0,008	0,799	2626	19	2692	18	2781	35	-7
45	LP2151-240	421	134	0,28	5,232	0,076	0,319	0,003	0,740	1939	18	1858	12	1786	17	9
		DD9	1-1 Étalon	secondai	re - 2682 ±	:1 Ma (âge	TIMS) par	r rapport à	l'étalon p	rincipal D	D85-17 - 30	002 ±1 Ma	(âge TIMS	;)		
1	DD91-1-2.6	189	102	0,65	13,582	0,193	0,541	0,005	0,631	2673	18	2721	13	2786	20	-5
2	DD91-1-2.3	268	145	1,07	13,504	0,179	0,540	0,005	0,685	2665	16	2716	13	2784	21	-5
3	DD91-1-2.4	170	90	1,00	13,204	0,194	0,525	0,005	0,652	2675	18	2694	14	2720	21	-2
4	DD91-1-2.5	168	89	0,52	13,367	0,199	0,530	0,005	0,644	2679	19	2706	14	2742	21	-3
5	DD91-1-2.6	189	102	0,65	13,582	0,193	0,541	0,005	0,631	2673	18	2721	13	2786	20	-5
6	DD91-1-2.7	133	66	0,76	12,825	0,188	0,501	0,005	0,642	2706	19	2667	14	2616	20	4
					2011-IL-	-3141A Gra	anite hom	ogène à gi	ain fin, Su	ite d'Aver	neau					
Zirc	ons entiers															
1	IL3141-1t	1955	668	0,27	5,181	0,068	0,342	0,004	0,832	1799	13	1850	11	1895	18	-6
2	IL3141-2	229	112	0,98	15,590	0,248	0,490	0,007	0,853	3058	13	2852	15	2570	29	19
3	IL3141-3c	843	264	0,20	4,772	0,072	0,313	0,004	0,755	1806	18	1780	13	1758	18	3
4	IL3141-4	1038	337	0,29	5,188	0,113	0,324	0,006	0,814	1896	23	1851	19	1810	28	5
5	IL3141-5	936	287	0,19	4,785	0,064	0,307	0,003	0,750	1849	16	1782	11	1726	15	8
6	IL3141-6rnd	206	103	0,15	12,412	0,219	0,501	0,007	0,789	2649	18	2636	17	2619	30	1
7	IL3141-7	490	242	0,98	12,299	0,178	0,493	0,005	0,767	2662	15	2628	14	2583	24	4
8	IL3141-8	1205	369	0,20	4,737	0,063	0,307	0,003	0,790	1833	15	1774	11	1724	16	7
9	IL3141-10	979	321	0,16	5,098	0,069	0,328	0,003	0,777	1846	15	1836	11	1827	17	1
10	IL3141-12	191	104	0,19	14,071	0,204	0,543	0,006	0,789	2723	15	2754	14	2798	26	-3
11	IL3141-14	1584	533	0.25	5,239	0.070	0,337	0,003	0.718	1846	17	1859	11	1871	16	-2

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)			
N°	N ^o d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
12	IL3141-15c	98	29	0,68	7,814	0,130	0,293	0,003	0,700	2769	19	2210	15	1659	17	45
13	IL3141-16rnd	125	67	1,15	13,703	0,207	0,533	0,006	0,735	2712	17	2729	14	2753	25	-2
14	IL3141-17rnd	37	19	0,91	13,452	0,275	0,519	0,008	0,757	2724	22	2712	19	2696	34	1
15	IL3141-18	180	83	0,20	10,893	0,161	0,458	0,005	0,784	2582	15	2514	14	2431	24	7
16	IL3141-22	4856	1088	0,14	4,191	0,122	0,224	0,006	0,913	2172	21	1672	24	1304	31	44
17	IL3141-27	499	153	0,22	4,789	0,071	0,307	0,003	0,697	1850	19	1783	12	1726	16	8
Zirc	ons polis															
18	IL3141-1	190	102	0,45	14,544	0,247	0,540	0,007	0,781	2788	17	2786	16	2783	30	0
19	IL3141-2c	511	254	1,03	12,661	0,174	0,498	0,006	0,811	2693	13	2655	13	2605	24	4
20	IL3141-3	451	228	0,74	15,527	0,217	0,507	0,006	0,796	2996	14	2848	13	2643	24	14
21	IL3141-4c	652	328	0,64	13,127	0,188	0,504	0,006	0,809	2733	14	2689	14	2630	25	5
22	IL3141-5	3052	958	0,32	4,839	0,068	0,314	0,004	0,802	1828	15	1792	12	1761	17	4
23	IL3141-6	1421	453	0,19	4,955	0,083	0,319	0,004	0,790	1842	19	1812	14	1785	21	4
24	IL3141-7	624	310	0,61	12,902	0,218	0,498	0,007	0,799	2725	17	2673	16	2604	29	5
25	IL3141-8	418	210	1,06	12,853	0,182	0,504	0,006	0,809	2698	14	2669	13	2631	25	3
26	IL3141-9	1882	937	0,11	12,600	0,163	0,498	0,005	0,820	2685	12	2650	12	2605	23	4
27	IL3141-10	1040	344	0,02	5,070	0,065	0,331	0,003	0,818	1817	13	1831	11	1843	17	-2
28	IL3141-11	166	87	0,14	14,627	0,190	0,526	0,006	0,813	2839	12	2791	12	2725	24	5
29	IL3141-12	188	75	0,14	8,818	0,164	0,401	0,006	0,770	2449	20	2319	17	2175	26	13
30	IL3141-13	1150	373	0,16	4,918	0,061	0,324	0,003	0,810	1799	13	1805	10	1811	16	-1
31	IL3141-14	130	69	1,02	13,653	0,204	0,526	0,007	0,849	2727	13	2726	14	2725	28	0
32	IL3141-15	466	232	0,49	12,555	0,148	0,497	0,005	0,811	2681	11	2647	11	2602	20	4
33	IL3141-16	471	148	0,18	4,877	0,063	0,315	0,003	0,775	1839	15	1798	11	1763	15	5
34	IL3141-17	111	58	0,60	13,256	0,215	0,524	0,007	0,806	2683	16	2698	15	2718	29	-2
35	IL3141-20	368	179	0,35	11,761	0,186	0,486	0,006	0,787	2612	16	2586	15	2552	26	3
36	IL3141-21	585	296	0,23	12,631	0,196	0,506	0,006	0,807	2661	15	2652	15	2641	27	1
37	IL3141-22	516	162	0,22	4,775	0,061	0,314	0,003	0,760	1802	15	1781	11	1763	15	2
38	IL3141-23	53	24	0,70	10,717	0,181	0,456	0,006	0,733	2563	19	2499	16	2421	25	7
39	IL3141-24	1488	456	0,31	4,658	0,052	0,306	0,003	0,790	1803	13	1760	9	1723	13	5
40	IL3141-25	487	150	0,15	5,266	0,079	0,308	0,003	0,691	2017	19	1863	13	1728	16	16
41	IL3141-19.1c	324	101	0,15	4,789	0,070	0,312	0,004	0,782	1819	17	1783	12	1752	18	4
42	IL3141-19.20	624	194	0,15	4,786	0,080	0,312	0,004	0,812	1822	18	1782	14	1748	21	5
Mon	azites polies															
43	IL3141A11-1	138	41		4,654	0,117	0,296	0,006	0,791	1867	28	1759	21	1669	29	12
44	IL3141-2.1r	82	25		4,799	0,120	0,302	0,006	0,780	1882	28	1785	21	1703	29	11
45	IL3141-2.2c	137	43		5,052	0,162	0,312	0,008	0,847	1916	30	1828	27	1752	41	10
46	IL3141-3	275	81		4,539	0,123	0,295	0,006	0,772	1827	31	1738	22	1665	31	10
47	IL3141-5.1r	191	59		4,729	0,120	0,306	0,006	0,744	1831	31	1772	21	1723	29	7
48	IL3141-5.1c	105	32		4,857	0,126	0,308	0,006	0,760	1867	30	1795	22	1733	30	8
49	IL3141-6.1	67	21		4,742	0,123	0,311	0,006	0,770	1809	30	1775	22	1746	31	4
50	IL3141-6.2c	115	36		4,896	0,121	0,316	0,006	0,788	1839	27	1802	21	1769	30	4
51	IL3141-6.3	156	49		4,912	0,120	0,314	0,006	0,757	1854	29	1804	21	1761	29	6
52	IL3141-7	193	59		4,841	0,125	0,304	0,006	0,807	1889	27	1792	22	1710	31	11
53	IL3141-8.1c	78	24		4,816	0,123	0,307	0,006	0,762	1858	30	1788	21	1728	29	8
54	IL3141-8.2r	93	29		4,761	0,134	0,318	0,007	0,769	1777	33	1778	23	1779	34	-0
55	IL3141-9.1t	68	22		5,053	0,147	0,331	0,008	0,784	1812	33	1828	25	1843	36	-2
56	IL3141-9.1c	121	39		5,053	0,133	0,324	0,007	0,796	1850	29	1828	22	1809	33	3
57	IL3141-11	58	18		4,844	0,130	0,310	0,006	0,713	1853	34	1793	23	1741	29	7
58	IL3141-10.1r	55	17		4,718	0,124	0,310	0,006	0,751	1807	31	1771	22	1740	30	4

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports isc	otopiques								Âge (Ma)			
N°	N ^o d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
59	IL3141-10.2c	69	22		4,997	0,139	0,315	0,007	0,778	1880	31	1819	23	1766	33	7
60	IL3141-12.1r	83	26		4,885	0,130	0,312	0,007	0,796	1858	29	1800	22	1750	32	7
61	IL3141-12.2c	149	46		4,773	0,119	0,311	0,006	0,817	1822	26	1780	21	1745	31	5
				2011-PL-	6182A Ton	alite très	déformée	à orthopy	oxène-gre	enat, Com	plexe de K	aslac				
Zirc	ons entiers															
1	PL6182-1.1r	18	6	0,60	5,067	0,105	0,323	0,005	0,689	1859	27	1831	17	1806	22	3
2	PL6182-1.2c	104	34	0,44	5,069	0,058	0,324	0,003	0,736	1855	14	1831	10	1810	13	3
3	PL6182-2.1d.c	188	63	0,56	5,223	0,054	0,335	0,003	0,804	1852	11	1856	9	1861	14	-1
4	PL6182-3.1d.c	180	59	0,51	5,145	0,053	0,329	0,003	0,749	1856	12	1843	9	1832	12	2
5	PL6182-3.2clr	21	7	0,47	5,289	0,108	0,334	0,005	0,706	1875	26	1867	17	1860	23	1
6	PL6182-4	27	9	0,45	5,007	0,116	0,320	0,005	0,635	1856	32	1821	19	1789	23	4
7	PL6182-7clr	30	10	0,50	5,053	0,120	0,337	0,006	0,715	1780	30	1828	20	1871	28	-6
8	PL6182-8.1d.c	422	145	0,38	5,275	0,054	0,344	0,003	0,794	1819	11	1865	9	1906	13	-6
9	PL6182-8.2c	281	95	0,39	5,240	0,055	0,337	0,003	0,780	1842	12	1859	9	1874	13	-2
10	PL6182-8.3clr	33	11	0,48	5,070	0,117	0,334	0,005	0,657	1803	31	1831	20	1856	24	-3
11	PL6182-5.1d	145	50	0,47	5,292	0,068	0,341	0,003	0,777	1842	15	1868	11	1891	16	-3
12	PL6182-5.2clr	23	8	0,51	5,490	0,135	0,349	0,006	0,743	1865	29	1899	21	1930	30	-4
13	PL6182-6d	90	31	0,47	5,290	0,072	0,340	0,003	0,742	1846	16	1867	12	1886	16	-3
14	PL6182-9.1d.c	974	348	0,45	5,728	0,056	0,358	0,003	0,839	1898	10	1936	8	1971	14	-4
15	PL6182-9.2m	80	27	0,45	5,210	0,075	0,341	0,004	0,799	1813	16	1854	12	1892	19	-5
16	PL6182-9.3cr	17	6	0,43	5,318	0,135	0,351	0,006	0,680	1796	33	1872	22	1941	29	-9
17	PL6182-10.1	149	50	0,47	5,115	0,064	0,332	0,003	0,792	1830	14	1839	11	1847	16	-1
18	PL6182-10.2cr	63	22	0,47	5,268	0,082	0,345	0,004	0,740	1810	19	1864	13	1912	19	-7
19	PL6182-11	88	29	0,69	5,026	0,077	0,324	0,004	0,704	1842	20	1824	13	1807	17	2
20	PL6182-12.1c	56	18	0,83	5,041	0,106	0,323	0,005	0,680	1851	28	1826	18	1804	22	3
21	PL6182-12.2r	26	9	0,47	5,109	0,145	0,333	0,006	0,651	1818	39	1838	24	1855	30	-2
22	PL6182-13	225	74	0,53	5,033	0,056	0,328	0,003	0,822	1822	11	1825	9	1827	14	-0
23	PL6182-14	35	11	0,47	4,945	0,115	0,324	0,005	0,711	1809	30	1810	20	1811	26	-0
					2011-QD-	7509A Co	nglomérat	polygénic	lue, Forma	ation de K	eyano					
Zirc	ons entiers															
1	11QD7509-1	23	12	0,79	14,413	0,190	0,530	0,006	0,794	2803	13	2777	12	2742	23	3
2	QD-2	52	30	0,89	14,640	0,155	0,569	0,005	0,858	2713	9	2792	10	2903	21	-9
3	QD-3	5	3	0,69	15,394	0,302	0,591	0,009	0,743	2732	22	2840	19	2994	35	-12
4	QD-4	18	9	0,34	13,689	0,174	0,526	0,005	0,808	2732	12	2728	12	2724	23	0
5	QD-5	102	61	0,52	15,582	0,167	0,599	0,005	0,853	2730	9	2852	10	3027	22	-14
6	QD-6	52	28	0,31	14,367	0,155	0,550	0,005	0,817	2736	10	2774	10	2827	20	-4
7	QD-7	41	24	0,69	15,642	0,186	0,577	0,006	0,806	2798	12	2855	11	2937	23	-6
8	QD-8	79	43	0,28	14,644	0,150	0,541	0,005	0,837	2795	9	2792	10	2789	19	0
9	QD-9	93	53	0,69	14,636	0,153	0,562	0,005	0,826	2732	10	2792	10	2876	20	-7
10	QD-10.1	248	137	0,68	14,083	0,143	0,552	0,005	0,846	2698	9	2755	10	2835	20	-6
11	QD-10.2	161	85	0,70	13,535	0,132	0,530	0,004	0,851	2700	8	2718	9	2742	18	-2
12	QD-11	19	10	0,15	14,484	0,198	0,544	0,006	0,762	2768	14	2782	13	2801	24	-1
13	QD-12	63	34	0,77	14,711	0,160	0,539	0,005	0,813	2809	10	2797	10	2780	20	1
14	QD-13	118	64	0,25	14,111	0,155	0,538	0,005	0,834	2744	10	2757	10	2775	21	-1
15	QD-14	94	50	1,18	13,638	0,128	0,531	0,004	0,804	2708	9	2725	9	2747	17	-2
16	QD-15	23	13	0,87	15,751	0,197	0,563	0,006	0,803	2850	12	2862	12	2879	23	-1
17	QD-16	102	58	0,34	15,424	0,152	0,570	0,005	0,826	2794	9	2842	9	2910	19	-5
18	QD-17.1	148	83	0,73	14,637	0,142	0,561	0,005	0,853	2737	8	2792	9	2869	19	-6
19	QD-17.2	168	92	1,19	14,180	0,145	0,546	0,005	0,846	2728	9	2762	10	2808	20	-4
20	QD-18	193	105	0,01	13,923	0,150	0,545	0,005	0,866	2702	9	2745	10	2803	21	-5

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)			
N°	N ^o d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
21	QD-19	43	24	0,79	15,167	0,181	0,565	0,005	0,787	2783	12	2826	11	2885	22	-5
22	QD-20	206	118	0,60	14,690	0,139	0,573	0,005	0,857	2706	8	2795	9	2920	19	-10
23	QD-21	355	128	0,07	7,864	0,106	0,361	0,004	0,843	2435	12	2216	12	1986	19	21
24	QD-22	101	62	0,26	18,448	0,229	0,610	0,006	0,811	2975	12	3013	12	3072	25	-4
25	QD-23	392	211	0,17	13,812	0,123	0,539	0,004	0,835	2706	8	2737	8	2779	17	-3
26	QD-24	131	66	0,07	13,175	0,188	0,508	0,005	0,753	2726	15	2692	13	2648	23	3
27	QD-25	292	150	0,02	13,367	0,179	0,514	0,005	0,798	2730	13	2706	13	2674	23	3
28	QD-26	165	94	0,15	15,099	0,142	0,568	0,004	0,828	2767	9	2821	9	2898	18	-6
29	QD-27.1	84	49	0,26	16,213	0,172	0,581	0,005	0,848	2844	9	2889	10	2955	21	-5
30	QD-27.2	37	21	0,27	16,056	0,193	0,571	0,005	0,789	2857	12	2880	12	2913	22	-2
31	QD-28	79	43	0,71	13,816	0,154	0,543	0,005	0,791	2694	11	2737	11	2795	20	-5
32	QD-29	87	46	0,25	13,779	0,143	0,525	0,005	0,837	2747	9	2735	10	2718	19	1
33	QD-30	59	34	0,23	15,530	0,206	0,585	0,006	0,779	2765	14	2848	13	2968	25	-9
34	QD-31	41	22	0,31	13,990	0,159	0,527	0,005	0,789	2764	11	2749	11	2728	20	2
35	QD-32	82	47	0,38	14,934	0,156	0,578	0,005	0,854	2718	9	2811	10	2943	21	-10
36	QD-33	87	45	0,28	13,686	0,139	0,522	0,004	0,811	2743	10	2728	10	2708	18	2
37	QD-34	94	51	0,58	13,741	0,143	0,540	0,004	0,799	2693	10	2732	10	2785	19	-4
38	QD-35	68	37	0,80	15,024	0,160	0,547	0,004	0,760	2821	11	2817	10	2811	18	0
39	QD-36	206	124	0,50	15,428	0,191	0,602	0,005	0,723	2705	14	2842	12	3040	22	-16
40	QD-37	355	191	0,05	14,202	0,144	0,537	0,005	0,834	2757	9	2763	10	2772	19	-1
41	QD-38	70	39	0,23	14,393	0,157	0,547	0,005	0,789	2751	11	2776	10	2811	20	-3
42	QD-39	160	80	0,10	13,004	0,178	0,500	0,006	0,818	2730	13	2680	13	2614	24	5
43	QD-40	44	24	0,34	13,912	0,158	0,535	0,005	0,786	2730	12	2744	11	2762	20	-1
44	QD-41	95	50	0,48	13,776	0,135	0,528	0,004	0,789	2736	10	2734	9	2732	17	0
45	QD-42	87	49	0,28	14,536	0,156	0,556	0,005	0,783	2738	11	2785	10	2851	19	-5
46	QD-43	201	107	0,58	13,588	0,132	0,531	0,004	0,792	2704	10	2721	9	2745	17	-2
47	QD-44	55	32	0,70	16,125	0,175	0,580	0,005	0,805	2838	11	2884	10	2950	21	-5
48	QD-45	218	125	0,28	14,704	0,132	0,574	0,004	0,802	2705	9	2796	9	2924	17	-10
49	QD-46	70	35	0,36	13,135	0,142	0,503	0,004	0,807	2738	10	2689	10	2625	19	5
50	QD-47	132	73	0,63	14,064	0,126	0,552	0,004	0,814	2697	9	2754	9	2833	17	-6
51	QD-48	78	44	0,22	14,756	0,149	0,561	0,005	0,824	2748	9	2800	10	2872	19	-6
52	QD-49.1	155	81	0,40	13,652	0,131	0,524	0,004	0,823	2734	9	2726	9	2715	17	1
53	QD-50.1	29	15	0,23	14,215	0,153	0,527	0,004	0,712	2790	12	2764	10	2729	17	3
54	QD-51	56	28	0,34	14,005	0,145	0,495	0,004	0,770	2867	11	2750	10	2594	17	12
55	QD-52	40	21	0,23	14,402	0,178	0,536	0,005	0,761	2783	13	2777	12	2767	21	1
56	QD-53	63	32	0,62	13,189	0,147	0,514	0,005	0,818	2708	11	2693	11	2673	20	2
57	QD-54.1	256	146	0,15	14,724	0,128	0,571	0,004	0,824	2716	8	2798	8	2913	17	-9
58	QD-54.2	137	74	0,14	13,906	0,158	0,546	0,005	0,848	2697	10	2743	11	2807	22	-5
59	QD-55	113	65	0,30	15,766	0,173	0,570	0,005	0,849	2830	9	2863	10	2909	22	-3
60	QD-56	696	389	0,02	14,330	0,132	0,559	0,005	0,875	2707	7	2772	9	2861	19	-7
61	QD-57	153	93	0,20	16,353	0,163	0,607	0,005	0,857	2789	8	2898	10	3057	21	-12
62	QD-58	100	58	0,57	14,902	0,168	0,586	0,006	0,842	2693	10	2809	11	2974	23	-13
63	QD-59	46	27	0,58	15,979	0,184	0,579	0,006	0,828	2828	10	2876	11	2943	22	-5
64	QD-69	69	38	0,43	14,383	0,168	0,558	0,005	0,792	2716	12	2775	11	2858	21	-6
65	QD-52.2	392	196	0,06	12,155	0,142	0,500	0,005	0,841	2618	11	2616	11	2615	21	0

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)			
N°	N° d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
				SGNO	-2000-05 (1	996-JG-1	390) Cong	lomérat po	olygénique	, Formatio	on d'Ekom	iak				
Zirc	ons entiers															
1	SGNO-2000-5-1	203	115	0,65	14,594	0,239	0,568	0,007	0,778	2711	17	2789	16	2898	30	-9
2	SGNO-00-2	110	60	0,28	15,272	0,188	0,543	0,005	0,808	2859	12	2832	12	2795	23	3
3	SGNO-00-3	147	76	0,58	13,377	0,189	0,514	0,006	0,875	2730	11	2707	13	2675	27	2
4	SGNO-00-4	143	73	0,72	13,252	0,164	0,511	0,005	0,837	2727	11	2698	12	2659	23	3
5	SGNO-00-5	629	325	0,87	13,484	0,147	0,517	0,005	0,829	2734	10	2714	10	2688	20	2
6	SGNO-00-6	143	83	0,49	16,543	0,221	0,584	0,006	0,818	2869	12	2909	13	2966	26	-4
7	SGNO-00-7	575	302	0,66	13,737	0,173	0,526	0,006	0,833	2739	11	2732	12	2723	23	1
8	SGNO-00-8	758	406	0,74	13,981	0,155	0,536	0,005	0,833	2736	10	2748	11	2766	21	-1
9	SGNO-00-9	199	112	0,51	15,284	0,186	0,562	0,006	0,834	2802	11	2833	12	2877	24	-3
10	SGNO-00-10	227	125	0,83	14,297	0,176	0,551	0,006	0,824	2727	11	2770	12	2829	23	-5
11	SGNO-00-11	390	213	0,52	14,230	0,150	0,547	0,005	0,853	2732	9	2765	10	2811	21	-4
12	SGNO-00-12	97	65	0,22	18,918	0,210	0,674	0,006	0,842	2856	10	3038	11	3319	24	-21
13	SGNO-00-13	649	355	0,49	14,316	0,145	0,547	0,005	0,834	2742	9	2771	10	2811	19	-3
14	SGNO-00-14	75	41	0,40	14,211	0,164	0,547	0,005	0,836	2728	10	2764	11	2813	22	-4
15	SGNO-00-15	328	184	0,48	14,681	0,176	0,561	0,006	0,868	2740	10	2795	11	2871	24	-6
16	SGNO-00-16	118	64	0,34	15,296	0,189	0,545	0,006	0,852	2855	10	2834	12	2805	24	2
17	SGNO-00-17	185	97	0,50	13,636	0,158	0,522	0,005	0,852	2736	10	2725	11	2709	22	1
18	SGNO-00-18	486	252	0,52	13,501	0,183	0,519	0,006	0,831	2732	12	2715	13	2693	25	2
19	SGNO-00-19	311	162	0,43	13,475	0,167	0,521	0,005	0,844	2720	11	2714	12	2705	23	1
20	SGNO-00-20	244	132	0,49	14,157	0,163	0,540	0,005	0,856	2745	10	2760	11	2782	22	-2
21	SGNO-00-21	205	106	0,69	13,247	0,157	0,515	0,005	0,858	2711	10	2697	11	2679	22	1
22	SGNO-00-22	135	72	0,59	13,634	0,169	0,532	0,006	0,871	2705	10	2725	12	2752	24	-2
23	SGNO-00-23	199	109	1,03	13,938	0,153	0,546	0,005	0,868	2701	9	2745	10	2807	22	-5
24	SGNO-00-24	133	74	0,79	14,194	0,162	0,554	0,006	0,876	2706	9	2763	11	2841	23	-6
25	SGNO-00-25	100	52	0,52	13,458	0,153	0,523	0,005	0,872	2714	9	2712	11	2710	22	0
26	SGNO-00-26	77	44	0,45	16,019	0,184	0,574	0,006	0,875	2846	9	2878	11	2923	24	-3
27	SGNO-00-27	137	70	0,56	13,476	0,165	0,516	0,006	0,874	2738	10	2714	12	2681	23	3
28	SGNO-00-28	120	68	0,81	15,717	0,193	0,561	0,006	0,867	2851	10	2860	12	2872	25	-1
29	SGNO-00-29	262	147	0,62	15,808	0,182	0,561	0,006	0,893	2860	8	2865	11	2872	24	-1
30	SGNO-00-30	157	87	0,84	15,770	0,191	0,558	0,006	0,883	2868	9	2863	12	2856	25	0
31	SGNO-00-31	127	63	0,82	12,949	0,159	0,499	0,005	0,889	2728	9	2676	12	2608	23	5
32	SGNO-00-32	222	127	0,61	14,896	0,181	0,573	0,006	0,856	2729	10	2809	12	2920	24	-9
33	SGNO-00-33	149	85	0,50	14,750	0,177	0,571	0,006	0,863	2719	10	2799	11	2912	24	-9
34	SGNO-00-34	134	75	0,86	15,633	0,187	0,556	0,006	0,863	2857	10	2855	11	2851	24	0
35	SGNO-00-35	80	43	0,64	15,223	0,183	0,540	0,006	0,849	2862	10	2829	11	2784	23	3
36	SGNO-00-36	77	41	0,83	14,384	0,189	0,532	0,006	0,842	2794	12	2775	12	2750	25	2
37	SGNO00-5-37	497	272	0,34	15,395	0,171	0,548	0,005	0,851	2858	10	2840	11	2815	22	2
38	S-00-5-38	306	173	0,14	15,406	0,171	0,565	0,005	0,859	2809	9	2841	11	2886	22	-3
39	S-00-5-39	92	48	1,09	13,702	0,181	0,522	0,006	0,859	2745	11	2729	12	2708	25	2
40	S-00-5-40	197	94	1,02	12,454	0,162	0,478	0,005	0,836	2733	12	2639	12	2519	23	9
41	S-00-5-41	143	72	1,02	13,074	0,162	0,504	0,006	0,881	2725	10	2685	12	2633	24	4
42	S-00-5-42	204	111	0,60	14,165	0,164	0,542	0,005	0,869	2737	9	2761	11	2793	23	-3
43	S-00-5-43	102	62	0,75	17,033	0,210	0,606	0,006	0,818	2856	12	2937	12	3056	25	-9
44	S-00-5-46	547	291	0,61	15,124	0,163	0,531	0,005	0,875	2878	9	2823	10	2747	21	6
45	S-00-5-48	214	108	0,47	13,745	0,170	0,505	0,005	0,866	2804	10	2732	12	2636	23	7
46	S-00-5-49	199	102	0,74	13,371	0,172	0,511	0,006	0,868	2740	10	2706	12	2661	24	4
47	S-00-5-50	560	280	0,75	12,904	0,147	0,499	0,005	0,871	2720	9	2673	11	2611	21	5

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports isc	otopiques								Âge (Ma)			
N°	N ^o d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
48	S-00-5-51	713	357	0,88	12,911	0,157	0,501	0,005	0,869	2715	10	2673	11	2619	23	4
49	S-00-5-52	183	95	1,16	13,401	0,174	0,519	0,006	0,848	2718	11	2708	12	2696	24	1
50	S-00-5-53	252	126	1,00	12,895	0,153	0,500	0,005	0,842	2716	11	2672	11	2615	21	5
51	S-00-5-54	412	198	1,00	12,421	0,158	0,481	0,005	0,839	2720	11	2637	12	2530	22	8
52	S-00-5-56	351	187	1,43	13,810	0,175	0,533	0,006	0,837	2725	11	2737	12	2752	24	-1
53	S-00-5-57	169	87	1,14	13,236	0,142	0,513	0,005	0,839	2717	10	2697	10	2669	20	2
54	S-00-5-59	139	72	0,79	13,742	0,157	0,520	0,005	0,798	2757	11	2732	11	2699	20	3
55	S-00-5-61	51	29	0,89	14,946	0,186	0,573	0,006	0,839	2734	11	2812	12	2922	25	-9
56	S-00-5-62	38	20	0,68	13,862	0,172	0,534	0,005	0,815	2726	12	2740	12	2760	23	-2
57	S-00-5-63	120	64	0,90	13,840	0,170	0,532	0,006	0,870	2731	10	2739	12	2749	24	-1
58	S-00-5-64	419	215	1,31	13,365	0,153	0,513	0,005	0,888	2732	9	2706	11	2671	22	3
59	S-00-5-65	329	181	1,04	14,255	0,151	0,552	0,005	0,861	2719	9	2767	10	2833	21	-5
60	S-00-5-66	600	320	1,51	13,840	0,158	0,532	0,005	0,864	2729	9	2739	11	2752	22	-1
61	S-00-5-67	192	114	0,67	16,345	0,175	0,594	0,005	0,813	2823	10	2897	10	3005	21	-8
62	S-00-5-69	250	135	0,91	13,990	0,153	0,540	0,005	0,829	2724	10	2749	10	2784	20	-3
63	S-00-5-71	1059	534	1,37	12,829	0,159	0,504	0,005	0,826	2694	12	2667	12	2632	22	3
64	S-00-5-73	197	112	1,51	14,610	0,174	0,565	0,006	0,829	2719	11	2790	11	2889	23	-8
65	S-00-5-74	185	103	1,02	14,420	0,186	0,554	0,006	0,852	2731	11	2778	12	2842	25	-5
66	S-00-5-75	235	122	1,07	13,509	0,163	0,519	0,005	0,831	2731	11	2716	11	2696	22	2
					20	11-JG-118	7A Tuf à la	apillis, For	mation de	Corvette						
Zirc	ons entiers				1			1								
1	JG1187-1	385	195	1,47	11,825	0,252	0,507	0,010	0,894	2549	16	2591	20	2645	41	-5
2	JG1187-2	1022	365	1,14	7,709	0,228	0,357	0,009	0,872	2418	24	2198	26	1970	44	21
3	JG1187-3	995	377	1,59	7,922	0,138	0,379	0,006	0,886	2363	14	2222	16	2073	27	14
4	JG1187-4	1676	497	1,79	5,965	0,106	0,297	0,005	0,898	2298	13	1971	15	1674	24	31
5	JG1187-5	773	354	0,04	10,532	0,159	0,458	0,006	0,872	2525	12	2483	14	2432	27	4
6	JG1187-6	464	200	0,46	9,986	0,212	0,431	0,008	0,906	2538	15	2434	20	2310	37	11
7	JG1187-7	2046	612	3,08	6,036	0,095	0,299	0,004	0,856	2303	14	1981	14	1688	20	30
8	JG1187-8	1051	340	0,36	6,395	0,129	0,324	0,006	0,894	2266	15	2032	18	1809	28	23
9	JG1187-9	1372	596	2,63	11,110	0,370	0,434	0,013	0,902	2704	24	2532	31	2324	58	17
10	JG1187-10	1679	775	2,68	10,365	0,196	0,462	0,008	0,906	2486	13	2468	17	2446	35	2
11	JG1187-11	1540	531	1,90	6,920	0,124	0,345	0,005	0,882	2295	14	2101	16	1909	26	19
12	JG1187-12	1688	766	2,57	10,281	0,190	0,454	0,006	0,775	2501	20	2460	17	2411	29	4
13	JG1187-13	1704	670	2,14	8,060	0,201	0,393	0,009	0,949	2330	13	2238	22	2139	43	10
14	JG1187-14	44	23	0,66	14,015	0,395	0,527	0,011	0,727	2766	31	2751	27	2730	45	2
15	JG1187-16	1367	410	2,50	6,271	0,179	0,300	0,008	0,948	2364	16	2014	25	1691	40	32
16	JG1187-17	3431	1201	1,70	7,510	0,173	0,350	0,007	0,927	2409	15	2174	21	1934	36	23
17	JG1187-18	190	98	0,80	13,437	0,247	0,515	0,008	0,839	2735	16	2711	17	2679	34	3
18	JG1187-19	919	360	1,28	8,720	0,155	0,391	0,006	0,805	2474	18	2309	16	2128	26	16
19	JG1187-20	/59	299	1,24	8,827	0,135	0,395	0,005	0,859	2480	13	2320	14	2144	24	16
20	JG1187-21	2023	542	2,03	5,634	0,110	0,268	0,005	0,901	2375	14	1921	17	1530	24	40
21	JG1187-22	2651	867	3,08	6,309	0,153	0,327	0,007	0,938	2225	15	2020	21	1825	36	21
22	JG1187-23	2109	744	2,63	6,748	0,141	0,353	0,007	0,928	2212	14	2079	18	1947	33	14
23	JG1187-24	1159	381	2,33	6,088	0,100	0,329	0,005	0,868	2156	14	1988	14	1831	23	17

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)			
N°	N° d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
					2011-J	G-1592 M1	Gneiss g	ranitique,	Complexe	de Lange	lier					
Zirc	ons entiers															
1	11JG1592-1.1	922	675	0,07	29,125	0,383	0,732	0,008	0,813	3410	12	3458	13	3541	29	-5
2	JG1592-2.1	733	500	0,04	27,989	0,408	0,682	0,009	0,858	3457	12	3419	14	3354	33	4
3	JG1592-3.1	1223	883	0,04	28,001	0,376	0,722	0,008	0,858	3371	11	3419	13	3502	31	-5
4	JG1592-4.1	817	617	0,03	30,677	0,395	0,756	0,008	0,863	3441	10	3509	13	3628	31	-7
5	JG1592-5.1	985	682	0,05	25,190	0,331	0,693	0,008	0,845	3269	11	3316	13	3393	29	-5
6	JG1592-6.1	3899	1751	0,15	11,227	0,150	0,449	0,005	0,835	2665	12	2542	12	2391	22	12
7	JG1592-7.1	1378	972	0,06	24,196	0,316	0,705	0,007	0,749	3177	14	3276	13	3441	26	-11
8	JG1592-8.1	6445	2669	0,27	8,841	0,107	0,414	0,004	0,865	2400	10	2322	11	2234	20	8
9	JG1592-9.1	4487	1593	0,14	7,079	0,085	0,355	0,003	0,815	2283	12	2121	11	1959	16	16
10	JG1592-10.1	4084	2177	0,19	13,720	0,173	0,533	0,006	0,852	2713	11	2731	12	2754	24	-2
11	JG1592-12.1	1631	1007	0,09	20,622	0,238	0,618	0,006	0,850	3134	10	3121	11	3101	24	1
12	JG1592-13.1	5502	2608	0,08	11,888	0,168	0,474	0,006	0,836	2671	13	2596	13	2501	24	8
13	JG1592-14.1	2470	1609	0,06	20,065	0,296	0,651	0,008	0,821	3005	14	3095	14	3234	31	-10
14	JG1592-16.1	898	553	0,04	23,757	0,311	0,616	0,007	0,861	3361	10	3258	13	3094	28	10
15	JG1592-18.1	5446	1602	0,06	5,696	0,081	0,294	0,003	0,789	2233	15	1931	12	1662	16	29
Zirc	ons polis															
16	JG1592-1.1	1782	1303	0,06	26,606	0,397	0,731	0,009	0,862	3271	12	3369	15	3537	35	-11
17	JG1592-1.2	871	580	0,06	27,111	0,632	0,666	0,013	0,849	3446	19	3387	23	3290	51	6
18	JG1592-2	963	823	0,06	35,418	0,705	0,855	0,014	0,847	3473	16	3650	20	3982	50	-20
19	JG1592-3	5833	2540	0,16	9,397	0,173	0,436	0,007	0,867	2418	16	2378	17	2331	31	4
20	JG1592-4.1	782	536	0,05	23,263	0,399	0,685	0,010	0,866	3161	14	3238	17	3364	39	-8
21	JG1592-4.2	4458	1724	0,22	8,300	0,126	0,387	0,005	0,856	2409	13	2264	14	2108	23	15
22	JG1592-8	1763	1136	0,05	22,863	0,390	0,644	0,010	0,888	3231	12	3221	17	3205	38	1
23	JG1592-9.1	1203	821	0,07	25,376	0,523	0,683	0,013	0,895	3304	14	3323	20	3354	48	-2
24	JG1592-9.2	618	443	0,04	29,131	0,580	0,717	0,011	0,787	3442	19	3458	19	3486	42	-2
25	JG1592-10	758	566	0,05	30,435	0,494	0,746	0,011	0,896	3449	11	3501	16	3593	40	-5
26	JG1592-11	1036	662	0,06	23,489	0,601	0,639	0,014	0,854	3286	21	3247	25	3186	55	4
27	JG1592-16	2867	1837	0,06	20,978	0,368	0,641	0,010	0,868	3103	14	3138	17	3192	38	-4
28	JG1592-27.1	1871	1292	0,05	22,004	0,398	0,690	0,011	0,843	3060	16	3184	18	3384	40	-14
29	JG1592-27.2	1799	1276	0,07	25,947	0,413	0,710	0,010	0,873	3278	12	3345	16	3457	37	-7
30	JG1592-30	1316	717	0,22	17,562	0,292	0,545	0,008	0,854	3078	14	2966	16	2803	32	11
31	JG1592-31	3362	1112	0,17	6,347	0,087	0,331	0,004	0,833	2217	13	2025	12	1842	18	19
32	JG1592-33.1	1242	966	0,09	27,569	0,376	0,778	0,009	0,838	3229	12	3404	13	3710	32	-20
33	JG1592-33.2	1834	1473	0,05	30,588	0,507	0,803	0,012	0,882	3342	12	3506	16	3800	42	-18
					2011-	JG-1242A	Gneiss tor	nalitique, (Complexe	de Langel	ier					
Zirc	ons entiers	1	1			1		1	1		1					
1	11JG1242-1.1	101	55	0,45	14,722	0,261	0,544	0,007	0,771	2796	19	2797	17	2800	31	-0
2	11JG1242-3.1	131	69	0,45	14,972	0,242	0,528	0,007	0,792	2872	16	2813	15	2733	29	6
3	11JG1242-4.1	135	64	0,28	14,244	0,236	0,476	0,006	0,769	2960	17	2766	16	2509	26	18
4	11JG1242-6.1	124	69	0,51	16,408	0,264	0,554	0,007	0,764	2941	17	2901	15	2843	28	4
5	11JG1242-8.1	168	93	0,53	15,569	0,274	0,552	0,008	0,830	2864	16	2851	17	2832	33	1
6	11JG1242-9.1	142	80	0,42	15,218	0,246	0,561	0,007	0,781	2798	17	2829	15	2872	29	-3
7	11JG1242-10.1	145	81	0,59	14,428	0,243	0,555	0,008	0,827	2729	16	2778	16	2846	32	-5
8	11JG1242-11.1	76	42	0,38	14,957	0,267	0,560	0,008	0,763	2774	19	2813	17	2866	31	-4
9	11JG1242-13.1	190	100	0,52	14,016	0,241	0,530	0,007	0,810	2757	17	2751	16	2742	31	1
10	11JG1242-14.1	131	77	0,49	15,580	0,270	0,587	0,008	0,806	2763	17	2851	17	2978	33	-10
11	11JG1242-15.1	166	88	0,52	13,886	0,217	0,529	0,007	0,810	2744	15	2742	15	2739	28	0

TABLEAU 2 (suite) – Résultats des	analyses U-Pb in situ (LA-ICPMS).
-----------------------------------	-----------------------------------

			Ra	pports isc	topiques								Âge (Ma)			
N°	N° d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
12	11JG1242-21.1	103	58	0,41	14,938	0,262	0,565	0,008	0,837	2758	16	2811	17	2886	34	-6
				201	I-FL-5270/	A Tuf à lap	illis, Mem	bre des Ve	nts, Form	ation d'Ob	atogamau					
Zirc	ons entiers															
1	11FL5270-1	216	116	0,45	14,618	0,185	0,537	0,006	0,872	2804	10	2791	12	2772	25	1
2	5270-2	265	155	0,48	15,734	0,190	0,583	0,006	0,881	2792	9	2861	12	2960	25	-8
3	5270-3	3	2	0,03	17,178	0,538	0,541	0,012	0,716	3054	35	2945	30	2787	51	11
4	5270-4	489	316	0,28	17,400	0,215	0,647	0,007	0,880	2786	10	2957	12	3216	28	-20
5	5270-5	3	1	0,46	17,231	0,490	0,543	0,011	0,739	3052	30	2948	27	2798	48	10
6	5270-6	4	2	0,16	15,489	0,401	0,560	0,011	0,765	2832	27	2846	24	2866	46	-1
7	5270-7	371	205	0,54	15,024	0,169	0,554	0,005	0,866	2800	9	2817	11	2840	22	-2
8	5270-8	26	14	0,17	14,910	0,235	0,550	0,007	0,789	2797	16	2810	15	2827	28	-1
9	5270-9	207	118	0,31	15,439	0,241	0,569	0,008	0,864	2800	13	2843	15	2904	32	-5
10	5270-10	9	5	0,16	16,332	0,392	0,576	0,011	0,798	2872	23	2896	23	2931	45	-3
11	5270-11	129	70	0,46	14,740	0,185	0,543	0,006	0,841	2799	11	2799	12	2798	24	0
12	5270-12	522	320	0,46	16,643	0,212	0,614	0,007	0,882	2799	10	2915	12	3085	28	-13
13	5270-14	198	111	0,47	15,298	0,217	0,559	0,007	0,888	2814	11	2834	13	2863	29	-2
14	5270-15	267	150	0,54	15,319	0,182	0,563	0,006	0,883	2805	9	2835	11	2878	24	-3
15	5270-16	274	162	0,38	16,162	0,198	0,593	0,006	0,875	2808	10	2886	12	3000	26	-9
16	5270-13	81	45	0,38	15,122	0,233	0,555	0,007	0,871	2806	12	2823	15	2847	31	-2
17	5270-17	69	40	0,42	15,548	0,227	0,575	0,007	0,888	2795	11	2849	14	2927	30	-6
18	5270-18	788	463	1,13	15,918	0,232	0,588	0,008	0,915	2797	10	2872	14	2980	32	-8
					20	06-FL-612	9C Tuf à la	pillis, For	mation de	Bruneau						
Zirc	ons entiers															<u> </u>
1	11FL6129-1	12	6	0,62	13,539	0,267	0,528	0,008	0,791	2708	20	2718	19	2731	35	-1
2	6129-2	17	9	0,57	13,806	0,210	0,532	0,006	0,767	2727	16	2736	14	2749	26	-1
3	6129-3	11	6	0,37	14,292	0,279	0,539	0,008	0,766	2763	20	2769	18	2779	34	-1
4	6129-4	17	9	0,62	13,620	0,225	0,527	0,007	0,755	2719	18	2724	16	2730	28	-1
5	6129-5	16	9	0,68	14,500	0,248	0,555	0,007	0,780	2/3/	18	2783	16	2847	31	-5
6	6129-6	37	21	0,73	14,163	0,191	0,553	0,006	0,770	2704	14	2761	13	2838	24	-6
/	6129-7	18	10	0,42	14,191	0,261	0,543	0,007	0,742	2738	20	2763	17	2797	31	-3
8	6129-8	48	26	0,41	14,093	0,196	0,540	0,006	0,754	2735	15	2756	13	2785	24	-2
9	6129-9	45	21	0,36	10,747	0,167	0,473	0,006	0,762	2505	17	2502	14	2497	24	0
10	6129-10	15	16	0,57	13,222	0,233	0,535	0,007	0,758	2047	19	2090	17	2701	30	-5
11	6129-11	30	14	0,62	12 705	0,200	0,542	0,000	0,772	2712	10	2755	14	2794	20	-3
12	6120-13	15	8	0.65	13 873	0.257	0.551	0,007	0.745	2676	20	27/1	17	2830	32	-3
14	6129-14	17	9	0.59	14 131	0.251	0.539	0.007	0,760	2743	19	2759	17	2780	30	-1
15	6129-15	16	9	0.53	14 474	0.270	0.562	0.008	0,772	2713	19	2781	18	2876	33	-7
16	6129-16	13	7	0.63	13,993	0.278	0.544	0.008	0.738	2711	22	2749	19	2801	33	-4
17	6129-17	22	12	0.49	14,406	0.285	0.542	0.008	0.766	2765	21	2777	19	2793	34	-1
18	6129-18	44	24	0.53	14.568	0.288	0.555	0.008	0.725	2745	22	2787	19	2846	33	-5
	0.2010		<u> </u>	2011-	FL-5283A	Intrusion	porphyria	ue à phén	ocristaux	de quartz	et feldspat	th				
Zirc	ons entiers						,,,			1.1.1.1.1.1						
1	11FL5283-1	290	155	0,19	13,856	0,169	0,536	0,006	0,844	2720	11	2740	12	2766	23	-2
2	5283-2	290	162	0,33	14,276	0,195	0,559	0,006	0,815	2701	13	2768	13	2861	26	-7
3	5283-3	259	152	0,23	15,034	0,205	0,586	0,007	0,851	2707	12	2817	13	2974	28	-12
4	5283-4	152	81	0,20	13,659	0,178	0,533	0,006	0,851	2707	11	2726	12	2753	25	-2
5	5283-5	257	141	0,29	14,071	0,169	0,548	0,006	0,849	2708	10	2754	11	2818	23	-5

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports iso	otopiques								Âge (Ma)	e (Ma)					
N°	N° d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)			
6	5283-6	186	93	0,28	12,946	0,161	0,501	0,005	0,751	2718	14	2676	12	2620	20	4			
7	5283-7	400	227	0,29	14,627	0,192	0,568	0,007	0,881	2714	10	2791	12	2899	27	-8			
8	5283-8	247	123	0,25	12,779	0,132	0,497	0,004	0,794	2710	10	2664	10	2602	18	5			
9	5283-9	467	243	0,40	13,481	0,141	0,521	0,004	0,779	2722	11	2714	10	2703	18	1			
10	5283-10	219	113	0,22	13,328	0,147	0,518	0,004	0,763	2713	12	2703	10	2689	18	1			
11	5283-11	270	150	0,22	14,435	0,160	0,555	0,005	0,812	2729	11	2779	11	2847	21	-5			
12	5283-12	320	170	0,20	13,720	0,161	0,531	0,005	0,840	2719	11	2731	11	2746	22	-1			
13	5283-13	364	190	0,14	13,394	0,186	0,522	0,006	0,820	2708	13	2708	13	2708	25	-0			
14	5283-14	342	176	0,21	13,190	0,162	0,513	0,005	0,838	2711	11	2693	12	2669	22	2			
15	5283-15	182	98	0,20	13,838	0,188	0,539	0,006	0,867	2709	11	2739	13	2779	27	-3			
16	5283-16	265	141	0,21	13,682	0,187	0,533	0,006	0,875	2710	11	2728	13	2753	27	-2			
17	5283-17	295	158	0,20	13,811	0,170	0,536	0,006	0,859	2715	10	2737	12	2767	24	-2			
18	5283-18	379	199	0,21	13,390	0,176	0,525	0,006	0,864	2697	11	2708	12	2722	25	-1			
19	5283-19	321	156	0,18	12,500	0,175	0,487	0,006	0,855	2708	12	2643	13	2558	25	7			
20	5283-20	293	154	0,28	13,563	0,178	0,524	0,006	0,862	2721	11	2720	12	2718	25	0			
21	5283-21	260	133	0,26	13,166	0,184	0,512	0,006	0,840	2712	13	2692	13	2664	26	2			
	20	010-PP-00	14A Tuf à l	apillis et a	à blocs rhy	/olitiques,	site au S\	N du lac G	aron, For	mation de	la rivière /	Allard, Gro	oupe de W	abassee					
Zirc	ons entiers					-			-			-							
1	10PP14-1	68	35	0,85	13,642	0,272	0,517	0,008	0,803	2754	19	2725	19	2686	35	3			
2	14-2	69	36	0,66	13,562	0,210	0,519	0,007	0,828	2737	14	2720	15	2697	28	2			
3	14-3	177	94	0,90	13,899	0,218	0,532	0,007	0,852	2737	13	2743	15	2750	30	-1			
4	14-4	34	19	0,54	14,677	0,276	0,572	0,009	0,871	2709	15	2795	18	2915	38	-9			
5	14-5	99	50	0,65	13,212	0,167	0,504	0,005	0,835	2742	11	2695	12	2633	23	5			
6	14-6	35	18	0,38	13,636	0,161	0,527	0,005	0,785	2723	12	2725	11	2727	21	-0			
7	14-7	98	54	0,43	14,093	0,153	0,547	0,005	0,833	2716	10	2756	10	2811	21	-4			
8	14-8	62	35	0,43	14,330	0,136	0,557	0,004	0,819	2713	9	2772	9	2853	18	-6			
9	14-9	37	20	0,41	14,205	0,153	0,553	0,005	0,802	2709	11	2763	10	2839	20	-6			
10	14-10	95	53	0,52	14,506	0,143	0,560	0,004	0,812	2723	9	2783	9	2868	18	-7			
11	14-11	51	32	0,66	16,340	0,210	0,626	0,007	0,859	2737	11	2897	12	3132	27	-18			
12	14-12	411	234	1,18	14,801	0,162	0,568	0,005	0,855	2734	9	2803	10	2899	22	-8			
13	14-13	238	139	0,90	15,254	0,171	0,585	0,006	0,843	2736	10	2831	11	2967	22	-11			
14	14-14	92	46	0,71	12,978	0,152	0,502	0,005	0,834	2719	11	2678	11	2624	21	4			
15	14-15	93	48	0,93	13,421	0,202	0,516	0,007	0,850	2730	13	2710	14	2683	28	2			
16	14-16	105	54	0,72	13,402	0,143	0,513	0,005	0,838	2738	10	2708	10	2669	20	3			
17	14-17	74	40	0,80	13,848	0,139	0,534	0,004	0,810	2726	10	2739	9	2758	18	-1			
18	14-18	64	34	0,65	14,090	0,160	0,537	0,005	0,793	2745	11	2756	11	2771	20	-1			
19	14-19	34	18	0,47	13,560	0,166	0,524	0,005	0,760	2723	13	2720	12	2715	21	0			
20	14-20	74	41	0,60	14,185	0,140	0,549	0,004	0,807	2720	10	2762	9	2820	18	-5			
21	14-21	65	35	0,57	13,922	0,146	0,539	0,004	0,787	2718	11	2744	10	2781	19	-3			
	2011	-JA-0611A	Tuf à lapi	llis et à bl	ocs rhyoli	tiques, sit	e au sud c	lu Pluton d	de Dunlop	, Formatio	n de la riv	ière Bell,	Groupe de	Wabasse	е				
Zirc	ons entiers			1	1		1	1		1	1		1	1		1			
1	JA611-16	478	218	0,78	10,856	0,142	0,456	0,005	0,826	2585	12	2511	12	2420	22	8			
2	JA611-14	46	25	0,49	13,597	0,195	0,539	0,006	0,761	2680	15	2722	14	2779	25	-5			
3	JA611-11	364	184	0,76	12,757	0,149	0,506	0,005	0,766	2680	12	2662	11	2638	19	2			
4	11JA611-1t	31	16	0,39	13,044	0,178	0,516	0,005	0,727	2682	15	2683	13	2684	22	-0			
5	JA611-12	371	197	0,82	13,439	0,155	0,532	0,005	0,811	2683	11	2711	11	2749	21	-3			
6	JA611-15	153	85	0,35	14,048	0,177	0,553	0,006	0,820	2693	12	2753	12	2836	24	-7			
7	JA611-10	122	66	0,39	13,651	0,166	0,536	0,005	0,764	2696	13	2726	11	2766	21	-3			
8	JA611-3	278	145	0,63	13,322	0,148	0,521	0,004	0,775	2702	12	2703	10	2704	19	-0			

TABLEAU 2 (suite) – Résultats des analyses U-Pb in situ (LA-ICPMS).

			Ra	pports isc	topiques								Âge (Ma)			
N٥	Nº d'analyse	U (ppm)	²⁰⁶ Pb (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	Erreur 1σ	²⁰⁷ Pb/ ²³⁵ U	Erreur 1σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 1σ	Disc. (%)
9	JA611-5c	115	60	0,51	13,466	0,153	0,524	0,005	0,764	2709	12	2713	11	2718	19	-0
10	JA611-9	255	135	0,48	13,608	0,146	0,529	0,004	0,770	2713	11	2723	10	2736	18	-1
11	JA611-2t	100	50	0,61	12,943	0,148	0,503	0,005	0,798	2714	11	2676	11	2626	20	4
12	JA611-13	92	50	0,53	14,026	0,193	0,544	0,006	0,801	2714	14	2751	13	2802	25	-4
13	JA611-4	307	160	0,76	13,533	0,145	0,523	0,004	0,787	2721	11	2718	10	2712	19	0
14	JA611-7	307	159	0,77	13,479	0,159	0,519	0,005	0,774	2728	12	2714	11	2695	20	1
15	JA611-8	90	47	0,35	13,637	0,177	0,524	0,005	0,804	2732	13	2725	12	2715	23	1
				2011-	KW-0221A	Rhyolite r	nassive, F	ormation	de Daniel,	Groupe d	e Wabass	ee				
Zirco	ons entiers		-			-								-	-	
1	221-12	65	36	0,46	13,847	0,168	0,546	0,006	0,832	2688	11	2739	11	2809	23	-6
2	221-13	125	69	0,90	13,903	0,154	0,547	0,005	0,850	2692	10	2743	10	2813	21	-6
3	221-14	106	60	0,71	14,282	0,160	0,561	0,005	0,863	2694	9	2769	11	2872	22	-8
4	221-15	69	38	0,40	14,103	0,172	0,552	0,006	0,875	2701	10	2757	12	2833	24	-6
5	221-10	65	35	0,61	13,623	0,157	0,532	0,005	0,852	2705	10	2724	11	2749	22	-2
6	221-2	42	23	0,35	14,111	0,196	0,551	0,007	0,905	2706	10	2757	13	2828	29	-6
7	221-11	52	28	0,49	13,840	0,167	0,538	0,005	0,783	2711	12	2739	11	2777	21	-3
8	221-4	76	40	0,54	13,442	0,146	0,523	0,005	0,890	2712	8	2711	10	2711	21	0
9	221-20	55	30	0,50	14,092	0,134	0,545	0,004	0,838	2721	9	2756	9	2804	18	-4
10	221-8	41	21	0,36	13,468	0,148	0,520	0,005	0,857	2725	9	2713	10	2697	21	1
11	11KW221-1	100	54	0,49	13,988	0,137	0,539	0,005	0,864	2728	8	2749	9	2778	19	-2
12	221-17	59	32	0,57	14,331	0,158	0,552	0,005	0,876	2728	9	2772	10	2832	22	-5
13	221-5	42	22	0,47	13,793	0,156	0,531	0,005	0,873	2729	9	2736	11	2745	22	-1
14	221-18	73	39	0,58	13,988	0,149	0,538	0,005	0,870	2731	9	2749	10	2774	21	-2
15	221-3	39	21	0,37	13,910	0,160	0,534	0,005	0,825	2732	11	2744	11	2760	21	-1
16	221-16	49	27	0,68	14,344	0,162	0,550	0,005	0,822	2734	11	2773	11	2827	21	-4
17	221-21	54	30	0,45	14,464	0,154	0,555	0,005	0,859	2734	9	2781	10	2846	21	-5
18	221-19	32	17	0,52	14,021	0,173	0,538	0,005	0,817	2735	12	2751	12	2774	23	-2
19	221-7	30	16	0,32	13,807	0,165	0,528	0,005	0,811	2738	11	2737	11	2734	22	0
20	221-9	45	23	0,55	13,502	0,174	0,516	0,006	0,865	2740	11	2715	12	2683	24	3
21	221-6	47	24	0,44	13,678	0,146	0,522	0,005	0,848	2743	9	2728	10	2706	20	2
					BC-11-32	Rhyolite n	nassive à l	fragmenta	ire, Group	e du lac V	latson					
Zirco	ons entiers							1	1							
1	BC-11-32-1.1	223	122	1,75	14,408	0,311	0,547	0,009	0,796	2750	21	2777	20	2815	39	-3
2	BC-11-32-1.2	172	100	1,72	15,253	0,317	0,582	0,010	0,817	2743	20	2831	20	2957	40	-10
3	BC-11-32-1.3	253	134	2,77	13,560	0,301	0,529	0,010	0,821	2705	21	2719	21	2739	41	-2
4	BC-11-32-1.4	276	146	3,01	13,469	0,290	0,528	0,009	0,804	2698	21	2713	20	2734	39	-2

TABLEAU 2 (suite et fin) – Résultats des analyses U-Pb in situ (LA-ICPMS).

REMARQUES

c:noyau, r:bordure du grain, o:surcroissance, t:bout du grain, clr:incolore, d:couleur foncée,

z : zonation, m : milieu du grain, rnd : arrondi

r : Corrélation des erreurs pour les coordonnées de la concordia.

Coordonnées de la concordia : Y = ${}^{206}Pb/{}^{238}U$ = EXP(L238*(206-238 Åge)) - 1; X = ${}^{207}Pb/{}^{235}U$ = EXP(L235*(207-235 Åge)) - 1

²⁰⁷Pb/²⁰⁶Pb = 137,88*X/Y. Constantes de désintégration de l'uranium (L238 & L235) d'après Jaffey *et al.* (1971).

°N	Description	Poids (mg)	U (mqq)	Th/U	Pb com (pg)	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb (%)	²⁰⁷ Pb/ ²³⁵ U	Erreur 2σ	²⁰⁶ Pb/ ²³⁸ U	Erreur 2σ	٩	²⁰⁶ Pb/ ²³⁸ U Âge (Ma)	Erreur 2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Âge (Ma)	Erreur 2σ	Disc. (%)
						2011-MS-0	070A Gneis	ss tonalitique rut	oané, Comp	lexe d'Ung	ava						
dwd5821	1 Ab zr, clr, alt, frag	0,4	639	1,27	0,8	2183	0,7	15,200	0,031	0,558	0,001	0,934	2859,9	3,5	2805,1	1,3	-2,4
dwd5841	1 Ab zr, LA gr 2	0,8	881	1,28	0,5	8828	0,2	14,689	0,028	0,536	0,001	0,937	2767,9	3,2	2815,2	1,3	2,1
dwd5839	1 Ab zr, LA gr 1	2,3	1081	1,31	0,7	25809	0,1	14,608	0,039	0,535	0,001	0,962	2761,4	5,3	2810,9	1,3	2,2
dwd5840	1 Ab zr, LA gr 4	1,5	1347	1,37	0,5	24057	0,1	13,839	0,043	0,518	0,001	0,969	2691,6	6,2	2773,7	1,3	3,6
dwd5814	1 Ab zr, clr, alt	-	734	1,54	0,2	22450	0,1	13,638	0,027	0,515	0,001	0,936	2676,5	3,3	2761,0	1,3	3,7
dwd5812	1 Ab zr, euh brn	3,9	316	0,97	0,7	8937	0,2	11,042	0,023	0,458	0,001	0,934	2430,0	3,3	2605,2	1,3	8,1
dwd5813	1 Ab zr, euh brn	4,1	542	0,49	1,2	6885	0,2	8,070	0,022	0,396	0,001	0,959	2150,9	4,3	2320,4	1,4	8,6
						2011-LP	-2151A Ton	alite blanchâtre,	Complexe	de Qurlutu							
dwd5815	1 Ab zr, clr, alt, gr 3	2,6	169	0,39	0,4	5633	0,3	12,278	0,030	0,500	0,001	0,942	2614,9	4,5	2634,3	1,4	0,9
dwd5816	1 Ab zr, brn, gr 5	1,8	285	0,18	0,2	11994	0,1	12,170	0,022	0,497	0,001	0,935	2602,6	2,7	2629,3	1,3	1,2
dwd5828	1 CA zr, 1.8 Ga, clr	2,6	399	0,20	0,8	6763	0,2	11,503	0,026	0,481	0,001	0,949	2530,1	3,9	2592,4	1,3	2,9
dwd5817	1 Ab zr, brn, lpr	2,4	423	0,31	0,3	15723	0,1	9,166	0,068	0,425	0,003	0,995	2284,2	14,1	2416,4	1,3	6,5
dwd5827	1 CA zr, 1.8 Ga, clr	1,4	542	0,26	0,2	8455	0,2	5,714	0,017	0,341	0,001	0,935	1893,5	4,6	1976,5	1,9	4,8
					2011	-PL-6182A Tona	lite très déf	ormée à orthopy	roxène-gre	nat, Compl	exe de Kas	lac					
dwd5819	1 Ab zr	2,6	51	0,66	0,3	1021	1,6	5,107	0,014	0,330	0,001	0,858	1836,2	4,0	1838,5	2,6	0,1
dwd5818	1 Ab zr	4,5	67	0,69	0,3	2293	0,7	5,081	0,013	0,329	0,001	0,881	1831,5	3,4	1834,7	2,1	0,2
dwd5820	1 Ab zr	2,9	52	0,80	0,6	627	2,6	5,076	0,017	0,328	0,001	0,890	1830,2	4,4	1834,3	2,8	0,3
dwd5860	1 CA zr, surcr, gr 12	0,001	208	0,61	0,6	852	1,9	5,082	0,014	0,329	0,001	0,923	1834,1	3,8	1832,0	2,0	-0,1
dwd5859	1 CA zr, surcr, gr 4	0,005	27	0,31	2,7	127	14,3	5,084	0,033	0,329	0,001	0,566	1834,8	6,0	1831,8	9,8	-0,2
dwd5858	1 CA zr, surcr, gr 1	0,004	100	0,75	1,3	781	2,1	5,072	0,013	0,330	0,001	0,842	1836,8	3,5	1825,3	2,5	-0,7
						1997-JG	-1592 M1 G	neiss granitique,	Complexe	de Langeli	er						
dwd5807	1 Ab zr, brn	0,2	2725	0,05	0,5	12632	0,1	27,194	0,076	0,674	0,002	0,963	3322,6	6,4	3430,8	1,2	4,0
dwd5806	1 Ab zr, brn	0,7	2166	0,11	1,7	7807	0,2	18,352	0,041	0,540	0,001	0,946	2785,2	4,1	3161,1	1,2	14,6
dwd5808	1 Ab zr, alt	0,2	15341	0,27	7,9	1732	0,9	9,549	0,019	0,442	0,001	0,917	2357,7	2,9	2421,8	1,5	3,2
						2011-JG	3-1242A Gn	eiss tonalitique,	Complexe	de Langelie	r						
dwd5792	1 CA zr	0,7	180	0,32	1,5	544	3,0	13,722	0,038	0,528	0,001	0,880	2734,4	4,7	2727,9	2,2	-0,3
dwd5791	1 CA zr	0,8	74	0,26	0,7	588	2,8	13,652	0,051	0,529	0,002	0,906	2736,3	6,9	2718,1	2,6	-0,8
dwd5793	1 CA zr	0,6	466	0,21	1,9	938	1,7	13,506	0,055	0,525	0,002	0,968	2719,0	8,4	2713,2	1,7	-0,3
						2011-FL-5270A	Tuf à lapilli	s, Membre des V	ents, Form	ation d'Oba	togamau						
dwd5794	1 CA zr	1,8	504	0,61	1,1	5695	0,3	14,760	0,056	0,544	0,002	0,975	2800,4	8,2	2799,5	1,4	-0,0
dwd5833	1 CA zr, cr	е	175	0,62	0,1	25124	0,1	14,730	0,032	0,543	0,001	0,938	2797,0	4,0	2798,7	1,3	0,1
dwd5834	1 CA zr	0,4	164	0,38	0,4	1104	1,5	14,748	0,040	0,544	0,001	0,925	2799,9	5,3	2798,5	1,7	-0,1
dwd5795	1 CA zr	0,8	272	0,48	1,7	892	1,8	14,745	0,034	0,544	0,001	0,886	2800,3	4,0	2797,9	1,8	-0,1
dwd5796	1 CA zr	0,8	124	0,46	2,8	260	6,5	14,732	0,055	0,544	0,001	0,822	2801,0	5,4	2795,9	3,7	-0,2

TABLEAU 3 - Résultats des analyses U-Pb par dilution isotopique (ID-TIMS).

MS).
D-TI
E
pique
isoto
tion
dilu
o par
U-PI
yses
anal
des
ultats
Rési
- (I
t fir
suite e
3
,EAU
TABL
-

											_															
Disc (%)		-0,2	0,0	-2,4	-0'2	-0,3	0,3		0,2	0,2	-0'0		0'0	0,1	0,3		0,1	0,7	1,2	6,0		0,1	-0,2	-0'3	-0'3	0,1
Erreur 2σ		1,9	2,0	7,9	3,4	4,8	2,7		1,4	1,3	1,4		1,4	1,4	1,4		1,4	1,6	1,4	1,6		1,7	2,2	2,1	2,0	4,8
²⁰⁷ Pb/ ²⁰⁶ Pb Âge (Ma)		2724,5	2724,4	2718,2	2722,4	2724,3	2497,9		2710,3	2710,2	2710,0		2724,9	2724,6	2724,4		2693,6	2692,8	2691,5	2685,4		2723,1	2723,0	2722,5	2720,2	2716,1
Erreur 2σ		5,2	5,7	16,3	11,6	13,9	6,8		4,4	3,1	3,9		7,8	4,1	7,3		4,3	5,1	3,4	9,1		4,2	5,6	4,7	5,5	17,7
²⁰⁶ Pb/ ²³⁸ U Âge (Ma)		2728,3	2723,6	2770,5	2737,7	2731,3	2491,7		2706,8	2706,7	2710,8	de Wabassee	2723,8	2721,3	2717,5	pe de Wabasse	2690,4	2676,4	2664,6	2552,7		2721,1	2727,4	2728,2	2725,5	2713,2
٩		0,914	0,912	0,793	0,935	0,915	0,908		0,944	0,932	0,940	Ird, Groupe	0,974	0,935	0,971	e Bell, Grou	0,940	0,934	0,924	0,978		0,894	0,903	0,890	0,915	0,936
Erreur 2σ		0,001	0,001	0,004	0,003	0,003	0,002	e feldspath	0,001	0,001	0,001	rivière Alla	0,002	0,001	0,002	de la rivièr	0,001	0,001	0,001	0,002	Wabassee	0,001	0,001	0,001	0,001	0,004
²⁰⁶ Pb/ ²³⁸ U	Bruneau	0,527	0,526	0,537	0,529	0,528	0,472	quartz et d	0,522	0,522	0,523	nation de la	0,526	0,525	0,524	Formation	0,518	0,515	0,512	0,486	Groupe de	0,525	0,527	0,527	0,526	0,523
Erreur 2σ	mation de	0,038	0,041	0,106	0,079	0,098	0,040	cristaux de	0,032	0,026	0,030	saron, Forn	0,051	0,031	0,048	de Dunlop,	0,031	0,035	0,026	0,055	de Daniel,	0,031	0,042	0,037	0,040	0,112
²⁰⁷ Pb/ ²³⁵ U	uf à lapillis, For	13,655	13,626	13,862	13,696	13,672	10,673	ıyrique à phéno	13,408	13,406	13,430	au SW du lac (13,631	13,614	13,588	sud du Pluton	13,174	13,084	13,003	12,297	sive, Formation	13,599	13,637	13,638	13,602	13,494
²⁰⁷ Pb (%)	FL-6129C T	2,1	2,1	8,8	4,8	8,3	2,8	usion porph	0,1	0,5	1,0	itiques, site	0,4	0,2	0,4	ues, site au	0,1	0,5	0,1	0,1	nyolite mas	1,4	2,7	1,9	2,3	5,6
²⁰⁷ Pb/ ²⁰⁴ Pb	2006-	171	677	197	347	208	585	11-FL-5283A Intru	13860	3420	1690	et à blocs rhyol	3680	8374	3975	à blocs rhyolitiq	11687	3030	11885	13292	011-KW-0221A RI	1153	603	851	700	301
Pb com (pg)		0,6	0,5	1,3	0,4	0,6	0,6	20	0,6	0,9	2,1	ruf à lapillis	1,9	0,4	1,3	à lapillis et	0,5	0,4	0,2	0,5	2(0,7	1,0	0,5	0,8	0,7
Th/U		0,72	0,70	0,72	0,66	0,56	0,46		0,36	0,36	0,28	-PP-0014A	0,71	0,67	0,65	-0611A Tuf	0,64	0,47	0,66	0,72		0,87	0,43	0,50	0,53	0,40
n (mqq)		136	73	60	32	62	122		150	278	207	2010	258	100	175	2011-JA	263	166	619	477		601	221	54	102	83
Poids (mg)		0,5	0'0	0,6	0,7	0,3	0,6		8,6	1,7	2,7		4,3	5,4	4,7		3,3	1,1	0,7	2,5		0,2	0,4	1,2	6'0	0,4
Description		1 CA zr, 2.7 Ga, clr	1 CA zr, 2.5 Ga, clr		1 CA zr	1 CA zr	1 CA zr		1 CA zr	1 CA zr	1 CA zr		1 CA zr	1 CA zr	1 CA zr	1 CA zr		1 CA zr	1 CA zr	1 CA zr, cr	1 CA zr	1 CA zr, cr				
°		dwd5826	dwd5825	dwd5824	dwd5835	dwd5836	dwd5823		dwd5797	dwd5799	dwd5798		dwd5804	dwd5803	dwd5805		dwd5832	dwd5829	dwd5830	dwd5831		dwd5802	dwd5801	dwd5837	dwd5800	dwd5838

REMARQUES

Les analyses sont ordonnées d'après les âges ²⁰⁷Pb/²⁰⁸Pb de haut en bas. CA : traité par recuit et dissolution partielle; Ab : traité par abrasion; zr : nombre de grains de zircon clr : incolore; brn : brunåtre; euh : idiomorphe; md : arrondi; frag : fragment; alt : altération visible; cr : fracturé; lpr : prisme allongé;

surcr : surcroissance; gr : numéro du grain analysé par LA-ICPMS Pb com : Pb commun, avec composition isotopique du blanc : 206/204 = 18,221; 207/204 = 15,612; 208/204 = 39,36 (erreurs de 2 %)

Th/U est calculé à partir du rapport ²⁰⁸Pb/²⁰⁶Pb radiogenique et l'âge ²⁰⁷Pb/²⁰⁶Pb r : corrélation des erreurs pour les coordonnées de la concordia Disc. : discordance par rapport à l'âge ²⁰⁷Pb/²⁰⁶Pb Constantes de désintégration de l'uranium d'après Jaffey *et al.* (1971)

ANNEXE 1 – Diagramme concordia des analyses du zircon standard interne DD91-1 par la méthode LA-ICP-MS.

ANNEXE 2 – Photographies de zircons et de monazites avant abrasion provenant des échantillons prélevés dans le cadre de cette étude.

ANNEXE 2 (suite) – Photographies de zircons et de monazites avant abrasion provenant des échantillons prélevés dans le cadre de cette étude.

ANNEXE 2 (suite) – Photographies de zircons et de monazites avant abrasion provenant des échantillons prélevés dans le cadre de cette étude.

ANNEXE 2 (suite et fin) – Photographies de zircons et de monazites avant abrasion provenant des échantillons prélevés dans le cadre de cette étude.

ANNEXE 3 – Images de zircons et de monazites en catholuminescence (CL) ou en électrons rétrodiffusés (BSE).

1) 2011-MS-0106A

3) 2011-CL-5255A

5) 2011-LP-2151A

2) 2011-MS-0070A

4) 2011-HH-4084A

19

ANNEXE 3 (suite et fin) – Images de zircons et de monazites en catholuminescence (CL) ou en électrons rétrodiffusés (BSE).

6) 2011-IL-3141A

8) 2011-PL-6182A

7) 2011-IL-3141A

9) 2011-JG-1592 M1

Énergie et Ressources naturelles Québec 🐼 🐼